On the Value Function of a Mixed Integer Linear Program

MENAL GUZELSOY
TED RALPHS
ISE Department
COR@L Lab
Lehigh University
ted@lehigh.edu

AIRO, Ischia, Italy, 11 September 2008

Thanks: Work supported in part by the National Science Foundation

Outline

- Introduction
- Structure of The Value Function
 - Definitions
 - Linear Approximations
 - Properties
- Constructing the Value Function
 - Subadditive Extension
 - Algorithms
 - General Case
- Current and Future Work

Motivation

- The goal of this work is to study the structure of the value function of a general mixed integer linear program (MILP).
- We hope this will lead to methods for approximation useful for
 - Sensitivity analysis
 - Warm starting
 - Multi-level/hierarchical mathematical programming
 - Other methods that require dual information
- Constructing the value function (or even an approximation to it) is difficult, even in a small neighborhood.
- We begin by considering the value functions of single-row relaxations.

Definitions

We consider the MILP

$$\min_{x \in \mathcal{S}} cx,\tag{P}$$

$$c \in \mathbb{R}^n$$
, $S = \{x \in \mathbb{Z}_+^r \times \mathbb{R}_+^{n-r} \mid a'x = b\}$ with $a \in \mathbb{Q}^n$, $b \in \mathbb{R}$.

The value function of (P) is

$$z(d) = \min_{x \in \mathcal{S}(d)} cx,$$

where for a given $d \in \mathbb{R}$, $S(d) = \{x \in \mathbb{Z}_+^r \times \mathbb{R}_+^{n-r} \mid a'x = d\}$.

- Assumptions: Let $I = \{1, \dots, r\}, \ C = \{r+1, \dots, n\}, \ N = I \cup C$.
 - $z(0) = 0 \Longrightarrow z : \mathbb{R} \to \mathbb{R} \cup \{+\infty\},$
 - $N^+ = \{i \in N \mid a_i > 0\} \neq \emptyset$ and $N^- = \{i \in N \mid a_i < 0\} \neq \emptyset$,
 - r < n, that is, $|C| \ge 1 \Longrightarrow z : \mathbb{R} \to \mathbb{R}$.

Example

min
$$3x_1 + \frac{7}{2}x_2 + 3x_3 + 6x_4 + 7x_5 + 5x_6$$

s.t $6x_1 + 5x_2 - 4x_3 + 2x_4 - 7x_5 + x_6 = b$ and $x_1, x_2, x_3 \in \mathbb{Z}_+, x_4, x_5, x_6 \in \mathbb{R}_+$. (SP)

Simple Bounding Functions

- F_L : LP Relaxation \rightarrow Lower Bounding function
- F_U: Continuous Relaxation → Upper Bounding function

$$F_L(d) = \begin{cases} \eta d & \text{if } d > 0, \\ 0 & \text{if } d = 0, \\ \zeta d & \text{if } d < 0. \end{cases} \quad F_U(d) = \begin{cases} \eta^C d & \text{if } d > 0 \\ 0 & \text{if } d = 0 \\ \zeta^C d & \text{if } d < 0 \end{cases}$$

where, setting $C^+ = \{i \in C \mid a_i > 0\}$ and $C^- = \{i \in C \mid a_i < 0\}$,

$$\begin{split} \eta &= \min\{\frac{c_i}{a_i} \mid i \in N^+\} &\quad \text{and} &\quad \zeta &= \max\{\frac{c_i}{a_i} \mid i \in N^-\} \\ \eta^C &= \min\{\frac{c_i}{a_i} \mid i \in C^+\} &\quad \text{and} &\quad \zeta^C &= \max\{\frac{c_i}{a_i} \mid i \in C^-\}. \end{split}$$

- By convention: $C^+ \equiv \emptyset \rightarrow \eta^C = \infty$ and $C^- \equiv \emptyset \rightarrow \zeta^C = -\infty$.
- $F_U \ge z \ge F_L$

$$\eta = \frac{1}{2}, \zeta = -\frac{3}{4}, \eta^{C} = 3 \text{ and } \zeta^{C} = -1$$
:

