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Overview

In many settings, we need either to
⇒ solve a sequence of related mixed integer linear optimization problems (MILPs);
⇒ analyze a parametric family of MILPs; or
⇒ solve a problem with multiple stages in which the later-stage problems are

parameterized on the solutions to earlier-stage problems.

Examples

Warm starting or real-time optimization
Decomposition-based algorithms (Lagrangean relaxation, Dantzig-Wolfe)
Parametric/multiobjective optimization
Multistage/multilevel optimization

Branch-and-bound algorithms themselves consist of solving a sequence of
related subproblems.
Algorithms for solving MILPs depend heavily on the generation of valid
inequalities, but such inequalities are typically only valid for a single instance.
This talk presents some ideas on making the inequalities themselves parametric.
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Setting: Mixed Integer Linear Optimization

In this talk, we consider the generation of inequalities valid for an entire
parametric family of MILPs.
Throughout, we consider a base instance of the form

min
x∈P∩X

c>x, (MILP)

where, c ∈ Qn; P =
{

x ∈ Rn
+ | Ax = b

}
with A ∈ Qm×n, b ∈ Qm, and

X = Zr × Rn−r.
Here, we study the parametric family obtained by letting the right-hand side
(RHS) be a parameter β ∈ Rm, as in

min
x∈P(β)∩X

c>x, (MILP-β)

where P(β) =
{

x ∈ Rn
+ | Ax = β

}
.

Much of the theory can be extended to other parameterizations.
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Parametric Valid Inequalities

Parametric Valid Inequality

A parametric valid inequality (PVI) is a pair (α,F), where α ∈ Rn and F :
Rm → R is a function such that

F(β) ≤ min
x∈P(β)∩X

α>x ∀β ∈ Rm. (PVI)

Then we have

α>x ≥ F(β) ∀x ∈ P(β) ∩ X.

In this setting, the PVI corresponds to a parametric family of inequalities with
the same left-hand side (LHS) α, but different RHSs.
The RHS of a PVI is a function of the RHS of (MILP-β).
These inequalities are related to subadditive inequalities, but here the function F
does not need to be subadditive.
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Simple Example: Parametric Chvátal Inequalities

Let

S≥(β) = P≥(β) ∩ Zn,

where

P≥(β) =
{

x ∈ Rn
+ | Ax ≥ β

}
with A ∈ Qm×n and b ∈ Qm. Then

For
u ∈ Rm

+ such that α := A>u ∈ Zn, and
F : Rm → R defined by F(β) = du>βe,

we have that (α,F) is a PVI.
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Farkas Lemma

A general theory of parametric inequalities can be derived based on duality, but
here we provide a derivation beginning with the Farkas Lemma.
Consider again the polyhedron

P = {x ∈ Rn
+ | Ax = b}

given in standard form with A ∈ Qm×n, b ∈ Qm.

Farkas Lemma

P = ∅ ⇔ ∃u ∈ Rm s.t. u>A ≤ 0, u>b > 0

Equivalently, P = ∅ if and only if we can separate b from the convex cone

C = {Ax | x ∈ Rn
+}

= {β ∈ Rm | u>β ≤ 0 ∀u ∈ C∗},

where C∗ = {u ∈ Rm | u>A ≤ 0} (the dual of C).
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Another Interpretation

We lift the problem into a higher dimensional space by making b a vector of
variables and homogenizing.

Pβ = {x ∈ Rn
+, β ∈ Rm | Ax− Iβ = 0}

Then project out the original variables to obtain C.

C = Projβ(Pβ)

In other words, C is just the set of values of β for which the linear system
Ax = β has a solution.
Alternatively, C consists of the feasible members of a parametric family of linear
optimization problems (LPs).
Therefore, if we can separate b from C, we prove that P = ∅ (corresponding
instance is infeasible).
The extreme rays of the dual cone correspond to the facets of C.
These can thus be used to test feasibility of an entire parametric family of LPs.
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Example 1

Pβ =


2y1 − 7y2 + y3 = β1

6y1 + 7y2 + 5y3 = β2

y1, y2, y3 ∈ R+

 C =


β1 + β2 ≥ 0

−3β1 + β2 ≥ 0

β ∈ R2


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Farkas Proof of Optimality

We now consider the case of an LP, constructed as follows.
Convert a1 (coefficients of the first row of A) from a constraint to the objective.
Let M̄ = {2, . . . ,m} and bM̄ ∈ RM̄ be all but the first element of b.
The resulting LP is minx∈Rn

+
{a1x | AM̄x = bM̄}.

The problem of finding the optimal value can then be recast as
b∗ = min{b1 ∈ R | (b1, bM̄) ∈ C}.
To prove optimality, we need to show that (b∗, bM̄) is not only a member of C,
but on its boundary.
The LP optimality conditions imply ∃uM̄ ∈ RM̄ s.t. u>M̄AM̄ ≤ a1, u>M̄bM̄ = b∗.

