next up previous
Next: BCP Implementation Up: Branch and Price for Previous: Dantzig-Wolfe Formulation

Column Generation Algorithm

Since there is an exponential number of possible columns in the Dantzig-Wolfe LP, we will use a column generation algorithm. Let $ {\cal F}'_{t}
\subseteq {\cal F}'$ represent a subset of the feasible points in $ {\cal P}'$, i.e. assignment points. At iteration $ t$, the restricted master problem is the Dantzig-Wolfe LP above with $ {\cal F}' = {\cal F}'_{t}$. Associate a vector of dual variables $ u$ with constraint (4) and $ \alpha$ with the convexity constraint (5). Let $ (\hat u, \hat \alpha )$ be the optimal dual solution to the restricted master problem. We then solve a subproblem to search for the column from $ {\cal F}' \setminus {\cal F}'_{t}$ with the most negative reduced cost. The reduced cost of a variable $ x_{ijk}$ is calculated as

$\displaystyle r_{ijk} = c_{ijk} - \hat u_i - \hat \alpha$ (9)

Hence, we can write the column generation subproblem as an optimization problem over the AP polytope as
\begin{displaymath}
z_{SP}(\hat u, \hat \alpha )) = \min
\end{displaymath} \begin{displaymath}\sum_{(j,k) \in J \times K} c'_{jk} x_{jk} \nonumber \end{displaymath}
\begin{displaymath}\sum_{k \in K} x_{jk} \end{displaymath} \begin{displaymath}= \end{displaymath} \begin{displaymath}1 \end{displaymath} \begin{displaymath}\forall j \in J
\yesnumber \end{displaymath} (10)
\begin{displaymath}\sum_{j \in J} x_{jk} \end{displaymath} \begin{displaymath}= \end{displaymath} \begin{displaymath}1 \end{displaymath} \begin{displaymath}\forall k \in K
\yesnumber \end{displaymath} (11)
\begin{displaymath}x_{jk} \in \{0,1\} \end{displaymath} \begin{displaymath}\forall (j,k) \in
J \times K \end{displaymath} (12)
 

where $ c'_{jk} = \min_{i \in I} \{c_{ijk} - \hat u_i\}$. Then, if $ z_{SP}(\hat u,
\hat \alpha ) \geq \hat \alpha $, then no columns in $ {\cal F}' \setminus {\cal F}'_{t}$ have negative reduced cost and the solution to the restricted master is optimal. Otherwise, we add the column $ x_{ijk}$, corresponding to the optimal solution of $ z_{SP}(\hat u, \hat \alpha )$, to $ {\cal F}'_{t+1}$ and iterate.
next up previous
Next: BCP Implementation Up: Branch and Price for Previous: Dantzig-Wolfe Formulation
IP Seminar Series 2003-12-01