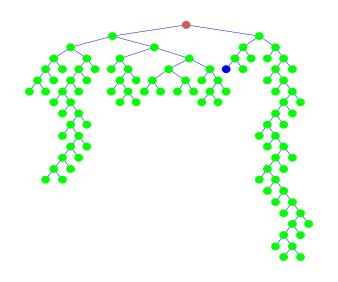
Solving Hard Combinatorial Problems: A Research Overview



Ted Ralphs

Department of Industrial and Systems Engineering Lehigh University, Bethlehem, PA

http://www.lehigh.edu/~tkr2

Outline of Talk

- Introduction to *mathematical programming*
- Examples of discrete optimization problems
- Methods for discrete optimization
- Current research

What is a model?

mod·el: A schematic description of a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for further study of its characteristics.

-American Heritage Dictionary of the English Language

- Two types of models
 - Concrete
 - Abstract
- Mathematical models
 - Are abstract models
 - Describe the mathematical relationships among elements in a system.

Why do we model systems?

- The exercise of building a model can provide insight.
- It's possible to do things with models that we can't do with "the real thing."
- Analyzing models can help us decide on a course of action.

Examples of Model Types

- Simulation Models
- Probability Models
- Financial Models
- Mathematical Programming Models

Mathematical Programming Models

- What does *mathematical programming* mean?
- Programming here means "planning."
- Literally, these are "mathematical models for planning."
- Also called optimization models.
- Essential elements
 - Decision variables
 - Constraints
 - Objective Function
 - Parameters and Data

Forming a Mathematical Programming Model

The general form of a math programming model is:

min or max
$$f(x_1, ..., x_n)$$

$$s.t. g_i(x_1, ..., x_n) \begin{cases} \leq \\ = \\ \geq \end{cases} b_i$$

We might also require the values of the variables to belong to a discrete set X.

Solutions

- A solution is an assignment of values to variables.
- A solution can be thought of as a vector.
- A feasible solution is an assignment of values to variables such that all the constraints are satisfied.
- The *objective function value* of a solution is obtained by evaluating the objective function at the given solution.
- An *optimal solution* (assuming minimization) is one whose objective function value is less than or equal to that of all other feasible solutions.

Types of Mathematical Programs

- The type of a math program is determined primarily by
 - The form of the objective and the constraints.
 - The discrete set X.
 - Whether the input data is considered "known".
- In this talk, we will consider linear programs.
 - The objective function is linear.
 - The constraints are linear.
 - Linear programs are specified by a cost vector $c \in \mathbb{R}^n$ a constraint matrix $A \in \mathbb{R}^{m \times n}$ and a right-hand side vector $b \in \mathbb{R}^m$ and have the form

$$\min c^T x$$

$$s.t. \quad Ax < b$$

Two Crude Petroleum Example

- Two Crude Petroleum distills crude from two sources:
 - Saudi Arabia
 - Venezuela
- They have three main products:
 - Gasoline
 - Jet fuel
 - Lubricants
- Yields

	Gasoline	Jet fuel	Lubricants
Saudi Arabia	0.3 barrels	0.4 barrels	0.2 barrels
Venezuela	0.4 barrels	0.2 barrels	0.3 barrels

Two Crude Petroleum Example (cont.)

Availability and cost

	Availability	Cost
Saudi Arabia	9000 barrels	\$20/barrel
Venezuela	6000 barrels	\$15/barrel

Production Requirements (per day)

Gasoline	Jet fuel	Lubricants
2000 barrels	1500 barrels	500 barrels

• Objective: Minimize production cost.

- What are the decision variables?
- What is the objective function?
- What are the constraints?

- The decision variables are the amount of each type of crude to refine.
 - x_1 = thousands of barrels of Saudi crude refined per day.
 - x_2 = thousands of barrels of Venezuelan crude refined per day.
- What is the objective function?
- What are the constraints?

- The decision variables are the amount of each type of crude to refine.
 - x_1 = thousands of barrels of Saudi crude refined per day.
 - x_2 = thousands of barrels of Venezuelan crude refined per day.
- The *objective function* is $20x_1 + 15x_2$.
- What are the constraints?

- The decision variables are the amount of each type of crude to refine.
 - x_1 = thousands of barrels of Saudi crude refined per day.
 - x_2 = thousands of barrels of Venezuelan crude refined per day.
- The objective function is $20x_1 + 15x_2$.
- In words, the *production constraints* are

$$\sum$$
 (yield per barrel)(barrels refined) \geq production requirements

• In addition, we have **bounds** on the variables.