Observations

Consider $d_U^+, d_U^-, d_L^+, d_L^-$:

The relation between F_U and the linear segments of z: $\{\eta^C, \zeta^C\}$

Redundant Variables

Let $T \subseteq C$ be such that

- ullet $t^+ \in T$ if and only if $\eta^{\mathcal{C}} < \infty$ and $\eta^{\mathcal{C}} = rac{c_{r^+}}{a_{r^+}}$ and similarly,
- $t^- \in T$ if and only if $\zeta^C > -\infty$ and $\zeta^C = \frac{c_{t^-}}{a_{t^-}}$.

and define

$$\nu(d) = \min \quad c_I x_I + c_T x_T$$

$$s.t. \quad a_I x_I + a_T x_T = d$$

$$x_I \in \mathbb{Z}_+^I, \quad x_T \in \mathbb{R}_+^T$$

Then

- \bullet $\nu(d) = z(d)$ for all $d \in \mathbb{R}$.
- The variables in $C \setminus T$ are redundant.
- z can be represented with at most 2 continuous variables.

Example

min
$$x_1 - 3/4x_2 + 3/4x_3$$

s.t $5/4x_1 - x_2 + 1/2x_3 = b, x_1, x_2 \in \mathbb{Z}_+, x_3 \in \mathbb{R}_+.$

For each discontinuous point d_i , we have $d_i - (5/4y_1^i - y_2^i) = 0$ and each linear segment has the slope of $\eta^C = 3/2$.

Jeroslow Formula

- Let $M \in \mathbb{Z}_+$ be such that for any $t \in T$, $\frac{Ma_j}{a_t} \in \mathbb{Z}$ for all $j \in I$.
- Then there is a Gomory function g such that

$$z(d) = \min_{t \in T} \{ g(\lfloor d \rfloor_t) + \frac{c_t}{a_t} (d - \lfloor d \rfloor_t) \}, \quad \lfloor d \rfloor_t = \frac{a_t}{M} \left\lfloor \frac{Md}{a_t} \right\rfloor, \quad \forall d \in \mathbb{R}$$

- Such a Gomory function can be obtained from the value function of a related PILP.
- For $t \in T$, setting

$$\omega_t(d) = g(\lfloor d \rfloor_t) + \frac{c_t}{a_t}(d - \lfloor d \rfloor_t) \ \forall d \in \mathbb{R},$$

we can write

$$z(d) = \min_{t \in T} \omega_t(d) \ \forall d \in \mathbb{R}$$

Piecewise Linearity and Continuity

- For $t \in T$, ω_t is piecewise linear with finitely many linear segments on any closed interval and each of those linear segments has a slope of η^C if $t = t^+$ or ζ^C if $t = t^-$.
- ω_{t^+} is continuous from the right, ω_{t^-} is continuous from the left.
- \bullet ω_{t^+} and ω_{t^-} are both lower-semicontinuous.

Theorem

- z is piecewise-linear with finitely many linear segments on any closed interval and each of those linear segments has a slope of η^C or ζ^C .
- (Meyer 1975) z is lower-semicontinuous.
- $\eta^{C} < \infty$ if and only if z is continuous from the right.
- $\zeta^{C} > -\infty$ if and only if z is continuous from the left.
- Both η^C and ζ^C are finite if and only if z is continuous everywhere.

Maximal Subadditive Extension

- Let $f:[0,h]\to\mathbb{R}, h>0$ be subadditive and f(0)=0.
- The maximal subadditive extension of f from [0,h] to \mathbb{R}_+ is

$$f_S(d) = \begin{cases} f(d) & \text{if } d \in [0, h] \\ \inf_{C \in \mathcal{C}(d)} \sum_{\rho \in \mathcal{C}} f(\rho) & \text{if } d > h \end{cases},$$

- C(d) is the set of all finite collections $\{\rho_1, ..., \rho_R\}$ such that $\rho_i \in [0, h], i = 1, ..., R$ and $\sum_{i=1}^R \rho_i = d$.
- Each collection $\{\rho_1, ..., \rho_R\}$ is called an *h*-partition of *d*.
- We can also extend a subadditive function $f:[h,0]\to\mathbb{R}, h<0$ to \mathbb{R}_- similarly.
- (Bruckner 1960) f_S is subadditive and if g is any other subadditive extension of f from [0,h] to \mathbb{R}_+ , then $g \leq f_S$ (maximality).

