# Solving Hard Combinatorial Problems: A Research Overview



Ted Ralphs

Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA

http://www.lehigh.edu/~tkr2

#### **Outline of Talk**

- Introduction to *mathematical programming*
- Examples of discrete optimization problems
- Methods for discrete optimization
- Current research

#### What is a model?

mod·el: A schematic description of a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for further study of its characteristics.

-American Heritage Dictionary of the English Language

- Two types of models
  - Concrete
  - Abstract
- Mathematical models
  - Are abstract models
  - Describe the mathematical relationships among elements in a system.

# Why do we model systems?

- The exercise of building a model can provide insight.
- It's possible to do things with models that we can't do with "the real thing."
- Analyzing models can help us decide on a course of action.

# **Examples of Model Types**

- Simulation Models
- Probability Models
- Financial Models
- Mathematical Programming Models

## **Mathematical Programming Models**

- What does *mathematical programming* mean?
- Programming here means "planning."
- Literally, these are "mathematical models for planning."
- Also called optimization models.
- Essential elements
  - Decision variables
  - Constraints
  - Objective Function
  - Parameters and Data

### Forming a Mathematical Programming Model

The general form of a math programming model is:

min or max 
$$f(x_1, ..., x_n)$$

$$s.t. g_i(x_1, ..., x_n) \begin{cases} \leq \\ = \\ \geq \end{cases} b_i$$

We might also require the values of the variables to belong to a discrete set X.

#### **Solutions**

- A solution is an assignment of values to variables.
- A solution can be thought of as a vector.
- A feasible solution is an assignment of values to variables such that all the constraints are satisfied.
- The *objective function value* of a solution is obtained by evaluating the objective function at the given solution.
- An *optimal solution* (assuming minimization) is one whose objective function value is less than or equal to that of all other feasible solutions.

#### **Types of Mathematical Programs**

- The type of a math program is determined primarily by
  - The form of the objective and the constraints.
  - The discrete set X.
  - Whether the input data is considered "known".
- In this talk, we will consider linear programs.
  - The objective function is linear.
  - The constraints are linear.
  - Linear programs are specified by a cost vector  $c \in \mathbb{R}^n$  a constraint matrix  $A \in \mathbb{R}^{m \times n}$  and a right-hand side vector  $b \in \mathbb{R}^m$  and have the form

$$\min c^T x$$

$$s.t. \quad Ax < b$$

### **Two Crude Petroleum Example**

- Two Crude Petroleum distills crude from two sources:
  - Saudi Arabia
  - Venezuela
- They have three main products:
  - Gasoline
  - Jet fuel
  - Lubricants
- Yields

|              | Gasoline    | Jet fuel    | Lubricants  |
|--------------|-------------|-------------|-------------|
| Saudi Arabia | 0.3 barrels | 0.4 barrels | 0.2 barrels |
| Venezuela    | 0.4 barrels | 0.2 barrels | 0.3 barrels |

## Two Crude Petroleum Example (cont.)

Availability and cost

|              | Availability | Cost        |
|--------------|--------------|-------------|
| Saudi Arabia | 9000 barrels | \$20/barrel |
| Venezuela    | 6000 barrels | \$15/barrel |

Production Requirements (per day)

| Gasoline     | Jet fuel     | Lubricants  |
|--------------|--------------|-------------|
| 2000 barrels | 1500 barrels | 500 barrels |

• Objective: Minimize production cost.

- What are the decision variables?
- What is the objective function?
- What are the constraints?

- The decision variables are the amount of each type of crude to refine.
  - $x_1$  = thousands of barrels of Saudi crude refined per day.
  - $x_2$  = thousands of barrels of Venezuelan crude refined per day.
- What is the objective function?
- What are the constraints?

- The decision variables are the amount of each type of crude to refine.
  - $x_1$  = thousands of barrels of Saudi crude refined per day.
  - $x_2$  = thousands of barrels of Venezuelan crude refined per day.
- The *objective function* is  $20x_1 + 15x_2$ .
- What are the constraints?

- The decision variables are the amount of each type of crude to refine.
  - $x_1$  = thousands of barrels of Saudi crude refined per day.
  - $x_2$  = thousands of barrels of Venezuelan crude refined per day.
- The objective function is  $20x_1 + 15x_2$ .
- In words, the *production constraints* are

$$\sum$$
 (yield per barrel)(barrels refined)  $\geq$  production requirements

• In addition, we have **bounds** on the variables.