Linear Programming Formulation of Two Crude Example

• This yields the following LP formulation:

min
$$20x_1 + 15x_2$$

s.t. $0.3x_1 + 0.4x_2 \ge 2.0$
 $0.4x_1 + 0.2x_2 \ge 1.5$
 $0.2x_1 + 0.3x_2 \ge 0.5$
 $0 \le x_1 \le 9$
 $0 \le x_2 \le 6$

Solving Linear Programs

- Generally speaking, we can solve linear programs efficiently.
- However, in many situations, the variables must take on discrete values, usually integral values.
- These programs are called *integer programs* and are an example of a discrete optimization problem.
- Integer programs can be extremely difficult to solve in practice.
- The simplest form of integer programming is *combinatorial optimization*.
- In a combinatorial problem, all the decisions are yes/no.

Combinatorial Optimization

- A combinatorial optimization problem $CP = (E, \mathcal{F})$ consists of
 - A ground set E,
 - A set $\mathcal{F} \subseteq 2^E$ of *feasible solutions*, and
 - A cost function $c \in \mathbf{Z}^{\mathbf{E}}$ (optional).
- The *cost* of $S \in \mathcal{F}$ is $c(S) = \sum_{e \in S} c_e$.
- A *subproblem* is defined by $S \subseteq \mathcal{F}$.
- Problem: Find a least cost member of \mathcal{F} .

Example: Perfect Matching Problem

- \bullet We are given a set of n people that need to paired in teams of two.
- Let c_{ij} represent the "cost" of the team formed by person i and person j.
- We wish to minimize the overall cost of the pairings.
- We can represent this problem on an undirected graph G = (N, E).
- The nodes represent the people and the edges represent pairings.
- We have $x_e = 1$ if the endpoints of e are matched, $x_e = 0$ otherwise.

$$min \sum_{e=\{i,j\} \in E} c_e x_e$$
 $s.t. \sum_{\{j|\{i,j\} \in E\}} x_{ij} = 1, \ \forall i \in N$
 $x_e \in \{0,1\}, \quad \forall e = \{i,j\} \in E.$

Fixed-charge Problems

- In many instances, there is a fixed cost and a variable cost associated with a particular decision.
- Example: Fixed-charge Network Flow Problem
 - We are given a directed graph G = (N, A).
 - There is a fixed cost c_{ij} associated with "opening" arc (i,j) (think of this as the cost to "build" the link).
 - There is also a variable cost d_{ij} associated with each unit of flow along arc (i, j).
 - Think of the fixed charge as the construction cost and the variable charge as the operating cost.
 - We want to minimize the sum of these two costs.

Modeling the Fixed-charge Network Flow Problem

- To model the FCNFP, we associate two variables with each arc.
 - x_{ij} (fixed-charge variable) indicates whether arc (i,j) is open.
 - f_{ij} (flow variable) represents the flow on arc (i, j).
 - Note that we have to ensure that $f_{ij} > 0 \Rightarrow x_{ij} = 1$.

$$Min \sum_{(i,j)\in A} c_{ij}x_{ij} + d_{ij}f_{ij}$$

$$s.t. \sum_{j\in O(i)} f_{ij} - \sum_{j\in I(i)} f_{ji} = b_i \quad \forall i \in N$$

$$f_{ij} \leq Cx_{ij} \quad \forall (i,j) \in A$$

$$f_{ij} \geq 0 \quad \forall (i,j) \in A$$

$$x_{ij} \in \{0,1\} \ \forall (i,j) \in A$$

Example: Facility Location Problem

- We are given n potential facility locations and m customers that must be serviced from those locations.
- There is a fixed cost c_j of opening facility j.
- There is a cost d_{ij} associated with serving customer i from facility j.
- We have two sets of binary variables.
 - $-y_j$ is 1 if facility j is opened, 0 otherwise.
 - $-x_{ij}$ is 1 if customer i is served by facility j, 0 otherwise.

$$min \sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$

$$s.t. \sum_{j=1}^{n} x_{ij} = K \qquad \forall i$$

$$x_{ij} \leq y_j \qquad \forall i, j$$

$$x_{ij}, y_j \in \{0, 1\} \qquad \forall i, j$$

The Traveling Salesman Problem

- We are given a set of cities and a cost associated with traveling between each pair of cities.
- We want to find the least cost route traveling through every city and ending up back ate the starting city.
- Applications of the Traveling Salesman Problem
 - Drilling Circuit Boards
 - Gene Sequencing

Formulating The Traveling Salesman Problem

The TSP is a combinatorial problem (E, \mathcal{F}) whose ground set is the edge set of a graph G = (V, E).

- V is the set of customers.
- E is the set of travel links between the customers.