Extending the Value Function

- Suppose we use z itself as the seed function.
- Observe that we can change the "inf" to "min":

Lemma

Let the function $f:[0,h]\to\mathbb{R}$ be defined by $f(d)=z(d)\ \forall d\in[0,h].$ Then,

$$f_S(d) = \begin{cases} z(d) & \text{if } d \in [0, h] \\ \min_{C \in C(d)} \sum_{\rho \in C} z(\rho) & \text{if } d > h \end{cases}.$$

- For any h > 0, $z(d) < f_S(d) \ \forall d \in \mathbb{R}_+$.
- Observe that for $d \in \mathbb{R}_+$, $f_S(d) \rightarrow z(d)$ while $h \rightarrow \infty$.
- Is there an $h < \infty$ such that $f_S(d) = z(d) \ \forall d \in \mathbb{R}_+$?

Yes! For large enough h, maximal extension produces the value function itself.

Theorem

Let $d_r = \max\{a_i \mid i \in N\}$ and $d_l = \min\{a_i \mid i \in N\}$ and let the functions f_r and f_l be the maximal subadditive extensions of z from the intervals $[0,d_r]$ and $[d_l,0]$ to \mathbb{R}_+ and \mathbb{R}_- , respectively. Let

$$F(d) = \begin{cases} f_r(d) & d \in \mathbb{R}_+ \\ f_l(d) & d \in \mathbb{R}_- \end{cases}$$

then, z = F.

Outline of the Proof.

- $z \le F$: By construction.
- $z \ge F$: Using MILP duality, F is dual feasible.

In other words, the value function is completely encoded by the breakpoints in $[d_l, d_r]$ and 2 slopes.

General Procedure

- We will construct the value function in two steps
 - Construct the value function on $[d_l, d_r]$.
 - Extend the value function to the entire real line from $[d_l, d_r]$.
- For the rest of the talk
 - We assume $\eta^C < \infty$ and $\zeta^C < \infty$.
 - We construct the value function over \mathbb{R}_+ only.
 - These assmuptions are only needed to simplify the presentation.

Constructing the Value Function on $[0, d_r]$

- If both η^C and ζ^C are finite, the value function is continuous and the slopes of the linear segments alternate between η^C and ζ^C .
- For $d_1, d_2 \in [0, d_r]$, if $z(d_1)$ and $z(d_2)$ are connected by a line with slope η^C or ζ^C , then z is linear over $[d_1, d_2]$ with the respective slope (subadditivity).
- With these observations, we can formulate a finite algorithm to evaluate z in $[d_l, d_r]$.

Figure: Evaluating z in [0, 6]

Figure: Evaluating z in [0, 6]

Extending the Value Function

Consider evaluating

$$z(d) = \min_{\mathcal{C} \in \mathcal{C}(d)} \sum_{\rho \in \mathcal{C}} z(\rho) \text{ for } d \notin [0, d_r].$$

- Can we limit $|\mathcal{C}|$, $\mathcal{C} \in \mathcal{C}(d)$? Yes!
- Can we limit |C(d)|? Yes!

Theorem

Let $d > d_r$ and let $k_d \ge 2$ be the integer such that $d \in (\frac{k_d}{2}d_r, \frac{k_d+1}{2}d_r]$. Then

$$z(d) = \min\{\sum_{i=1}^{k_d} z(\rho_i) \mid \sum_{i=1}^{k_d} \rho_i = d, \rho_i \in [0, d_r], i = 1, ..., k_d\}.$$

- Therefore, $|\mathcal{C}| \leq k_d$ for any $\mathcal{C} \in \mathcal{C}(d)$.
- How about $|\mathcal{C}(d)|$?

