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Overview

o In many settings, we need either to
= solve a sequence of related mixed integer linear optimization problems (MILPs);
= analyze a parametric family of MILPs; or
= solve a problem with multiple stages in which the later-stage problems are
parameterized on the solutions to earlier-stage problems.

@ Warm starting or real-time optimization

@ Decomposition-based algorithms (Lagrangean relaxation, Dantzig-Wolfe)
@ Parametric/multiobjective optimization

@ Multistage/multilevel optimization

@ Branch-and-bound algorithms themselves consist of solving a sequence of
related subproblems.

@ Algorithms for solving MILPs depend heavily on the generation of valid
inequalities, but such inequalities are typically only valid for a single instance.

o This talk presents some ideas on making the inequalities themselves parametric.
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Setting: Mixed Integer Linear Optimization

o In this talk, we consider the generation of inequalities valid for an entire
parametric family of MILPs.

@ Throughout, we consider a base instance of the form

min ch, (MILP)J
x€PNX

where, c € Q"; P = {x € R | Ax = b} withA € Q"*", b € Q", and
X=7Z" xR,

@ Here, we study the parametric family obtained by letting the right-hand side
(RHS) be a parameter § € R, as in

min ¢ x, (MILP- /3)J
xeP(B)NX

where P(3) = {x € R". | Ax = B}.
@ Much of the theory can be extended to other parameterizations.
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Parametric Valid Inequalities

Parametric Valid Inequality

A parametric valid inequality (PVI) is a pair («, F), where « € R” and F :
R™ — R is a function such that

F(f) < min a'x V3 €R™ (PVI)
xeP(B)NX
@ Then we have
a'x > F(B)Vx € P(B) NX. J

@ In this setting, the PVI corresponds to a parametric family of inequalities with
the same left-hand side (LHS) «, but different RHSs.

@ The RHS of a PVl is a function of the RHS of (MILP-73).

@ These inequalities are related to subadditive inequalities, but here the function F
does not need to be subadditive.
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Simple Example: Parametric Chvatal Inequalities

Let

S2(B) = P2(B)NZ",

where

P=(B) = {x e R | Ax > B}

withA € Q""" and b € Q™. Then

For
@ u € R such that o := Alu e 7", and
@ F:R" — Rdefined by F(B) = [u' 3],
we have that (o, F) is a PVL
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@ A general theory of parametric inequalities can be derived based on duality, but
here we provide a derivation beginning with the Farkas Lemma.

@ Consider again the polyhedron

P ={xeR} |Ax = b} J

given in standard form with A € Q"*" b € Q™.

P=0< ucR"st.u'A<0,u'b>0

@ Equivalently, 7 = () if and only if we can separate » from the convex cone

C={Ax|xe R}
= {BeER" |u'B<0VucC*},

where C* = {u € R" | u" A < 0} (the dual of C).
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Another Interpretation

We lift the problem into a higher dimensional space by making / a vector of
variables and homogenizing.

Ps={xeR,BeR"|Ax— I8 =0} J

Then project out the original variables to obtain C.

C = Proj4(Ps) J

In other words, C is just the set of values of /3 for which the linear system

Ax = /3 has a solution.

Alternatively, C consists of the feasible members of a parametric family of linear
optimization problems (LPs).

Therefore, if we can separate b from C, we prove that P = () (corresponding
instance is infeasible).

@ The extreme rays of the dual cone correspond to the facets of C.
@ These can thus be used to test feasibility of an entire parametric family of LPs.
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Example 1

2y =Ty, +y3 = [ p1+ B2 >0
Psg =<6y +7ys+ 593 = 5, C=<-361+p>0
yi,¥2,3 € Ry BeR?
2.0
1.5
1.0 1
.
0.5 4
0.0 4
—=-- separating hyperplane ,’
C (feasible instances) !
-0.5 L T T

=25 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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Farkas Proof of Optimality

@ We now consider the case of an LP, constructed as follows.

o Convert a' (coefficients of the first row of A) from a constraint to the objective.
o Let M = {2,...,m} and by; € R" be all but the first element of b.
e The resulting LP is min ez {a'x | Agx = by}
@ The problem of finding the optimal value can then be recast as
b* = min{b, € R | (b1,by) € C}.
e To prove optimality, we need to show that (5", b;;) is not only a member of C,
but on its boundary.
e The LP optimality conditions imply Juy; € R s.t. u Ay < a',ul by = b".
e This is equivalent to Ju € R" s.t. u' A < 0,u’ (b*,by) = 0, u; = —1, implying

e (b™, by ) is on the boundary of C and
o the boundary is one that is in the “right direction” (u; < 0).