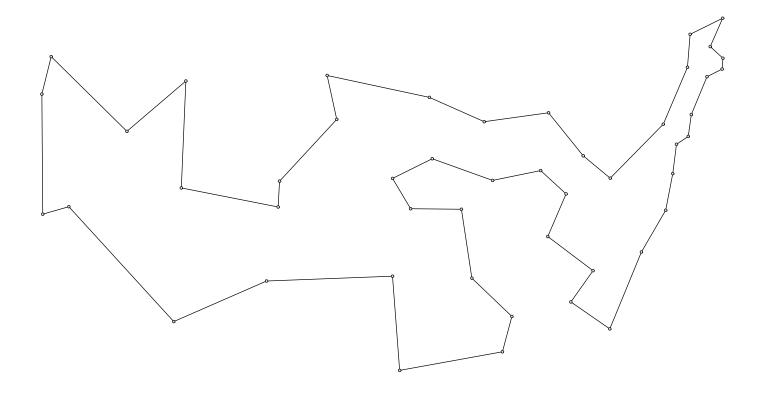
A feasible solution is a permutation σ of V specifying the order of the customers. IP Formulation:

$$\sum_{\substack{j=1\\j\notin S}}^{n} x_{ij} = 2 \quad \forall i \in N^{-}$$
$$\sum_{\substack{i\in S\\j\notin S}}^{n} x_{ij} \geq 2 \quad \forall S \subset V, |S| > 1.$$

where x_{ij} is a binary variable indicating $\sigma(i) = j$.

Example Instance of the TSP

Optimal Solutions to the 48 City Problem



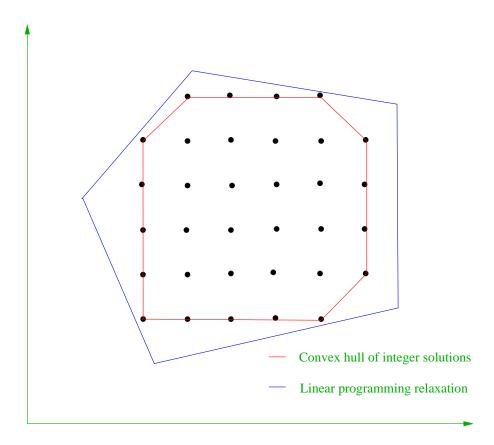
How hard are these problems?

- In practice, these can be extremely difficult.
- The number of possible solutions for the TSP is n! where n is the number of cities.
- We cannot afford to enumerate all these possibilities.
- But there is no direct, efficient way to solve these problems.

How do we solve these hard problems?

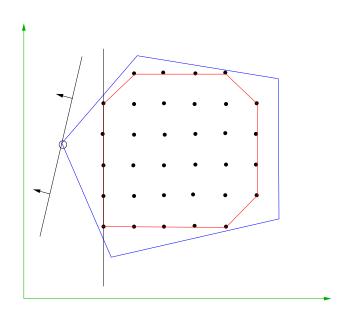
- Try to reduce them to something easier
 - Integer Program \Rightarrow Linear Program
 - Divide and conquer
- Use a bigger hammer
 - Faster processors
 - More memory
 - Parallelism

Integer Programming



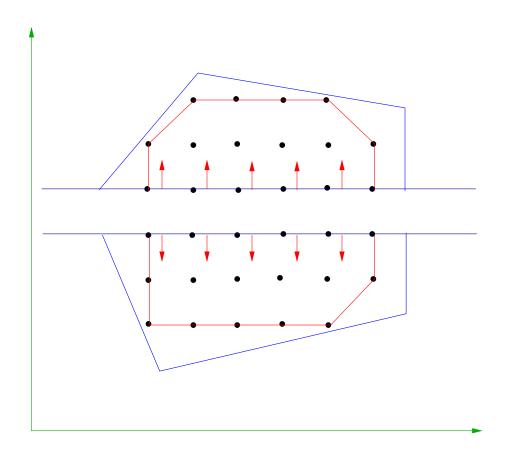
Cutting Plane Method

- Basic cutting plane algorithm
 - Relax the integrality constraints.
 - Solve the relaxation. Infeasible \Rightarrow STOP.
 - If \hat{x} integral \Rightarrow STOP.
 - Separate \hat{x} from \mathcal{P} .
 - No cutting planes \Rightarrow algorithm fails.
- The key is good separation algorithms.



Branch and Cut Methods

If the cutting plane approach fails, then we divide and conquer (branch).



Branch and Bound

- Suppose F is the feasible region for some MILP and we wish to solve $\min_{x \in F} c^T x$.
- Consider a partition of F into subsets $F_1, \ldots F_k$. Then

$$\min_{x \in F} c^T x = \min_{\{1 \le i \le k\}} \{ \min_{x \in F_i} c^T x \}$$

.