Lower Break Points

Let Ψ be the lower break points of z in $[0, d_r]$.

Theorem

For any $d \in \mathbb{R}_+ \setminus [0, d_r]$ there is an optimal d_r -partition $\mathcal{C} \in \mathcal{C}(d)$ such that $|\mathcal{C} \setminus \Psi| \leq 1$.

In particular, we only need to consider the collection

$$\begin{array}{ll} \Lambda(d) & \equiv & \{\mathcal{H} \cup \{\mu\} \mid \mathcal{H} \in \mathcal{C}(d-\mu) \cap \Psi^{k_d-1}, \sum_{\rho \in \mathcal{H}} \rho + \mu = d, \\ \\ & \mu \in [0,d_r] \} \end{array}$$

In other words,

$$z(d) = \min_{\mathcal{C} \in \Lambda(d)} \sum_{\rho \in \mathcal{C}} z(\rho) \ \forall d \in \mathbb{R}_+ \backslash [0, d_r]$$

Observe that the set $\Lambda(d)$ is finite.

For the interval [0,6], we have $\Psi = \{0,5,6\}$. For $b = \frac{31}{2}$, $\mathcal{C} = \{5,5,\frac{11}{2}\}$ is an optimal d_r -partition with $|\mathcal{C} \setminus \Psi| = 1$.

Getting z over \mathbb{R}_+

- Recursive Construction:
- Let $\Psi((0,p])$ to the set of the lower break points of z in the interval (0,p] $p \in \mathbb{R}_+$.

 - **②** For any $d \in (p, p + \frac{p}{2}]$, let

$$z(d) = \min\{z(\rho_1) + z(\rho_2) \mid \rho_1 + \rho_2 = d, \rho_1 \in \Psi((0, p]), \rho_2 \in (0, p]\}$$

Let $p := p + \frac{p}{2}$ and repeat this step.

In other words, we do the following at each iteration:

$$z(d) = \min_{j} g^{j}(d) \ \forall d \in \left(p, p + \frac{p}{2}\right]$$

where, for each $d^j \in \Psi((0,p])$, the functions $g^j: \left[0,p+\frac{p}{2}\right] \to \mathbb{R} \cup \{\infty\}$ are defined as

$$g^{j}(d) = \begin{cases} z(d) & \text{if } d \leq d^{j}, \\ z(d^{j}) + z(d - d^{j}) & \text{if } d^{j} < d \leq p + d^{j}, \\ \infty & \text{otherwise.} \end{cases}$$

Because of subadditivity, we can then write

$$z(d) = \min_{j} g^{j}(d) \ \forall d \in \left(0, p + \frac{p}{2}\right].$$

Extending the value function of (SP) from $\left[0,6\right]$ to $\left[0,9\right]$

Extending the value function of (SP) from $\left[0,6\right]$ to $\left[0,9\right]$

Extending the value function of (SP) from [0,9] to $\left[0,\frac{27}{2}\right]$

Extending the value function of (SP) from [0,9] to $\left[0,\frac{27}{2}\right]$

A Combinatorial Procedure

Observe that it is enough to get the lower break points and this can be done more easily.

Theorem

If d is a lower break-point of z on $(p, p + \frac{p}{2}]$ then there exist $\rho_1, \rho_2 \in \Psi((0, p])$ such that $z(d) = z(\rho_1) + z(\rho_2)$ and $d = \rho_1 + \rho_2$.

- Set $\Upsilon(p) \equiv \{z(\rho_1) + z(\rho_2) \mid p < \rho_1 + \rho_2 \le p + \frac{p}{2}, \rho_1, \rho_2 \in \Psi((0, p])\}.$
- Then, z is obtained by connecting the points on the "lower envelope" of $\Upsilon(p)$.
- Can we make the procedure finite?