This is equivalent to ∃u ∈ Rm s.t. u>A ≤ 0, u>(b∗, bM̄) = 0, u1 = −1, implying
(b∗, bM̄) is on the boundary of C and
the boundary is one that is in the “right direction” (u1 < 0).

The vector u is a solution to the usual LP dual problem.
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Example 2

z∗ = min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = 1/2
y1, y2, y3 ∈ R+
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Example 3

Note that our choice of objective was arbitrary and the same set C can yield
proofs for other objectives.
The figure shows that miny∈R3

+
{2y1 − 7y2 + y3 | 6y1 + 7y2 + 5y3 = 1} = −1
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Farkas Lemma for MILPs

The very same logic extends easily to the MILP case.

S = {x ∈ Zr
+ × Rn−r

+ | Ax = b}
Sβ = {x ∈ Zr

+ × Rn−r
+ , β ∈ Rm | Ax− Iβ = 0}

C = Projβ(Sβ)

A Generalized Farkas Lemma

S = ∅ ⇔ b 6∈ C

This is similar to other discrete Farkas lemmas [Bachem and Schrader, 1980,
Blair and Jeroslow, 1982].
It can be made more useful by replacing the condition b 6∈ C with some relaxed
conditions that can be verified in practice.
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Example 4

Sβ =


6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = β1

3x1 +
7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6 = β2

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+


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Example 5 (C Bounded)

Sβ =



6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = β1,

3x1 +
7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6 = β2,

x1, x2, x3 ∈ {0, 1},
0 ≤ x4, x5, x6 ≤ 3,


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Parametric Inequalities From Farkas

Proofs of optimality are equivalent to proofs of validity for inequalities (but
different parts of the boundary are relevant).
The Farkas proof of optimality also shows that

a1x ≥ b∗ ∀ x ∈ PM̄,

where

PM̄ = {x ∈ Rn
+ | AM̄x = bM̄}.

This proof of validity can be parameterized easily to obtain a PVI as follows.
The largest valid RHSs for the first constraint as a function of the parametric
RHS βM̄ for the remaining constraints is min{β1 | (β1, βM̄) ∈ C}.
Recalling the definition (PVI) with a1 playing the role of α, it then follows that
for F : RM̄ → R,

(a1,F) is a PVI ⇔ F(βM̄) ≤ min{β1 | (β1, βM̄) ∈ C}.
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Example 4 (cont’d)

Let

a1 = [6, 5,−4, 2,−7, 1]

a2 = [3,
7
2
, 3, 6, 7, 5]

Then, from the figure in Example 4, we can read the following facts.
a1x ≥ −5 ∀x ∈ {x ∈ Z3

+ × R3
+ | a2x = 4}.

a2x ≥ 7 ∀x ∈ {x ∈ Z3
+ × R3

+ | a1x = 10}.
min{a2x | x ∈ Z3

+ × R3
+, a

1x = 3} = 3
All of these involve locating points on the boundary of C.
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Deriving Parametric Inequalities

The following alternative conditions for (a1,F) to be a PVI for F : RM̄ → R
follow directly.

(a1,F) is a PVI ⇔ C ⊆ epi(F).

Note the similarity to conditions for validity of a standard (non-parametric) valid
inequality.
Informally, this result states that a PVI is an outer approximation of C.
To efficiently derive such outer approximating functions, we must understand the
structure of the boundary of C.
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Characterizing the Boundary of C

Let us consider the function describing the boundary of C in the direction of
minimization of β1.
The following function describes the boundary.

φM̄(βM̄) = min{β1 | (β1, βM̄) ∈ C}

On the other hand, it is straightforward to see that φM̄ is the value function of the
MILP

min
x∈PM̄

a1x. (MILP-PM̄)

We thus get yet another condition for (a1,F) to be a PVI.

(a1,F) is a PVI ⇔ F bounds φM̄ from below

⇔ is a dual function for (MILP-PM̄)
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The General Dual and Dual Functions

For the remainder of the talk, we focus on (MILP-β) rather than the
equivalent (MILP-PM̄) for simplicity.

Dual Functions
A dual function F : Rm → R for (MILP-β) is one that satisfies

F(β) ≤ φ(β) := min
x∈P(β)∩X

c>x ∀β ∈ Rm.

The problem of finding a dual function for which F(b) ≈ φ(b) for given b ∈ Qm

is the general dual problem associated with (MILP-β) [Tind and Wolsey, 1981].

max {F(b) | F(β) ≤ φ(β), β ∈ Rm,F ∈ Υm},

where Υm ⊆ {f | f : Rm→R}.
We call F∗ strong for this instance if F∗ is a feasible dual function and
F∗(b) = φ(b).
This dual instance always has a solution F∗ that is strong if φ ∈ Υm.
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Dual Functions from Relaxations

A straightforward way to derive dual functions is to take the value function of a
relaxation.
For example, the value function of the LP relaxation is

φLP(β) = min
x∈P(β)

c>x.
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Dual Functions from Disjunctive Relaxation

Parametric Valid Disjunction

A parametric valid disjunction for (MILP-β) is a parametric family

X1(β),X2(β), . . . ,Xk(β) (PVD)

of disjoint collections of subsets of Rn such that

P(β) ∩ X ⊆
⋃

1≤i≤k

Xi(β) ∀β ∈ Rm.