# Linear Programming Formulation of Two Crude Example

• This yields the following LP formulation:

min 
$$20x_1 + 15x_2$$
  
s.t.  $0.3x_1 + 0.4x_2 \ge 2.0$   
 $0.4x_1 + 0.2x_2 \ge 1.5$   
 $0.2x_1 + 0.3x_2 \ge 0.5$   
 $0 \le x_1 \le 9$   
 $0 \le x_2 \le 6$ 

## **Solving Linear Programs**

- Generally speaking, we can solve linear programs efficiently.
- However, in many situations, the variables must take on discrete values, usually integral values.
- These programs are called *integer programs* and are an example of a discrete optimization problem.
- Integer programs can be extremely difficult to solve in practice.
- The simplest form of integer programming is *combinatorial optimization*.
- In a combinatorial problem, all the decisions are yes/no.

## **Combinatorial Optimization**

- A combinatorial optimization problem  $CP = (E, \mathcal{F})$  consists of
  - A ground set E,
  - A set  $\mathcal{F} \subseteq 2^E$  of *feasible solutions*, and
  - A cost function  $c \in \mathbf{Z}^{\mathbf{E}}$  (optional).
- The *cost* of  $S \in \mathcal{F}$  is  $c(S) = \sum_{e \in S} c_e$ .
- A *subproblem* is defined by  $S \subseteq \mathcal{F}$ .
- Problem: Find a least cost member of  $\mathcal{F}$ .

#### **Example: Perfect Matching Problem**

- $\bullet$  We are given a set of n people that need to paired in teams of two.
- Let  $c_{ij}$  represent the "cost" of the team formed by person i and person j.
- We wish to minimize the overall cost of the pairings.
- We can represent this problem on an undirected graph G = (N, E).
- The nodes represent the people and the edges represent pairings.
- We have  $x_e = 1$  if the endpoints of e are matched,  $x_e = 0$  otherwise.

$$min \sum_{e=\{i,j\} \in E} c_e x_e$$
 $s.t. \sum_{\{j|\{i,j\} \in E\}} x_{ij} = 1, \ \forall i \in N$ 
 $x_e \in \{0,1\}, \quad \forall e = \{i,j\} \in E.$ 

#### **Fixed-charge Problems**

- In many instances, there is a fixed cost and a variable cost associated with a particular decision.
- Example: Fixed-charge Network Flow Problem
  - We are given a directed graph G = (N, A).
  - There is a fixed cost  $c_{ij}$  associated with "opening" arc (i,j) (think of this as the cost to "build" the link).
  - There is also a variable cost  $d_{ij}$  associated with each unit of flow along arc (i, j).
  - Think of the fixed charge as the construction cost and the variable charge as the operating cost.
  - We want to minimize the sum of these two costs.

## Modeling the Fixed-charge Network Flow Problem

- To model the FCNFP, we associate two variables with each arc.
  - $x_{ij}$  (fixed-charge variable) indicates whether arc (i,j) is open.
  - $f_{ij}$  (flow variable) represents the flow on arc (i, j).
  - Note that we have to ensure that  $f_{ij} > 0 \Rightarrow x_{ij} = 1$ .

$$Min \sum_{(i,j)\in A} c_{ij}x_{ij} + d_{ij}f_{ij}$$

$$s.t. \sum_{j\in O(i)} f_{ij} - \sum_{j\in I(i)} f_{ji} = b_i \quad \forall i \in N$$

$$f_{ij} \leq Cx_{ij} \quad \forall (i,j) \in A$$

$$f_{ij} \geq 0 \quad \forall (i,j) \in A$$

$$x_{ij} \in \{0,1\} \ \forall (i,j) \in A$$

## **Example: Facility Location Problem**

- We are given n potential facility locations and m customers that must be serviced from those locations.
- There is a fixed cost  $c_j$  of opening facility j.
- There is a cost  $d_{ij}$  associated with serving customer i from facility j.
- We have two sets of binary variables.
  - $-y_j$  is 1 if facility j is opened, 0 otherwise.
  - $-x_{ij}$  is 1 if customer i is served by facility j, 0 otherwise.

$$min \sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$

$$s.t. \sum_{j=1}^{n} x_{ij} = K \qquad \forall i$$

$$x_{ij} \leq y_j \qquad \forall i, j$$

$$x_{ij}, y_j \in \{0, 1\} \qquad \forall i, j$$

#### The Traveling Salesman Problem

- We are given a set of cities and a cost associated with traveling between each pair of cities.
- We want to find the least cost route traveling through every city and ending up back ate the starting city.
- Applications of the Traveling Salesman Problem
  - Drilling Circuit Boards
  - Gene Sequencing

#### Formulating The Traveling Salesman Problem

The TSP is a combinatorial problem  $(E, \mathcal{F})$  whose ground set is the edge set of a graph G = (V, E).