Termination

Yes! Periodicity

- Let $\mathcal{D} = \{d \mid z(d) = F_L(d)\}$. Note that $\mathcal{D} \neq \emptyset$.
- Furthermore, let $\lambda = \min\{d \mid d \geq d_r, d \in \mathcal{D}\}.$
- Define the functions $f_i : \mathbb{R}_+ \to \mathbb{R}, j \in \mathbb{Z}_+ \setminus \{0\}$ as follows

$$f_{j}(d) = \begin{cases} z(d) & , d \leq j\lambda \\ kz(\lambda) + z(d-k\lambda) & , d \in ((k+j-1)\lambda, (k+j)\lambda], k \in \mathbb{Z}_{+} \setminus \{0\}. \end{cases}$$

Theorem

- There exists $q \in \mathbb{Z}_+ \setminus \{0\}$ such that $z(d) = f_q(d) \ \forall d \in \mathbb{R}_+$.
- In addition, $z(d) = f_q(d) \ \forall d \in \mathbb{R}_+$ if and only if $f_q(d) = f_{q+1}(d) \ \forall d \in \mathbb{R}_+$.
 - Therefore, we can extend over the intervals of size λ and stop when we reach the 3, condition above.

$$\lambda = 6, \ f_1(d) = \begin{cases} z(d) & , d \le 6 \\ kz(6) + z(d - 6k) & , d \in (6k, 6(k+1)], k \in \mathbb{Z}_+ \setminus \{0\}. \end{cases}$$

$$f_2(d) = \begin{cases} z(d) & , d \le 12 \\ kz(6) + z(d - 6k) & , d \in (6(k+1), 6(k+2)], k \in \mathbb{Z}_+ \setminus \{0\}. \end{cases}$$

$$f_3(d) = \begin{cases} z(d) & , d \le 18 \\ kz(6) + z(d - 6k) & , d \in (6(k+2), 6(k+3)], k \in \mathbb{Z}_+ \setminus \{0\}. \end{cases}$$

$$f_4(d) = \begin{cases} z(d) & , d \le 24 \\ kz(6) + z(d - 6k) & , d \in (6(k+3), 6(k+4)], k \in \mathbb{Z}_+ \setminus \{0\}. \end{cases}$$

• Note that $f_4(d) = f_5(d) \forall d \in \mathbb{R}_+$. Therefore, $z(d) = f_4(d) \forall d \in \mathbb{R}_+$.

A Finite Procedure

We can further restrict the search space by again using maximal extension and the fact that $z(k\lambda) = kz(\lambda)$ and $\lambda \ge d_r$.

Theorem

For a given $k \geq 2, k \in \mathbb{Z}_+$,

$$z(d) = \min\{z(\rho_1) + z(\rho_2) \mid \rho_1 + \rho_2 = d, \rho_1 \in (0, 2\lambda], \rho_2 \in ((k-1)\lambda, k\lambda]\}$$

$$\forall d \in (k\lambda, (k+1)\lambda].$$

- Revised Recursive Construction:

 - Set $\Upsilon(p) \equiv \{z(\rho_1) + z(\rho_2) \mid p < \rho_1 + \rho_2 \le p + \lambda, \rho_1 \in \Psi((0, 2\lambda]), \rho_2 \in \Psi((p \lambda, p])\}$ and obtain z over $[p, p + \lambda]$ by considering the "lower subadditive envelope" of $\Upsilon(p)$.
 - If $z(d) = z(d \lambda) + z(\lambda) \forall d \in \Psi((p, p + \lambda))$, then stop. Otherwise, let $p := p + \lambda$ and repeat the last step.

Extending the value function of (SP) from $\left[0,12\right]$ to $\left[0,18\right]$

Extending the value function of (SP) from $\left[0,12\right]$ to $\left[0,18\right]$

Extending the value function of (SP) from [0, 18] to [0, 24]

Extending the value function of (SP) from [0,18] to [0,24]

General Case

Consider a general mixed integer linear program (MILP)

$$z_P = \min_{x \in \mathcal{S}} cx,\tag{P}$$

$$c \in \mathbb{R}^n$$
, $S = \{x \in \mathbb{Z}_+^r \times \mathbb{R}_+^{n-r} \mid Ax = b\}$ with $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{R}^m$.