@ The vector u is a solution to the usual LP dual problem.
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Example 2

7" = min 6y, + 7y> + 5y3
st.2y1 =Ty, +y3 =1/2
Y1,Y2,)3 S R+

—— boundary
C (feasible instances)

=25 —2|.0 —1|.5 —lI.O —(.:0.5 0.0 0.5 1.0 15
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Example 3

@ Note that our choice of objective was arbitrary and the same set C can yield
proofs for other objectives.
@ The figure shows that 1’“11%6[&3} {291 —=Tya+y3 | 631 + T2 +5Sy3 =1} = —1

2.0

1.5

1.04

0.5 1

0.0

—— boundary
C (feasible instances)

-0.5 T T T T T
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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Farkas Lemma for MILPs

@ The very same logic extends easily to the MILP case.

S = {xe€Z xR["|Ax=1b}
Sg = {xeZ xRy, eR"|Ax— I3 =0}
C = Projp(8y)

A Generalized Farkas Lemma

S=0ebdgcC

@ This is similar to other discrete Farkas lemmas [Bachem and Schrader, 1980,
Blair and Jeroslow, 1982].

@ It can be made more useful by replacing the condition » ¢ C with some relaxed
conditions that can be verified in practice.
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Example 4

6X1 -+ 5X2 - 4X3 + 2X4 - 7,\’5 + X =

\

7
Sg =14 3x; + EJCQ + 3x3 + 6x4 + Tx5 + Sx6 = 5o

X1,X2,X3 € Ly, X4,X5,X6 € R

30

feasible instances

10

—20 ~10 0 10 20 30 10
by
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Example 5 (C Bounded)

6X1 + 5)(2 - 4)(3 + 2)(4 — 7X5 + X6 = “5].'
7
3x1 + =x2 + 3x3 + 6x4 + Tx5 + 5x6 = 3,
S@B - 2
X1,X2,X3 € {07 1}./
0 < X4, X5, X6 < 3-,
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© Generating Parametric Inequalities
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Parametric Inequalities From Farkas

@ Proofs of optimality are equivalent to proofs of validity for inequalities (but
different parts of the boundary are relevant).
@ The Farkas proof of optimality also shows that

a'x>b* v XEPM,

where

PY = {x € R | Ayx = by }.

4

@ This proof of validity can be parameterized easily to obtain a PVI as follows.

@ The largest valid RHSs for the first constraint as a function of the parametric
RHS jj; for the remaining constraints is min{/; | (3, 8) € C}.

e Recalling the definition (PVI) with «' playing the role of c, it then follows that
for F: RM — R,

(a',F)isaPVI < F(By) < min{B, | (81, Bi) € C}. J
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Example 4 (cont’d)

Let
a =1[6,5-4,2,-17,1]
7
@ =[3,-,3,6,7,5]
2
Then, from the figure in Example 4, we can read the following facts.
o a'x> -5 Vxe {xeZ xR} | a’x =4}
o a’x>7 Vxe {xeZ xR} |a'x=10}.

e min{a’x |x € Z3 xR} ,a'x =3} =3

All of these involve locating points on the boundary of C.
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Deriving Parametric Inequalities

e The following alternative conditions for (a', ) to be a PVI for F : RY — R
follow directly.

(a',F)isaPVI & C C epi(F).

@ Note the similarity to conditions for validity of a standard (non-parametric) valid
inequality.

o Informally, this result states that a PVI is an outer approximation of C.

o To efficiently derive such outer approximating functions, we must understand the
structure of the boundary of C.
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Characterizing the Boundary of C

@ Let us consider the function describing the boundary of C in the direction of
minimization of 3.
@ The following function describes the boundary.

o™ (By) = min{B | (B1, Bir) € C} J
@ On the other hand, it is straightforward to see that &M is the value function of the
MILP
min a'x. (MILP-PM )J
xepM

@ We thus get yet another condition for (a', F) to be a PVL

(a',F)isaPVI < F bounds ¢ from below
& is a dual function for (MILP-PM)
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The General Dual and Dual Functions

o For the remainder of the talk, we focus on (MILP-{3) rather than the
equivalent (MILP-PM) for simplicity.

A dual function F : R™ — R for (MILP-#) is one that satisfies

F(B) < ¢(B) := XGS}E%X c'x VB eR™

@ The problem of finding a dual function for which F(b) ~ ¢(b) for given b € Q"
is the general dual problem associated with (MILP-/3) [Tind and Wolsey, 1981].

max {F(b) | F(8) < $(8), B € R™,F € T™}, J

where Y C {f | f : R" >R},

@ We call F* strong for this instance if F* is a feasible dual function and
F*(b) = ¢(b).

