
Parallel Solution of Mixed Integer Linear Programs

Ted Ralphs1

Thorsten Koch2, Stephen J. Maher3, Yuji Shinano2, Yan Xu4

1COR@L Lab, Lehigh University, Bethlehem, PA USA 2Zuse Institute Berlin, Berlin,
Germany 3Lancaster University, Lancaster, UK 4SAS Institute

Workshop on Optimization, Wuyishan, Fujian, China, 14 August
2018

Ralphs et.al. (COR@L Lab) Parallel MIP

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

This Talk

This overview draws on material from several published and one
unpublished paper, as well as one dissertation.

Xu [2007] (Dissertation on Parallel Tree Search)
Xu et al. [2009] (CHiPPS Framework)
Koch et al. [2012] (Forward-looking perspective
Ralphs et al. [2016] (⇐ Overview)
Maher et al. [2018] (Performance Assessment)

Many details will be left out, but will be found in the above
references.
We focus on parallel MILP, but the principles apply much more
broadly.

Ralphs et.al. (COR@L Lab) Parallel MIP

Setting

We focus on the case of the mixed integer linear optimization
problem (MILP), but many of the concepts are more general.

zIP = min
x∈S

c>x, (MILP)

where, c ∈ Rn, S = {x ∈ Zr × Rn−r | Ax ≤ b} with A ∈ Qm×n,
b ∈ Qm.
For most of the talk, we consider the case r = n and P bounded
for simplicity.

Ralphs et.al. (COR@L Lab) Parallel MIP

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

Tree Search Algorithms

Tree search algorithms systematically search the nodes of a
dynamically constructed acyclic graph for certain goal nodes.

Tree search algorithms are used in many areas such as
Constraint satisfaction,
Game search,
Constraint Programming, and
Mathematical programming.

Ralphs et.al. (COR@L Lab) Parallel MIP

Tree Search

Tree search is not a single algorithm but an algorithmic framework.
A generic tree search algorithm consists of the following elements:

Elements of Tree Search

Processing method: Is this a goal node?

Fathoming rule: Can node can be fathomed?

Branching method: What are the successors of this node?

Search strategy: What should we work on next?

Beginning with a root node, the algorithm consists of choosing a
candidate node, processing it, and either fathoming or branching.

During the course of the search, various information (knowledge)
is generated and can be used to guide the search.

Ralphs et.al. (COR@L Lab) Parallel MIP

Generic Algorithm

Algorithm 1: A Generic Tree Search Algorithm

1 Add root node r to a priority queue Q.
2 while Q is not empty do
3 Choose a node i from Q.
4 Process the node i.
5 Apply pruning rules (can i or a successor be a goal node?)
6 if Node i can be pruned then
7 Prune (discard) node i (save i if it may be a goal node).
8 else
9 Apply successor function to node i (Branch)

10 Add the successors to Q.

Ralphs et.al. (COR@L Lab) Parallel MIP

Branch and Bound/Cut/Price

Algorithm 2: A Generic Branch-and-Cut Algorithm
1 Add root optimization problem r to a priority queue Q. Set global upper bound U ←∞

and global lower bound L← −∞
2 while L < U do
3 Remove the highest priority subproblem i from Q.
4 Bound the subproblem i to obtain (updated) final upper bound U(i) and (updated)

final lower bound L(i).
5 Set U ← min{U(i),U}.
6 if L(i) < U then
7 Branch to create child subproblems i1, . . . , ik of subproblem i with
8 - upper bounds U(i1), . . .U(ik) (initialized to∞ by default); and
9 - initial lower bounds L(i1), . . . , L(ik) (initialized to L(i) by default).

10 by partitioning the feasible region of subproblem i.
1212 Add i1, . . . , ik to Q.
1414 Set L← mini∈Q L(i).

Ralphs et.al. (COR@L Lab) Parallel MIP

Components

Bounding is by solution of (iteratively strengthened) LP
relaxations.
Branching is done on valid disjunctions.

Definition
Let {Xi}k

i=1 be a collection of subsets of Rn. Then if⋃
1≤i≤k Xi ⊇ S, the disjunction associated with {Xi}k

i=1 is
said to be valid for an MILP with feasible set S.

Search strategy is aimed at carefully balancing
Improvement of upper and lower bound,
Efficiency of node processing (diving), and
Avoidance of redundant work.

All of this is immensely more complex in the parallel case.

Ralphs et.al. (COR@L Lab) Parallel MIP

Current State-of-the-Art: Solver Workflow

Bounding

Cutting

Branching

select next subproblem
from list

solve LP relaxation

update upper bound
prune all subproblems

from list with
lower ≥ upper bound

add cutting plane
separating LP

optimum

select a suitable candidate
from {xI

*∉ Z} and add 2
subproblems to the list with

xi ≤  xI
* and xi ≥ xI

* 
and lower bound cTx*

relaxation
infeasible?

list
empty?

lower ≥ upper
bound?

relaxation
integral?

strengthen
relaxation?

add problem to list
set lower bound = -∞
set upper bound = ∞

upper bound
is optimal

problem is
infeasible

yes no

yes

yes

yes

yes

yes

no

no

no

no primal
heuristics

upper bound < ∞

no

Ralphs et.al. (COR@L Lab) Parallel MIP

Current State-of-the-Art: Algorithm Control

A state-of-the-art solver is a collection of algorithms and
heuristics for solving a variety of subsidiary optimization
problems.