The value function of the primal problem (P) is

$$z(d) = \min_{x \in \mathcal{S}(d)} cx,$$

where for a given $d \in \mathbb{R}^m$, $S(d) = \{x \in \mathbb{Z}_+^r \times \mathbb{R}_+^{n-r} \mid Ax = d\}$.

Jeroslow Formula for General MILP

Let the set ${\mathscr E}$ consist of the index sets of dual feasible bases of the linear program

$$\min\{\frac{1}{M}c_{C}x_{C} \ : \ \frac{1}{M}A_{C}x_{C} = b, x \geq 0\}$$

where $M \in \mathbb{Z}_+$ such that for any $E \in \mathscr{E}$, $MA_E^{-1}a^j \in \mathbb{Z}^m$ for all $j \in I$.

Theorem (Jeroslow Formula)

There is a $g \in \mathscr{G}^m$ such that

$$z(d) = \min_{E \in \mathscr{E}} g(\lfloor d \rfloor_E) + v_E(d - \lfloor d \rfloor_E) \ \forall d \in \mathbb{R}^m \ with \ \mathcal{S}(d) \neq \emptyset,$$

where for $E \in \mathcal{E}$, $\lfloor d \rfloor_E = A_E \lfloor A_E^{-1} d \rfloor$ and v_E is the corresponding basic feasible solution.

• For $E \in \mathcal{E}$, setting

$$\omega_E(d) = g(\lfloor d \rfloor_E) + v_E(d - \lfloor d \rfloor_E) \ \forall d \in \mathbb{R}^m \ \text{with} \ \mathcal{S}(d) \neq \emptyset,$$

we can write

$$z(d) = \min_{E \in \mathscr{E}} \omega_E(d) \ \forall d \in \mathbb{R}^m \ \ \text{with} \ \ \mathcal{S}(d) \neq \emptyset.$$

- Many of our previous results can be extended to general case in the obvious way.
- Similarly, we can use maximal subadditive extensions to construct the value function..
- However, an obvious combinatorial explosion occurs.
- Therefore, we consider using single row relaxations to get a subadditive approximation.

Basic Idea

Consider the value functions of each single row relaxation:

$$z_i(q) = \min\{cx \mid a_i x = q, x \in \mathbb{Z}_+^r \times \mathbb{R}_+^{n-r}\} \ q \in \mathbb{R}, i \in M \equiv \{1, \dots, m\}$$

where a_i is the i^{th} row of A.

Theorem

Let
$$F(d) = \max_{i \in M} \{z_i(d_i)\}, \ d = (d_1, \dots, d_m), \ d \in \mathbb{R}^m$$
. Then F is subadditive and $z(d) > F(d) \ \forall d \in \mathbb{R}^m$.

Maximal Subadditive Extension

Assume that $A \in \mathbb{Q}_+^m$. Let $S \subseteq M$ and $q^r \in \mathbb{Q}_+^{|S|}$ be the vector of the maximum of the coefficients of rows $a_i, i \in S$. Define

$$G_S(q) = \left\{ \begin{array}{ll} \max_{i \in S} \{z_i(q_i)\} & q_i \in [0, q_i^r] \ i \in M \\ \max \left\{ \max_{i \in K} \{z_i(q_i)\}, \inf_{\mathcal{C} \in \mathcal{C}(q_{S \setminus K})} \sum_{\rho \in \mathcal{C}} G_S(\rho) \right\} & q_i \in [0, q_i^r] \ i \in K \\ \min_{i \in K} \{z_i(q_i)\}, \inf_{\mathcal{C} \in \mathcal{C}(q_{S \setminus K})} \sum_{\rho \in \mathcal{C}} G_S(\rho) \right\} & q_i \in [0, q_i^r] \ i \in K \\ K \subset S \\ q_i \in \mathbb{R}_+ \setminus [0, q_i^r] \ i \in M \end{array}$$

for all $q \in \mathbb{R}^{|S|}$ where for $T \subseteq S$, $\mathcal{C}(q_T)$ is the set of all finite collections $\{\rho_1,...,\rho_R\}, \rho_j \in \mathbb{R}^{|T|}$ such that $\rho_j \in \times_{i \in T} [0,q_i^r], j=1,...,R$ and $\sum_{j=1}^R \rho_j = q_T$.