@ This dual instance always has a solution F* that is strong if ¢ € 1",
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Dual Functions from Relaxations

o A straightforward way to derive dual functions is to take the value function of a
relaxation.
@ For example, the value function of the LP relaxation is

¢p(B) = min c¢'x.
x€P(B)
v
[0 —
Frp(B)
3
5
2
2|
]
2
1
1
PR 3 -5 2 -3 1 I 0 I 1 3 2 s 3 7 4 B
v
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Dual Functions from Disjunctive Relaxation

Parametric Valid Disjunction

A parametric valid disjunction for (MILP-{3) is a parametric family

x'(B8),X%(B),...,X*(B) (PVD)
of disjoint collections of subsets of R” such that

PB)NXC |J X(B)VBeR"

1<i<k

With any parametric valid disjunction of the form (PVD), we can associate the
following value function.
op(B) = min c'x,
x€P(B)N(U; <i< X'(B))

Va

= min ¢p(B),

where qbﬂ)(;")’ ) = min,cp()nxi(8) ¢ " x (value function of relaxation of subproblem ).
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Disjunctions via Branch and Bound

@ Branch and bound can be viewed as an algorithm for iteratively constructing and
solving disjunctive relaxations.
@ In the context of branch and bound, each set X'(b) corresponds to a subproblem

min c'x
xe€P(b)NXNX'(b)

associated with a leaf node of the branch-and-bound tree.

w 341,51} /W\ wax{d +10,gy = ~29 - 2} Node 12
Noles N7 M/\

Node 14
! Node 16
nes o

Node | Node 1§
wax(3 435,24 5) 4+ 30
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Outer Approximating C

Using the machinery described so far, we can outer approximate C with dual
functions obtained from, e.g., (partial) branch-and-bound trees.
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More Examples

Disjunctive Inequalities

o Let {X'}} | be adisjunction valid for all instances in (MILP-/3) family,
where X' = {x € R" | Dix > d'} for D' € R"*" d' € R
e Further, let (V') € R™ x R, be such that v/’ TA+vi'Di<a.

e Then with F(3) = u'' B+ D', (a, F) is a PVL.

| \

Lagrange Cuts
@ LetR C M := {l1,...,m} define a partition of the constraints into two

subsets and « ¢ R/X| be given.
e Then with F(3) = minyex{(c" — u"Ag)x | Ayngx = Bz}
(c" —uTAg,F)isaPVL

\
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Benders’ Cuts

@ Benders’ cuts are a particularly important special case that arises frequently in

practice.
@ The setup is slightly different, but the underlying procedure is the same.
@ Let7T CN:={l,..., n} define a partition of the variables into two subsets.

@ Let F : R — IR be such that

F(B) < min a—Tr X7, (MILP—Benders—a)J
xr€Pr(B)NXT

where Pr(8) = {x € XT | Arxy = B} and XT = {x € RT | x; € Z fori < r}.
@ Then (l’—TrXT > F(b — AN\TXN\T) Vx € P.
e With o = ¢, («, F) is (a generalized version of) the standard Benders’ cut.

@ Note, however, that this cut can be applied without projecting out the variables
indexed by 7.
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Applications

Bound inequalites in bilevel optimization [Tahernejad, 2019]

o The second-level optimality conditions are of the form

d’y < ¢(b* — A%x),
where x, y are the first- and second-level variables, d? is the second-level
objective ector, and ¢ is the value function of the second-level problem.

@ Approximating ¢ from above yields a relaxed version that is a PVI.

Parametric disjunctive inequalities [Kelly et al., 2023]

@ Such inequalities are used to warm start solution of sequences of MILPs

Multiobjective optimization [Fallah et al., 2023]

@ The boundary of C is very closely related to the efficient frontier of an
associated multiobjective MILP.

@ Methods for approximating C can also be used to construct the efficient
frontier.
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Conclusions and Future Work

@ We have only scratched the surface of the theory of PVIs in this talk.

@ The concept has a wide range of applications, though practical implementation is
a challenge.

@ They have already been applied successfully in some limited contexts.

@ There are many interesting lines of research to be pursued.

Generalizations

Many generalizations are possible.

@ Parametric inequalities can also be defined using similarly defined primal
functions, which arise from restrictions.

o Different parameterizations can be considered.

@ The theory can be “easily” extended to settings beyond MILP.
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