Whether to branch or continue iteratively improving the relaxation.
Which logical disjunction to branch on.
Which node to work on next.
What relaxation to use, how to strengthen it, and how to solve it.
What valid inequalities to generate.
What primal heuristics to try.
Etc.

These are bound together by a sophisticated overall control
mechanism.
The individual components are mostly well-studied in the literature
and relatively easy to assess in isolation.
The behavior of the overall algorithm is poorly understood and
difficult to study scientifically.

Ralphs et.al. (COR@L Lab) Parallel MIP

It’s All About Tradeoffs

Algorithm control is about carefully managing various tradeoffs.
Time spent selecting disjunctions versus more enumeration.
Time spent cutting versus more enumeration.
Time spent branching versus time spent cutting.
Preprocessing and root node versus remainder of computation.
Emphasis on primal bound versus dual bound.
Primal heuristics versus cutting and branching.

The way this is done is a big part of the “special sacue” of a solver
and is not really documented.
This gets much harder to do in the case of a parallel algorithm.

Ralphs et.al. (COR@L Lab) Parallel MIP

Auto-tuning and Algorithm Optimization

In general, for a given instance, the solver tries to determine how
to optimally balance multiple objectives.

Minimize solution time.
Accelerate improvement of upper bound.
Minimize gap at time limit.
??

This is a very complex multi-objective on-line optimization problem
that is much more difficult to solve than the instance itself!

Ralphs et.al. (COR@L Lab) Parallel MIP

A Thousand Words

Figure: Tree after 400 nodes

Ralphs et.al. (COR@L Lab) Parallel MIP

A Thousand Words

Figure: Tree after 1200 nodes

Ralphs et.al. (COR@L Lab) Parallel MIP

A Thousand Words

Figure: Final tree

Ralphs et.al. (COR@L Lab) Parallel MIP

Parallelization of Tree Search

Tree search is easy to parallelize in principle...

Most straightforwardly, we can parallelize the while loop.

Naively, this means processing multiple nodes in parallel on line 4.

Branching turns one task into two!

This seems to be what is called “embarassingly parallel”...

...but sadly, it’s closer to embarassingly difficult to parallelize!

We’re aiming at a moving target...and with conflicting goals.

Ralphs et.al. (COR@L Lab) Parallel MIP

Parallelizing Tree Search Algorithms

In general, the search tree can be very large.
The generic algorithm appears very easy to parallelize, however.

The appearance is deceiving
The search graph is not known a priori and could be VERY
unbalanced.
Naïve parallelization strategies are not generally effective.
It’s difficult to determine how to divide the available work.

Ralphs et.al. (COR@L Lab) Parallel MIP

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

Evolution in Solver Performance

Improvements in sequential performance have largely come from
reductions in the amount of enumeration (smaller trees).
Many specialized methods for addressing certain commonly
occurring structures have been developed

Ralphs et.al. (COR@L Lab) Parallel MIP

Evolution of MIPLIB 2003

Easy could be solved within an hour on a contemporary PC with a
state-of-the-art solver.
Hard are solvable but take a longer time or require specialized
algorithms.
Open problems are unsolved instances for which the optimal
solution is not known.

Ralphs et.al. (COR@L Lab) Parallel MIP

Evolution of MIPLIB 2010

Ralphs et.al. (COR@L Lab) Parallel MIP

Evolution of Parallel Architectures

Ralphs et.al. (COR@L Lab) Parallel MIP

Top 500

Ralphs et.al. (COR@L Lab) Parallel MIP

Trends

Total number of cores per parallel computer is increasing
dramatically.
Number of cores per CPU and per PE are also rising.
The use of accelerators and other auxiliary processing is
becoming more pervasive.
The amount of memory per PE is rising, but amount of memory
per core is generally falling.
The memory/storage hierarchy is getting ever more complex.

Ralphs et.al. (COR@L Lab) Parallel MIP

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

Parallel Computers

A parallel computer is a networked collection of processing
elements, each comprised of

A collection of (multi-core) CPUs,
Memory and storage
Accelerators and co-processors

Historically, most parallel computers could be considered to
belong to one of two broad architectural classes:

Shared memory

Each processor can access any memory location.
Processing units share information through memory IO.
Software scales, hardware doesn’t.

Distributed memory

Each processing unit has its own local memory and can only
access its own memory directly.
Processing units share information via a network.
Hardware scales, software doesn’t.

Recently, multi-core processors and hybrids of these two
architectures have become the norm and the picture is murkier.

