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Outline of Talk

e Introduction to mathematical programming
e Examples of discrete optimization problems
e Methods for discrete optimization

e Current research
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What is a model?

mod-el: A schematic description of a system, theory, or phenomenon that
accounts for its known or inferred properties and may be used for further
study of its characteristics.

e Two types of models

— Concrete
— Abstract

e Mathematical models

— Are abstract models
— Describe the mathematical relationships among elements in a system.
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Why do we model systems?

e The exercise of building a model can provide insight.

e It's possible to do things with models that we can't do with “the real
thing.”

e Analyzing models can help us decide on a course of action.



Solving Hard Combinatorial Problems

Examples of Model Types

e Simulation Models
e Probability Models
e Financial Models

e Mathematical Programming Models
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Mathematical Programming Models

e What does mathematical programming mean?

e Programming here means “planning.”

e Literally, these are “mathematical models for planning.”
e Also called optimization models.

e Essential elements

— Decision variables

— Constraints

— Objective Function
— Parameters and Data
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Forming a Mathematical Programming Model

The general form of a math programming model is:
min or max f(x1,...,%Ty)

s.t. gi(z1,. .., xp) b;

AVARIIRVA

We might also require the values of the variables to belong to a discrete
set X.
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Solutions

e A solution is an assignment of values to variables.
e A solution can be thought of as a vector.

e A feasible solution is an assignment of values to variables such that all
the constraints are satisfied.

e The objective function value of a solution is obtained by evaluating the
objective function at the given solution.

e An optimal solution (assuming minimization) is one whose objective
function value is less than or equal to that of all other feasible solutions.
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Types of Mathematical Programs

e The type of a math program is determined primarily by

— The form of the objective and the constraints.
— The discrete set X.
— Whether the input data is considered “known".

e In this talk, we will consider linear programs.

— The objective function is linear.

— The constraints are linear.

— Linear programs are specified by a cost vector ¢ € R" a constraint
matrix A € R™*" and a right-hand side vector b € R™ and have the

form

min ¢!z

s.t. Ax <b
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Two Crude Petroleum Example

e Two Crude Petroleum distills crude from two sources:

— Saudi Arabia
— Venezuela

e They have three main products:

— Gasoline
— Jet fuel
— Lubricants
e Yields
Gasoline Jet fuel Lubricants
Saudi Arabia | 0.3 barrels | 0.4 barrels | 0.2 barrels
Venezuela 0.4 barrels | 0.2 barrels | 0.3 barrels
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Two Crude Petroleum Example (cont.)

e Availability and cost

e Production Requirements (per day)

9000 barrels | $20/barrel
6000 barrels | $15/barrel
2000 barrels | 1500 barrels | 500 barrels

e Objective: Minimize production cost.
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Modeling the Two Crude Production Problem

e What are the decision variables?
e What is the objective function?

e \What are the constraints?
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Modeling the Two Crude Production Problem

e The decision variables are the amount of each type of crude to refine.

x1 = thousands of barrels of Saudi crude refined per day.
x9 = thousands of barrels of Venezuelan crude refined per day.

e What is the objective function?

e \What are the constraints?
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Modeling the Two Crude Production Problem

e The decision variables are the amount of each type of crude to refine.

x1 = thousands of barrels of Saudi crude refined per day.
x9 = thousands of barrels of Venezuelan crude refined per day.

e The objective function is 20x1 + 15xs.

e \What are the constraints?
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Modeling the Two Crude Production Problem

e The decision variables are the amount of each type of crude to refine.

x1 = thousands of barrels of Saudi crude refined per day.
x9 = thousands of barrels of Venezuelan crude refined per day.

e The objective function is 2021 + 15x5.

e In words, the production constraints are

Z(yield per barrel)(barrels refined) > production requirements

e [n addition, we have bounds on the variables.
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Linear Programming Formulation of Two Crude Example

e This yields the following LP formulation:

min 20x1 + 1529
s.t. 0.3x1 4+ 0.429 > 2.0
0.4x1 + 0.229 > 1.5
0.2x1 4+ 0.3 > 0.5
0<z1<9
0<2,<6
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Solving Linear Programs

e Generally speaking, we can solve linear programs efficiently.

e However, in many situations, the variables must take on discrete values,
usually integral values.

e These programs are called integer programs and are an example of a
discrete optimization problem.

e Integer programs can be extremely difficult to solve in practice.
e The simplest form of integer programming is combinatorial optimization.

e In a combinatorial problem, all the decisions are yes/no.
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Combinatorial Optimization

A combinatorial optimization problem CP = (E,F) consists of

— A ground set E,
— A set F C 2¥ of feasible solutions, and
— A cost function ¢ € Z¥ (optional).

The cost of S € Fis ¢(S) = > .cqCe.

A subproblem is defined by & C F.

Problem: Find a least cost member of F.
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Example: Perfect Matching Problem

e We are given a set of n people that need to paired in teams of two.

o Let c;; represent the “cost” of the team formed by person i and person
9.

e \We wish to minimize the overall cost of the pairings.
e We can represent this problem on an undirected graph G = (N, F).
e The nodes represent the people and the edges represent pairings.

e We have z. = 1 if the endpoints of e are matched, z. = 0 otherwise.

man Z Cole
e={i,j}€FE

st. Y  wy=1VieN
{il{i.j}eE}
z. € {0,1}, Ve={i,j} € E.
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Fixed-charge Problems

e |In many instances, there is a fixed cost and a variable cost associated
with a particular decision.

e xample: Fixed-charge Network Flow Problem

— We are given a directed graph G = (N, A).