Maximal Subadditive Extension

 G_S is simply the maximal subadditive extension of the function $\max_{i \in S} \{z_i(q_i)\}$ from the box $\times_{i \in S} [0, q_i^r]$ to $\mathbb{R}_+^{|S|}$.

Theorem

Let
$$F_S(d) = \max \left\{ G_S(d_S), \max_{i \in M \setminus S} \{z_i(d_i)\} \right\}$$
. $F_S \ge \max_{i \in M} \{z_i(d_i)\}$, is subadditive and $z(d) \ge F_S(d)$ for all $d \in \mathbb{R}_+^m$.

Aggregation

For $S \subseteq M$, $\omega \in \mathbb{R}^{|S|}$, set

$$G_S(q,\omega) = \min\{cx \mid \omega a_S x = \omega q, x \in \mathbb{Z}_+^r \times \mathbb{R}_+^{n-r}\} \ \forall q \in \mathbb{R}^{|S|}$$

Theorem

Let

$$F_S(\omega,d) = \max \left\{ G_S(d_S,\omega), \max_{i \in M \setminus S} \{z_i(d_i)\} \right\}, \ d \in \mathbb{R}^m.$$

 F_S is subadditive and $z(d) \geq F_S(\omega, d)$ for any $\omega \in \mathbb{R}^{|S|}, \ d \in \mathbb{R}^m$.

As with cutting planes, different aggregation procedures are possible.

Using Cuts

- Assume that $S(d) = \{x \in \mathbb{Z}_+^n \mid Ax \leq d\}.$
- Consider the set of Gomory cuts $\Pi x \geq \Pi^0$, $\Pi \in \mathcal{Q}^{k \times n}$, $\Pi^0 \in \mathbb{Q}^k$ defined by the sets of multipliers $\Omega = \{\omega^1, \dots \omega^{k-1}\}$, $\omega^i \in \mathbb{Q}_+^{m+i-1}$ as follows

$$\Pi_{ij} = \left[\sum_{l=1}^{m} \omega_{l}^{i} A_{lj} + \sum_{l=1}^{i-1} \omega_{m+l}^{i} \Pi_{lj} \right] \quad \forall i = 1, \dots, k, j = 1, \dots, n$$

$$\Pi_{i}^{0} = \left[\sum_{l=1}^{m} \omega_{l}^{i} d_{l} + \sum_{l=1}^{i-1} \omega_{m+l}^{i} \Pi_{l}^{0} \right] \quad \forall i = 1, \dots, k$$

Theorem

For $\Omega = \{\omega^1, \dots \omega^{k-1}\}, \omega^i \in \mathbb{Q}_+^{m+i-1}, \ k \in \mathbb{Z}_+$, let $z_{m+i}(\omega^i, d)$ denote the value function of row $m+i, i=1,\dots,k-1$ and

$$F(\Omega,d) = \max \left\{ \max_{i \in M} z(d_i), \max_{i=1,\dots,k-1,\omega^i \in \Omega} z_{m+i}(\omega^i,d) \right\}.$$

Then, F is subadditive and $z(d) \geq F(\Omega, d)$ for any $d \in \mathbb{R}^m$.

Current and Future Work

- Extending the theory and algorithms to the general case.
- Developing upper bounding approximations.
- Integrating these procedures in with applications
 - Bilevel programming
 - Combinatorial auctions
- Answering the question

"Can we do anything practical with any of this?"