Ralphs et.al. (COR@L Lab) Parallel MIP

Algorithms and Parallel Systems

A sequential algorithm is a procedure for solving a given
(optimization) problem on a single computing core.

A parallel algorithm is a scheme for performing an equivalent set
of computations but using multiple computing cores.

A parallel algorithm’s performance is inherently affected by that of
the underlying sequential algorithm.
A parallel system is a combination of the

Hardware
Software
OS
Toolchain
Communication Infrastructure

We can only measure performance of a parallel system.
It may be difficult to tell what components are affecting
performance.

Ralphs et.al. (COR@L Lab) Parallel MIP

What are the Goals?

Sequential Performance
Time (memory) required for a sequential algorithm to perform a
fixed computation.

Parallel Scalability
Classical: Time required for a parallel system to perform a
fixed computation as a function of system resources (cores).
Alternative 1: Amount of computation that can be done in
fixed wallclock time as a function of system resources.
Alternative 2: Amount of computation that can be done with
fixed total resources as a function of wallclock time.

Overall Performance
The time required to perform a fixed computation on a parallel
system with fixed resources.

Ralphs et.al. (COR@L Lab) Parallel MIP

Knowledge Sharing

The goal of parallel computation is to partition a given
computation into equal parts.
There are two challenges implicit in achieving this goal.

How to partition the computation into independent parts.

How to ensure the parts are of equal size.
Although partitioning is (ostensibly) easy, the parts are usually not
truly independent: knowledge-sharing can improve efficiency.
Knowledge-sharing is also necessary in order to “re-balance”
when our partition turns not to consist of equal parts.

We need the right data in the right place at the right time.

There is a tradeoff between the cost incurred in sharing
knowledge versus the costs incurred by its absence.

The additional cost of navigating this tradeoff is the parallel
overhead⇐ This is what we typically try to minimize

Ralphs et.al. (COR@L Lab) Parallel MIP

What is “Knowledge” in MILP?

Descriptions of nodes/subtrees

Global “knowledge”.

Bounds

Incumbents

Cuts/Conflicts

Pseudocosts

Why does it need to be moved?

It is difficult to know how to partition work equally at the
outset, processing units can easily become starved for work.

Knowledge generated in one part of the tree might be useful
for computations in another part of the tree.

Ralphs et.al. (COR@L Lab) Parallel MIP

Parallel Overhead

The amount of parallel overhead determines the scalability.
“Knowledge sharing” is the main driver of efficiency.

Major Components of Parallel Overhead in Tree Search

Communication Overhead (cost of sharing knowledge)

Idle Time

Handshaking/Synchronization (cost of sharing knowledge)
Task Starvation (cost of not sharing knowledge)
Memory Contention
Ramp Up Time
Ramp Down Time

Performance of Redundant Work (cost of not sharing
knowledge)

This breakdown highlights the tradeoff between centralized and
decentralized knowledge storage and decision-making.

Ralphs et.al. (COR@L Lab) Parallel MIP

Performance versus Scalability

As one may surmise, improving the sequential performance of a
solver may be at odds with improving its scalability.
Computations involving smaller trees are inherently more difficult
to parallelize.
This is one of many challenges facing us in parallelizing these
algorithms.

Ralphs et.al. (COR@L Lab) Parallel MIP

Example: The Knapsack Problem

We consider the binary knapsack problem:

max{
m∑

i=1

pixi :

m∑
i=1

sixi ≤ c, xi ∈ {0, 1}, i = 1, 2, . . . ,m}, (1)

We implemented a naive LP-based branch-and-bound in the
Abstract Library for Parallel Search (ALPS).

P Node Ramp-up Idle Ramp-down Wallclock Eff
4 193057493 0.28% 0.02% 0.01% 586.90 1.00
8 192831731 0.58% 0.08% 0.09% 245.42 1.20
16 192255612 1.20% 0.26% 0.37% 113.43 1.29
32 191967386 2.34% 0.71% 1.47% 56.39 1.30
64 190343944 4.37% 2.27% 5.49% 30.44 1.21

Perfect scalability! But terrible performance...

Ralphs et.al. (COR@L Lab) Parallel MIP

...On the Other Hand

CPLEX output for solving one of these instances...

Root node processing (before b&c):
Real time = 0.01 sec. (0.76 ticks)

Sequential b&c:
Real time = 0.00 sec. (0.00 ticks)

Total (root+branch&cut) = 0.01 sec. (0.76 ticks)

Root node processing (before b&c):
Real time = 0.03 sec. (0.74 ticks)

Parallel b&c, 16 threads:
Real time = 0.00 sec. (0.00 ticks)
Sync time (average) = 0.00 sec.
Wait time (average) = 0.00 sec.

Total (root+branch&cut) = 0.03 sec. (0.74 ticks)

Parallel slowdown! But great performance...
Ralphs et.al. (COR@L Lab) Parallel MIP

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

Current State of the Art

Almost all parallel MILP solvers attempt to parallelize some
underlying sequential algorithm (does this make sense?).
Implementations differ in their approaches according to a number
of properties.

