next up previous
Next: Column Generation Algorithm Up: Branch and Price for Previous: Axial Assignment Problem

Dantzig-Wolfe Formulation

Balas and Saltzman [1] consider the use of the classical Assignment Problem (AP) as a relaxation of AAP in the context of Lagrangian Relaxation. We will use these same ideas in the context of column generation or Dantzig-Wolfe decomposition.

Define the AP polytope by removing constraint (1) as $ {\cal P}' = \emph{conv}({\cal F}')$, where $ {\cal F}' = \{x \in \mathbb{R}^H: x \textrm{ satisfies } \eqref{aap:2} -
\eqref{aap:4}\}$. Observe, that the cost of an assignment is $ c_s
= \sum_{(i,j,k) \in H} s_{ijk} c_{ijk}, \; \forall s \in {\cal F}'$.

Then, the Dantzig Wolfe (DW) LP can be written as:
\begin{displaymath}
z_{DW} = \min \end{displaymath} \begin{displaymath}\sum_{s \in {\cal F}'} c_{s} \lambda_{s} \nonumber \end{displaymath}
\begin{displaymath}\sum_{s \in {\cal F}'} \sum_{(j,k) \in J \times K} s_{ijk} \lambda_s
\end{displaymath} \begin{displaymath}= \end{displaymath} \begin{displaymath}1 \end{displaymath} \begin{displaymath}\forall i \in I
\end{displaymath} (5)
\begin{displaymath}\sum_{s \in {\cal F}'} \lambda_{s} \end{displaymath} \begin{displaymath}= \end{displaymath} \begin{displaymath}1 \end{displaymath} (6)
\begin{displaymath}\lambda_{s} \geq 0 \end{displaymath} \begin{displaymath}\forall s \in {\cal F}'
\end{displaymath} (7)

where

$\displaystyle x_{ijk} = \sum_{s \in {\cal F}'} s_{ijk} \lambda_s$ (8)


next up previous
Next: Column Generation Algorithm Up: Branch and Price for Previous: Axial Assignment Problem
IP Seminar Series 2003-12-01