— There is a fixed cost ¢;; associated with “opening” arc (i, j) (think of
this as the cost to “build” the link).

— There is also a variable cost d;; associated with each unit of flow along
arc (,7).

— Think of the fixed charge as the construction cost and the variable
charge as the operating cost.

— We want to minimize the sum of these two costs.
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Modeling the Fixed-charge Network Flow Problem

e To model the FCNFP, we associate two variables with each arc.

— x;; (fixed-charge variable) indicates whether arc (7, 7) is open.
— fi; (flow variable) represents the flow on arc (¢, j).
— Note that we have to ensure that f;; > 0= z;; = 1.

Min Z CijTij + dij fi

(i) €A
st. Y fij— Y fi=b; Vi€EN
JjE€O(7) jeI(i)

fij <Cuxy V(i,j) € A
fi; >0 V(i,j) € A
x5 €{0,1}V(i,5) € A
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Example: Facility Location Problem

e We are given n potential facility locations and m customers that must
be serviced from those locations.

e There is a fixed cost c¢; of opening facility j.
e There is a cost d;; associated with serving customer i from facility j.
e We have two sets of binary variables.

— y; is 1 if facility j is opened, O otherwise.
— x;; i1s 1 if customer ¢ is served by facility j, 0 otherwise.

min Z c;jy; + Z Z di;iTij

=1 5=1

Tij < Y; Vi, g
Tij,Yj € {07 1} VZ’]
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The Traveling Salesman Problem

e We are given a set of cities and a cost associated with traveling between
each pair of cities.

e We want to find the least cost route traveling through every city and
ending up back ate the starting city.

e Applications of the Traveling Salesman Problem

— Drilling Circuit Boards
— Gene Sequencing
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Formulating The Traveling Salesman Problem

The is a (E,F) whose ground set is the edge
set of a graph G = (V, E).

e |/ is the set of customers.

e [/ is the set of travel links between the customers.

A Is a permutation o of V specifying the order of the
customers. [P _Formulation:

Z?:lxij = 2 Vie N™
Zz‘eSCIiij > 2 VSCV, ‘S‘>1

JES

where x;; is a binary variable indicating
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Example Instance of the TSP
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Optimal Solutions to the 48 City Problem
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How hard are these problems?

e |n practice, these can be extremely difficult.

e The number of possible solutions for the TSP is n! where n is the number
of cities.

e We cannot afford to enumerate all these possibilities.

e But there is no direct, efficient way to solve these problems.
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How do we solve these hard problems?

— Integer Program = Linear Program
— Divide and conquer

— Faster processors
— More memory
— Parallelism
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Integer Programming

Convex hull of integer solutions
— Linear programming relaxation

.
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Cutting Plane Method

e Basic cutting plane algorithm

— Relax the integrality constraints.

— Solve the relaxation. Infeasible = STOP.
— If z integral = STOP.

— Separate = from P.

— No cutting planes = algorithm fails.

e The key is
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Branch and Cut Methods

If the cutting plane approach fails, then we divide and conquer (branch).

A
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Branch and Bound

e Suppose F' is the feasible region for some MILP and we wish to solve

mingcpc! .

e Consider a partition of F' into subsets F}, ... Fi. Then

minc’z = min {min ¢’ z}
zEF {1<i<k} z€F;

e In other words, we can optimize over each subset separately.

e |dea: If we can't solve the original problem directly, we might be able to
solve the smaller subproblems recursively.

e Dividing the original problem into subproblems is called branching.

e Taken to the extreme, this scheme is equivalent to complete enumeration.
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LP-based Branch and Bound

e In LP-based branch and bound, we first solve the LP relaxation of the
original problem. The result is one of the following:

1. The LP is infeasible = MILP is infeasible.

2. We obtain a feasible solution for the MILP = optimal solution.

3. We obtain an optimal solution to the LP that is not feasible for the
MILP = upper bound.

e In the first two cases, we are finished.

e In the third case, we must branch and recursively solve the resulting
subproblems.
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Continuing the Algorithm After Branching

e After branching, we solve each of the subproblems recursively.
e Now we have an additional factor to consider.

e |f the optimal solution value to the LP relaxation is greater than the
current upper bound, we need not consider the subproblem further.

e This is the key to the efficiency of the algorithm.
e [erminology

— If we picture the subproblems graphically, they form a search tree.

— Each subproblem is linked to its parent and eventually to its children.

— Eliminating a problem from further consideration is called pruning.

— The act of bounding and then branching is called processing.

— A subproblem that has not yet been considered is called a candidate
for processing.

— The set of candidates for processing is called the candidate list.
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Branch and Bound Tree
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Current State of the Art
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Current Research

e The theory of integer programming is fairly well developed.

e Computationally, however, these methods are very difficult to implement
effectively.

e Also, each problem requires different methods of separation.

e |t is therefore extremely expensive to implement an efficient solver for a
new application.

e Overcoming these challenges and developing generic solvers capable of
automatically analyzing problem structure and performing separation is
an active area of research.

e These methods also depend heavily on our ability to obtain good bounds.
e Finding new/better methods of bounding is another active research area.

e | am currently involved in research in both of these areas.