Properties

Tightness of the integration between the parallel framework
and underlying sequential solver.

Whether the parallel framework modifies the strategy taken by
the underlying sequential solver.

Granularity of the parallelization

Approach to knowledge sharing and load balancing.

Initial static load balancing.
Dynamic load balancing in steady state.

The degree to which they try to achieve determinism.

/ Ralphs et.al. (COR@L Lab) Parallel MIP

Granularity

Approaches differ according to the their level ofgranularity.
Tree parallelism: Several trees are explored at once.
Subtree parallelism: Several subtrees of the same tree may be
searched simultaneously with little sharing of knowledge
Node parallelism: A single tree can be searched in parallel by
simply executing the sequential algorithm, but processing multiple
nodes simultaneously
Subnode parallelism: The processing of nodes can itself be
parallelized.

Parallel solution of LP relaxation.
Parallel strong branching.
Parallel heuristics.
Decomposition methods.

Ralphs et.al. (COR@L Lab) Parallel MIP

Frameworks

A number of generic frameworks have been developed which
attempt to abstract out the approach to parallelization.

CHiPPS
UG
PEBBL

A “framework” should be agnostic to the details of the underlying
sequential algorithm.
The degree to which one an existing sequential solver can be
parallelized using a given framework depends on

the degree to which one can acccess the internals of the solver and
the degree to which the framework requires such access.

Ralphs et.al. (COR@L Lab) Parallel MIP

Shared versus Distributed Memory

A shared memory parallel solver is relatively easy to develop, but
difficult to make scalable.

Use of OpenMP compiler directives similar makes multi-threaded
code easy to develop.
You must be careful with memory locks.
Overhead is more easily incurred than you would think.

A distributed memory parallel solver is much harder to develop.
Requires more explicit communication with MPI or another
message-passing protocol.
There are a wide array of frameworks that try to ease the
complexity of implementation, but which one to use?

Hybrid implementations are also obviously possible, but even
more complex.

Ralphs et.al. (COR@L Lab) Parallel MIP

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

Where Can Parallel Computing Help?

What are the reasons for poor sequential performance?
Genuine bad formulation
Bad dual bounds
LP is difficult/slow, especially reoptimizing
Bad numerical properties
Difficult to find primal solution
Large enumeration tree, e.g. due to symmetry
Just big
Nobody knows

Important question: which of these can parallel computing help
with?

Ralphs et.al. (COR@L Lab) Parallel MIP

Some Challenges We Face

Inherent algorithmic difficulties
Tension between performance and scalability.
Unpredictable/Unbalanced trees.
Performance variability and non-determinism.
Ramp-up/Ramp-down.
Automatic tuning is crucial, but extremely difficult.
Many instances simply aren’t good candidates.

Difficulties in research and development
Instrumentation and debugging.
Non-determinism.

Difficulties in assessment and analysis of results
Difficult to find a good test set.
Difficult to compare approaches/solvers.
Difficult to separate effects of hardware, software, and algorithm
components.

Difficulties in deployment
Difficult to develop portable approaches.
Hardware changes quickly.

Ralphs et.al. (COR@L Lab) Parallel MIP

Barriers to Scalability: Sophisticated Solvers

A vast amount of effort has gone into improving the performance
of sequential solvers over the past several decades.

It’s been estimated that overall solver performance has improved
by a factor of approximately 2 trillion in past decades.

Unfortunately, major advances in solver technology have mostly
made achieving parallel performance more difficult.

Solvers are increasingly tightly integrated.

Work done at the root node is difficult to parallelize.

Algorithmic focus is on reducing the amount of enumeration.

Solvers exploit a lot of useful “global” knowledge.

Branch and cut is not nearly as parallelizable as it seems!

Ralphs et.al. (COR@L Lab) Parallel MIP

Barriers to Scalability: Sophisticated Architectures

Moore’s Law has moved from clock speeds to numbers of cores.
Current hardware configurations consist of clusters (of clusters) of
machines with multiple multi-core chips.
The result is a memory hierarchy of ever-increasing complexity.

Cache memory 1-16x

Main memory (local to core) 10-100x

Main memory (attached to other cores) 100-700x

Co-located distributed memory

Remotely located distributed memory >1000x

Local disk >3,000,000x

Such complexity makes it harder to achieve good parallel
performance rather than easier.
Tools can help, but to a very limited extent.

Ralphs et.al. (COR@L Lab) Parallel MIP

Challenges from Tree Shape: Nice Trees

Figure: Branch-and-Bound Trees
Ralphs et.al. (COR@L Lab) Parallel MIP

Challenges from Tree Shape: Ugly Trees

Figure: Branch-and-Bound TreesRalphs et.al. (COR@L Lab) Parallel MIP

Challenges from Performance Variability

Ralphs et.al. (COR@L Lab) Parallel MIP

Challenges from Performance Variability

Numbers
courtesy of K. Fujisawa

Ralphs et.al. (COR@L Lab) Parallel MIP

Challenges from Performance Variability

Ralphs et.al. (COR@L Lab) Parallel MIP

What Can Parallel Computing Realistically Do?

