next up previous
Next: Dantzig-Wolfe Formulation Up: Branch and Price for Previous: Branch and Price for

Axial Assignment Problem

The Axial Assignment Problem (AAP) is that of finding a minimum-weight clique cover of the complete tri-partite graph $ K_{n,n,n}$. Let $ I,J$ and $ K$ be three disjoint sets with $ \vert I\vert=\vert J\vert=\vert K\vert=n$ and set $ H =
I \times J \times K$. Then, AAP can be formulated as the following binary integer program:


\begin{displaymath}
\min \end{displaymath} \begin{displaymath}\sum_{(i,j,k) \in H} c_{ijk} x_{ijk} \nonumber \end{displaymath}
\begin{displaymath}\sum_{(j,k) \in J \times K} x_{ijk} \end{displaymath} \begin{displaymath}= \end{displaymath} \begin{displaymath}1 \end{displaymath} \begin{displaymath}\forall i \in I
\end{displaymath} (1)
\begin{displaymath}\sum_{(i,k) \in I \times K} x_{ijk} \end{displaymath} \begin{displaymath}= \end{displaymath} \begin{displaymath}1 \end{displaymath} \begin{displaymath}\forall j \in J
\end{displaymath} (2)
\begin{displaymath}\sum_{(i,j) \in I \times J} x_{ijk} \end{displaymath} \begin{displaymath}= \end{displaymath} \begin{displaymath}1 \end{displaymath} \begin{displaymath}\forall k \in K
\yesnumber \end{displaymath} (3)
\begin{displaymath}x_{ijk} \in \{0,1\} \end{displaymath} \begin{displaymath}\forall (i,j,k) \in
H \end{displaymath} (4)


next up previous
Next: Dantzig-Wolfe Formulation Up: Branch and Price for Previous: Branch and Price for
IP Seminar Series 2003-12-01