- V is the set of customers.
- E is the set of travel links between the customers.

A feasible solution is a permutation  $\sigma$  of V specifying the order of the customers. IP Formulation:

$$\sum_{\substack{j=1\\j\notin S}}^{n} x_{ij} = 2 \quad \forall i \in N^{-}$$
$$\sum_{\substack{i\in S\\j\notin S}}^{n} x_{ij} \geq 2 \quad \forall S \subset V, |S| > 1.$$

where  $x_{ij}$  is a binary variable indicating  $\sigma(i) = j$ .

# **Example Instance of the TSP**



# **Optimal Solutions to the 48 City Problem**



#### How hard are these problems?

- In practice, these can be extremely difficult.
- The number of possible solutions for the TSP is n! where n is the number of cities.
- We cannot afford to enumerate all these possibilities.
- But there is no direct, efficient way to solve these problems.

#### How do we solve these hard problems?

- Try to reduce them to something easier
  - Integer Program  $\Rightarrow$  Linear Program
  - Divide and conquer
- Use a bigger hammer
  - Faster processors
  - More memory
  - Parallelism

# **Integer Programming**



## **Cutting Plane Method**

- Basic cutting plane algorithm
  - Relax the integrality constraints.
  - Solve the relaxation. Infeasible  $\Rightarrow$  STOP.
  - If  $\hat{x}$  integral  $\Rightarrow$  STOP.
  - Separate  $\hat{x}$  from  $\mathcal{P}$ .
  - No cutting planes  $\Rightarrow$  algorithm fails.
- The key is good separation algorithms.



#### **Branch and Cut Methods**

If the cutting plane approach fails, then we divide and conquer (branch).



#### **Branch and Bound**

- Suppose F is the feasible region for some MILP and we wish to solve  $\min_{x \in F} c^T x$ .
- Consider a partition of F into subsets  $F_1, \ldots F_k$ . Then

$$\min_{x \in F} c^T x = \min_{\{1 \le i \le k\}} \{ \min_{x \in F_i} c^T x \}$$

.

- In other words, we can optimize over each subset separately.
- <u>Idea</u>: If we can't solve the original problem directly, we might be able to solve the smaller *subproblems* recursively.
- Dividing the original problem into subproblems is called *branching*.
- Taken to the extreme, this scheme is equivalent to complete enumeration.

#### LP-based Branch and Bound

- In LP-based branch and bound, we first solve the LP relaxation of the original problem. The result is one of the following:
  - 1. The LP is infeasible  $\Rightarrow$  MILP is infeasible.
  - 2. We obtain a feasible solution for the MILP  $\Rightarrow$  optimal solution.
  - 3. We obtain an optimal solution to the LP that is not feasible for the MILP  $\Rightarrow$  upper bound.
- In the first two cases, we are finished.
- In the third case, we must branch and recursively solve the resulting subproblems.

## **Continuing the Algorithm After Branching**

- After branching, we solve each of the subproblems recursively.
- Now we have an additional factor to consider.
- If the optimal solution value to the LP relaxation is greater than the current upper bound, we need not consider the subproblem further.
- This is the key to the efficiency of the algorithm.

#### Terminology

- If we picture the subproblems graphically, they form a search tree.
- Each subproblem is linked to its parent and eventually to its children.
- Eliminating a problem from further consideration is called *pruning*.
- The act of bounding and then branching is called processing.
- A subproblem that has not yet been considered is called a candidate for processing.
- The set of candidates for processing is called the *candidate list*.

# **Branch and Bound Tree**



## **Current State of the Art**



#### **Current Research**

- The theory of integer programming is fairly well developed.
- Computationally, however, these methods are very difficult to implement effectively.
- Also, each problem requires different methods of separation.
- It is therefore extremely expensive to implement an efficient solver for a new application.
- Overcoming these challenges and developing generic solvers capable of automatically analyzing problem structure and performing separation is an active area of research.
- These methods also depend heavily on our ability to obtain good bounds.
- Finding new/better methods of bounding is another active research area.
- I am currently involved in research in both of these areas.