The number of nodes in a given complete tree doubles with each
level.
With luck, doubling the number of processors allows exploring
one further level in the tree.
This is not typically enough to solve an unsolved problem or make
a hard problem easy.
We can really only hope to solve problems we can already solve
faster.

Ralphs et.al. (COR@L Lab) Parallel MIP

Assessing Effectiveness

Fundamental questions we would like to answer

How well are we doing?

How does solver A compare to solver B?

What are the main drivers of parallel performance?

These questions are surprisingly difficult to answer!
What do we mean by one solver being “better” than another?

What is a fair way to test?

How can we isolate the different factors affecting overall
performance?

Can we answer these questions by observation without (much)
instrumentation?

Ralphs et.al. (COR@L Lab) Parallel MIP

Taking Stock

Much effort has been poured into developing approaches to
parallelizing solvers.

Many well-developed frameworks taking different approaches
exist and are even open source.

Many computational studies have been done.

Soul-searching Questions

What have we actually learned?

What are some best practices and rules of thumb?

What knowledge can we extract from existing solvers?

Ralphs et.al. (COR@L Lab) Parallel MIP

The Cold Hard Reality

Despite immense effort, efforts at parallelization have not been as
successful as one would hope (to date).

Why is this?
It takes immense effort to do a single implementation.
One must fix certain design details ahead of time using
one’s best understanding.
Once the implementation is completed, one faces the
challenge of assessing its performance and understanding
how to improve it.
It is difficult, if not impossible, to compare different
approaches.
All in all, making progress is very difficult.

Ralphs et.al. (COR@L Lab) Parallel MIP

Questions for Reflection

Research Direction
Should we even bother to think about how to improve sequential
algorithms without considering the implications for parallelization?
Should all algorithmic research be pursued taking into account that
the algorithm needs to be parallelizable?
Is parallelizing the best sequential algorithms the right approach?
Should we start from scratch to develop parallel algorithms that
achieve a better balance of performance and scalability?
Can we exploit GPUs?

Practical/Software Issues
How do we support the maintenance of free and open source
building blocks that enable experimentation?
How do we train our students in the fundamentals of computation?
How do we support the publication of both quality computational
studies and quality software?

Ralphs et.al. (COR@L Lab) Parallel MIP

Commercial Break

https://www.coin-or.org/ima/oct2018/

Ralphs et.al. (COR@L Lab) Parallel MIP

https://www.coin-or.org/ima/oct2018/

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

Measures of Sequential Performance for MILP

Single-instance measures
Time to proven optimality
Number of nodes to proven optimality
Time to first feasible solution
Time to fixed gap
Gap or primal bound after a time limit
Primal dual integral (PDI)

Summary Measures
Mean
Shifted geometric mean (?)
Performance profile
Performance plots (?)
Histograms

Ralphs et.al. (COR@L Lab) Parallel MIP

Primal Dual Integral [Berthold, 2013]

Figure: Example of a PDI plot

Ralphs et.al. (COR@L Lab) Parallel MIP

Measures of Progress

A measure of progress is an estimate of what fraction of a
computation has been completed.

It may be very difficult to predict how much time remains in a
computation.

However, for computations that have already been performed
once, it may be possible.

Measures of progress can be used to assess the effectiveness of
algorithms even if the computation doesn’t complete⇐ Important!

Possible measures for MILP

Gap

PDI

Ralphs et.al. (COR@L Lab) Parallel MIP

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

Classical Scalability Analysis

Terms
Sequential runtime: Ts

Parallel runtime: Tp

Parallel overhead: To = NTp − Ts

Speedup: S = Ts/Tp

Efficiency: E = S/N

Standard analysis considers change in efficiency on a fixed test
set as number of cores is increased.
Isoefficiency analysis considers the increase in problem size to
maintain a fixed efficiency as number of cores is increased.

Ralphs et.al. (COR@L Lab) Parallel MIP

Problems with Classical Analysis

It’s exceedingly difficult to construct a test set
Problems need to be solvable by all solvers on single core.
Single-core running times should be “long, but not too long”
Scalability depends on many factors besides the algorithm itself,
including inherent properties of the instances.
Different instances scale differently on different solvers.

It’s not clear what the baseline should be.
The best known sequential algorithm,
The parallel algorithm running on a single core,
Or...?

Scalability numbers alone don’t typically give much insight!
Results are highly dependent on architecture
Difficult to make comparisons
Performance variability!

Many sources of variability are difficult to control for.
Lack of determinism requires extensive testing.

Ralphs et.al. (COR@L Lab) Parallel MIP

Alternatives to Classical Analysis

Direct Measures of Overhead

Node throughput

Ramp-up/Ramp-down time

Idle time/Lock time/Wait time

Number of nodes

Analysis based on measures of progress.