With any parametric valid disjunction of the form (PVD), we can associate the
following value function.

φD(β) = min
x∈P(β)∩(

⋃
1≤i≤k Xi(β))

c>x,

= min
1≤i≤k

φi
D(β),

where φi
D(β) = minx∈P(β)∩Xi(β) c>x (value function of relaxation of subproblem i).
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Disjunctions via Branch and Bound

Branch and bound can be viewed as an algorithm for iteratively constructing and
solving disjunctive relaxations.
In the context of branch and bound, each set Xi(b) corresponds to a subproblem

min
x∈P(b)∩X∩Xi(b)

c>x

associated with a leaf node of the branch-and-bound tree.

Node 0

Node 8

Node 10

Node 12

Node 14

Node 16

Node 18
β + 30

Node 17
max{β + 25,−2β − 5}

y3 = 5 y3 ≥ 6

Node 15
max{β + 20,−2β − 4}

y3 = 4 y3 ≥ 5

Node 13
max{β + 15,−2β − 3}

y3 = 3 y3 ≥ 4

Node 11
max{β + 10, g9 = −2β − 2}

y3 = 2 y3 ≥ 3

Node 9
max{β + 5, g7 = −2β − 1}

y3 = 1 y3 ≥ 2

Node 1

Node 3

Node 5

Node 7
−2β + 42

Node 6
max{2β + 28, β − 2}

y2 = 2 y2 ≥ 3

Node 4
max{−2β + 14, β − 1}

y2 = 1 y2 ≥ 2

Node 2
max{−2β, β}

y2 = 0 y2 ≥ 1

y3 = 0 y3 ≥ 1
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Outer Approximating C

Using the machinery described so far, we can outer approximate C with dual
functions obtained from, e.g., (partial) branch-and-bound trees.
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More Examples

Disjunctive Inequalities

Let {Xi}k
i=1 be a disjunction valid for all instances in (MILP-β) family,

where Xi = {x ∈ Rn | Dix ≥ di} for Di ∈ Rli×n, di ∈ Rli .

Further, let (ui, vi) ∈ Rm × Rli
+ be such that ui>A + vi>Di ≤ α>.

Then with F(β) = ui>β + vi>Di, (α,F) is a PVI.

Lagrange Cuts

Let R ⊆ M := {1, . . . ,m} define a partition of the constraints into two
subsets and u ∈ R|R| be given.
Then with F(β) = minx∈X{(c> − u>AR)x | AM\Rx = βM\R},
(c> − u>AR,F) is a PVI.
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Benders’ Cuts

Benders’ cuts are a particularly important special case that arises frequently in
practice.
The setup is slightly different, but the underlying procedure is the same.
Let T ⊆ N := {1, . . . , n} define a partition of the variables into two subsets.
Let F : Rm → R be such that

F(β) ≤ min
xT∈PT (β)∩XT

α>T xT , (MILP-Benders-α)

where PT(β) = {x ∈ XT | ATxT = β} and XT = {x ∈ RT | xi ∈ Z for i ≤ r}.
Then α>T xT ≥ F(b− AN\TxN\T) ∀x ∈ P .
With α = c, (α,F) is (a generalized version of) the standard Benders’ cut.
Note, however, that this cut can be applied without projecting out the variables
indexed by T .
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Applications

Bound inequalites in bilevel optimization [Tahernejad, 2019]

The second-level optimality conditions are of the form

d2y ≤ φ(b2 − A2x),

where x, y are the first- and second-level variables, d2 is the second-level
objective ector, and φ is the value function of the second-level problem.
Approximating φ from above yields a relaxed version that is a PVI.

Parametric disjunctive inequalities [Kelly et al., 2023]

Such inequalities are used to warm start solution of sequences of MILPs

Multiobjective optimization [Fallah et al., 2023]

The boundary of C is very closely related to the efficient frontier of an
associated multiobjective MILP.
Methods for approximating C can also be used to construct the efficient
frontier.
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Conclusions and Future Work

We have only scratched the surface of the theory of PVIs in this talk.
The concept has a wide range of applications, though practical implementation is
a challenge.
They have already been applied successfully in some limited contexts.
There are many interesting lines of research to be pursued.

Generalizations
Many generalizations are possible.

Parametric inequalities can also be defined using similarly defined primal
functions, which arise from restrictions.
Different parameterizations can be considered.
The theory can be “easily” extended to settings beyond MILP.
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