- In other words, we can optimize over each subset separately.
- <u>Idea</u>: If we can't solve the original problem directly, we might be able to solve the smaller *subproblems* recursively.
- Dividing the original problem into subproblems is called *branching*.
- Taken to the extreme, this scheme is equivalent to complete enumeration.

LP-based Branch and Bound

- In LP-based branch and bound, we first solve the LP relaxation of the original problem. The result is one of the following:
 - 1. The LP is infeasible \Rightarrow MILP is infeasible.
 - 2. We obtain a feasible solution for the MILP \Rightarrow optimal solution.
 - 3. We obtain an optimal solution to the LP that is not feasible for the MILP \Rightarrow upper bound.
- In the first two cases, we are finished.
- In the third case, we must branch and recursively solve the resulting subproblems.

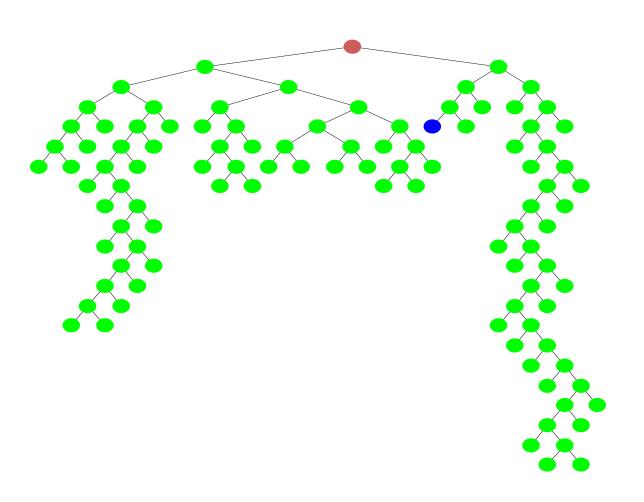
Continuing the Algorithm After Branching

- After branching, we solve each of the subproblems recursively.
- Now we have an additional factor to consider.
- If the optimal solution value to the LP relaxation is greater than the current upper bound, we need not consider the subproblem further.
- This is the key to the efficiency of the algorithm.

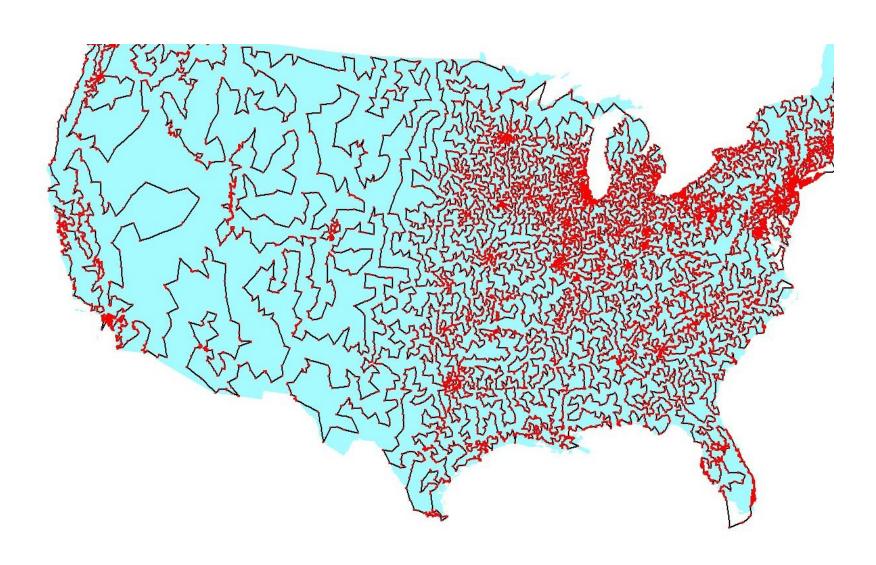
Terminology

- If we picture the subproblems graphically, they form a search tree.
- Each subproblem is linked to its parent and eventually to its children.
- Eliminating a problem from further consideration is called *pruning*.
- The act of bounding and then branching is called processing.
- A subproblem that has not yet been considered is called a candidate for processing.
- The set of candidates for processing is called the *candidate list*.

Branch and Bound Tree



Current State of the Art



Current Research

- The theory of integer programming is fairly well developed.
- Computationally, however, these methods are very difficult to implement effectively.
- Also, each problem requires different methods of separation.
- It is therefore extremely expensive to implement an efficient solver for a new application.
- Overcoming these challenges and developing generic solvers capable of automatically analyzing problem structure and performing separation is an active area of research.
- These methods also depend heavily on our ability to obtain good bounds.
- Finding new/better methods of bounding is another active research area.
- I am currently involved in research in both of these areas.