Gap

PDI

Ralphs et.al. (COR@L Lab) Parallel MIP

Direct Measures of Overhead

Node throughput [Koch et al., 2012]
Easy to measure without instrumentation
Not affected by changes in number of nodes
Captures the total effect of communication overhead and idle time
Hard to interpret with non-constant node processing times (?)

Ramp-up/Ramp-down time [Xu et al., 2005]
May not be that easy to measure.
Definitions may differ across solvers

Idle time/Lock Time/Wait Time
Not easy to measure, need instrumentation or proprietary software.
Definitions may differ

Number of nodes
Easy to measure
Can differ widely due to changes in underlying sequential algorithm

Ralphs et.al. (COR@L Lab) Parallel MIP

Efficiency Per Thread (Gurobi)

Ralphs et.al. (COR@L Lab) Parallel MIP

Node Throughput Versus Number of Threads

Ralphs et.al. (COR@L Lab) Parallel MIP

Node Efficiency Versus Number of Threads

Ralphs et.al. (COR@L Lab) Parallel MIP

Performance Profiles for Scalability Analysis

Performance profiles are typically used to compare different
algorithms
They can, however, be used to compare the same algorithm under
different conditions.
For scalability, we compare with differing numbers of threads.
A down side is that performance profiles compare to virtual best,
whereas scalability compares to single-thread.

Ralphs et.al. (COR@L Lab) Parallel MIP

Scalability Profiles

Straight performance profile considers ratios against virtual best.
An alternative is to consider ratios against single thread.
In the latter case, we must allow ratios less than one.

10-2 10-1 100 101 102 103 104

Ratio to single thread

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing the
wallclock time

ParaSCIP

1 Thread (area: 0.000)

4 Threads (area: 0.497)

8 Threads (area: 0.559)

16 Threads (area: 0.972)

(a) ParaSCIP

10-2 10-1 100 101 102 103 104

Ratio to single thread

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing the
wallclock time

SYMPHONY

1 Thread (area: 0.000)

4 Threads (area: 2.486)

8 Threads (area: 1.631)

16 Threads (area: 2.454)

(b) SYMPHONY

Figure: Scalability profile of wallclock running time.

Ralphs et.al. (COR@L Lab) Parallel MIP

Progress-based Analysis

Traditional scalability analysis asks how much time it takes to do a
fixed computation.

Two simple alternatives

How much computation can be done in a fixed amount of real
time but with varying numbers of processors?

How much computation can be done with fixed compute time
but with varying amounts of real time?

Allowing partial completion of a fixed computation eliminates many
of the problems with finding a test set and comparing solvers.
Both these alternatives depends on having some reliable
“measure of progress,” however.
It is not enough to just measure the “amount of computation”—this
is equivalent to measuring utilization and ignoring other overhead.

Ralphs et.al. (COR@L Lab) Parallel MIP

Measures of Progress

A measure of progress is an estimate of what fraction of a
computation has been completed.

It may be very difficult to predict how much time remains in a
computation.

However, for computations that have already been performed
once, it may be possible.

Measures of progress can be used to assess the effectiveness of
algorithms even if the computation doesn’t complete⇐ Important!

Possible measures for MILP

Gap

Extended PDI

Ralphs et.al. (COR@L Lab) Parallel MIP

Gap versus Extended PDI

Gap
Final value is always zero
Progress can be “irregular”.
Current value doesn’t really indicate now “close” the computation is
to finishing.

Extended PDI
Final value can be anything from 0 to the time required for
computation (normalized version).
Can be normalized to [0, 1], but the final value is still variable.
Progress can be “irregular”.
Still, it seems to be a reasonable proxy for wallclock running time.

Ralphs et.al. (COR@L Lab) Parallel MIP

Extended PDI versus Wallclock

The below figures show the relationship between wallclock
running time and extended PDI for different numbers of threads.
In general, there is a strong correlation between wallclock and
PDI, which is perhaps not very surprising.
Extended PDI may thus be a reasonable measure of progress.

100 101 102 103 104

wallclock time (seconds)

10-1

100

101

102

103

104

p
ri

m
a
l-

d
u
a
l
in

te
g
ra

l

Analysing the relationship between
wallclock time and the primal-dual integral

1 Thread (0.772, 4.999e-13)

4 Threads (0.735, 2.299e-11)

8 Threads (0.904, 4.302e-23)

16 Threads (0.722, 7.813e-11)

(a) ParaSCIP

100 101 102 103 104

wallclock time (seconds)

100

101

102

103

104

p
ri

m
a
l-

d
u
a
l
in

te
g
ra

l

Analysing the relationship between
wallclock time and the primal-dual integral

1 Thread (0.573, 3.415e-03)

4 Threads (0.936, 1.973e-11)

8 Threads (0.928, 6.366e-11)

16 Threads (0.776, 8.228e-06)

(b) SYMPHONY

Figure: The relationship between the wall clock time and the extended PDI.
Ralphs et.al. (COR@L Lab) Parallel MIP

Performance Profiles of Extended PDI and Wallclock

Ralphs et.al. (COR@L Lab) Parallel MIP

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

Sequential Performance of Solvers (Single Thread)

Ralphs et.al. (COR@L Lab) Parallel MIP

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

Parallel Performance of Solvers (Shared Memory, 12 Threads)

Ralphs et.al. (COR@L Lab) Parallel MIP

Parallel Performance of Solvers (Shared Memory, 12 Threads)

Ralphs et.al. (COR@L Lab) Parallel MIP

Parallel Performance of Early Gurobi Version

Ralphs et.al. (COR@L Lab) Parallel MIP

Speeedups on 4 Cores by Model (Gurobi)

Ralphs et.al. (COR@L Lab) Parallel MIP

Speeedups Best 1/12 by Model (Gurobi)

Ralphs et.al. (COR@L Lab) Parallel MIP

Outline

1 Introduction
Tree Search Algorithms
Historical Perspective

2 Parallel Algorithms
Definitions and Background
State of the Art
Challenges

3 Assessing Effectiveness
Sequential Performance
Parallel Scalability

4 Computational Results
Sequential Performance
Parallel Performance
Parallel Scalability

5 Conclusions

Ralphs et.al. (COR@L Lab) Parallel MIP

Experiments Assessing Parallel Scalability

We have been experimenting with a number of ways of applying
the ideas seen so far.
In the following, we show results with the following solvers.

Gurobi
ParaSCIP [Shinano et al., 2013]
SYMPHONY [Ralphs and Güzelsoy, 2005]
ALPS [Xu et al., 2007]

Ralphs et.al. (COR@L Lab) Parallel MIP

Performance Profile Using Extended PDI

100 101 102 103 104

Ratio to best setting

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing the
primal-dual integral

ParaSCIP

1 Thread (area: 66.286)

4 Threads (area: 1.104)

8 Threads (area: 0.787)

16 Threads (area: 2.908)

(a) 18000 seconds limit

100 101 102 103 104

Ratio to best setting

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing the
primal-dual integral

ParaSCIP

1 Thread (area: 80.638)

4 Threads (area: 0.812)

8 Threads (area: 0.518)

16 Threads (area: 3.161)

(b) 9000 seconds limit

100 101 102 103 104

Ratio to best setting

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing the
primal-dual integral

ParaSCIP

1 Thread (area: 80.011)

4 Threads (area: 0.763)

8 Threads (area: 0.451)

16 Threads (area: 3.101)

(c) 4500 seconds limit

Figure: Performance profile of PDI for ParaSCIP on MIPLIB2010.

Ralphs et.al. (COR@L Lab) Parallel MIP

Scalability Profile Using Extended PDI

10-4 10-3 10-2 10-1 100 101 102 103 104

Ratio to single thread

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing the
primal-dual integral

ParaSCIP

1 Thread (area: 0.000)

4 Threads (area: 0.502)

8 Threads (area: 0.545)

16 Threads (area: 1.315)

(a) ParaSCIP

10-2 10-1 100 101 102 103 104

Ratio to single thread

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing the
primal-dual integral

SYMPHONY

1 Thread (area: 0.000)

4 Threads (area: 1.938)

8 Threads (area: 5.563)

16 Threads (area: 1.708)

(b) SYMPHONY

Figure: Scalability profile of the extended PDI

Ralphs et.al. (COR@L Lab) Parallel MIP

Scalability Profile with Fixed Compute Time

10-3 10-2 10-1 100 101 102 103 104

Ratio to single thread

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing the
primal-dual integral with limited resources

ParaSCIP

1 Thread (area: 0.000)

4 Threads (area: 1.225)

8 Threads (area: 4.079)

16 Threads (area: 17.047)

(a) ParaSCIP

10-4 10-3 10-2 10-1 100 101 102 103 104

Ratio to single thread

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing the
primal-dual integral with limited resources

SYMPHONY

1 Thread (area: 0.000)

4 Threads (area: 25.491)

8 Threads (area: 55.795)

16 Threads (area: 137.821)

(b) SYMPHONY

Figure: The scalability profile of PDI with fixed compute time.

Ralphs et.al. (COR@L Lab) Parallel MIP

Node Throughput Scalability Profile

10-1 100 101 102

Ratio to best setting

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing NodeThroughput

symphony

1 Thread
4 Threads
8 Threads
16 Threads

10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107 108

Ratio to best setting

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing NodeThroughput

symphony
parascip

1 Thread
4 Threads
8 Threads
16 Threads

Ralphs et.al. (COR@L Lab) Parallel MIP

Number of Nodes Scalability Profile

10-2 10-1 100 101 102 103 104

Ratio to best setting

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing NumberOfNodes

symphony

1 Thread
4 Threads
8 Threads
16 Threads

10-2 10-1 100 101 102 103 104 105 106 107 108

Ratio to best setting

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing NumberOfNodes

symphony
parascip

1 Thread
4 Threads
8 Threads
16 Threads

Ralphs et.al. (COR@L Lab) Parallel MIP

Number of Nodes at Gap Scalability Profile

10-3 10-2 10-1 100 101

Ratio to best setting

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing NodesAtGap_25

parascip

1 Thread
4 Threads
8 Threads
16 Threads

10-3 10-2 10-1 100 101 102 103

Ratio to best setting

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
in

st
a
n
ce

s

Performance profile comparing NodesAtGap_25

symphony
parascip

1 Thread
4 Threads
8 Threads
16 Threads

Ralphs et.al. (COR@L Lab) Parallel MIP

Conclusions

We presented an overview of the current state-of-the-art and
challenges facing developers of solvers for MILP.
Parallelization of algorithms for solution of MILPs is a very difficult
challenge that is far from solved.
It is not clear if we are going down the right road or whether we
should start from scratch with some fresh thinking.
Ideas welcome!

Ralphs et.al. (COR@L Lab) Parallel MIP

References I

T. Berthold. Measuring the impact of primal heuristics. ZIB-Report
13-17, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2013.

T. Koch, T.K. Ralphs, and Y. Shinano. Could we use a million cores to
solve an integer program? Mathematical Methods of Operations
Research, 76:67–93, 2012. doi: 10.1007/s00186-012-0390-9. URL
http://coral.ie.lehigh.edu/~ted/files/papers/
Million11.pdf.

S.J. Maher, T.K. Ralphs, and Y. Shinano. Assessing effectiveness of
branch-and-bound algorithms. 2018.

T.K. Ralphs and M. Güzelsoy. The symphony callable library for
mixed-integer linear programming. In Proceedings of the Ninth
INFORMS Computing Society Conference, pages 61–76, 2005. doi:
10.1007/0-387-23529-9_5. URL http://coral.ie.lehigh.edu/
~ted/files/papers/SYMPHONY04.pdf.

Ralphs et.al. (COR@L Lab) Parallel MIP

http://coral.ie.lehigh.edu/~ted/files/papers/Million11.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/Million11.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/SYMPHONY04.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/SYMPHONY04.pdf

References II

T.K. Ralphs, Y. Shinano, T. Berthold, and T. Koch. Parallel solvers for
mixed integer linear programing. Technical report, COR@L
Laboratory Report 16T-014-R3, Lehigh University, 2016. URL
http://coral.ie.lehigh.edu/~ted/files/papers/
ParallelMILPSurvey16.pdf.

Y. Shinano, S. Heinz, S. Vigerske, and M. Winkler. FiberSCIP – a
shared memory parallelization of SCIP. ZIB-Report 13-55, Zuse
Institute Berlin, 2013.

Y Xu. Scalable Algorithms for Parallel Tree Search. Phd, Lehigh
University, 2007. URL http://coral.ie.lehigh.edu/
{~}ted/files/papers/YanXuDissertation07.pdf.

Ralphs et.al. (COR@L Lab) Parallel MIP

http://coral.ie.lehigh.edu/~ted/files/papers/ParallelMILPSurvey16.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/ParallelMILPSurvey16.pdf
http://coral.ie.lehigh.edu/{~}ted/files/papers/YanXuDissertation07.pdf
http://coral.ie.lehigh.edu/{~}ted/files/papers/YanXuDissertation07.pdf

References III

Y. Xu, T.Kk Ralphs, L. Ladányi, and M.J. Saltzman. Alps: A framework
for implementing parallel search algorithms. In The Proceedings of
the Ninth INFORMS Computing Society Conference, pages
319–334, 2005. doi: 10.1007/0-387-23529-9_21. URL http://
coral.ie.lehigh.edu/~ted/files/papers/ALPS04.pdf.

Y. Xu, T.K. Ralphs, L. Ladányi, and M.J. Saltzman. Computational
experience with a framework for parallel integer programming.
Technical report, COR@L Laboratory Report , Lehigh University,
2007. URL http://coral.ie.lehigh.edu/~ted/files/
papers/CHiPPS.pdf.

Y. Xu, T.K. Ralphs, L. Ladányi, and M.J. Saltzman. Computational
experience with a software framework for parallel integer
programming. The INFORMS Journal on Computing, 21:383–397,
2009. doi: 10.1287/ijoc.1090.0347. URL http://coral.ie.
lehigh.edu/~ted/files/papers/CHiPPS-Rev.pdf.

Ralphs et.al. (COR@L Lab) Parallel MIP

http://coral.ie.lehigh.edu/~ted/files/papers/ALPS04.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/ALPS04.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/CHiPPS.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/CHiPPS.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/CHiPPS-Rev.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/CHiPPS-Rev.pdf

	Introduction
	Tree Search Algorithms
	Historical Perspective

	Parallel Algorithms
	Definitions and Background
	State of the Art
	Challenges

	Assessing Effectiveness
	Sequential Performance
	Parallel Scalability

	Computational Results
	Sequential Performance
	Parallel Performance
	Parallel Scalability

	Conclusions

