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Setting

Our goal is to analyze certain finite extensive-form games, which are sequential
games involving n players.

Loose Definition

The game is specified on a tree with each node corresponding to a move and
the outgoing arcs specifying possible choices.

The leaves of the tree have associated payoffs.

Each player’s goal is to maximize payoff.

There may be chance players who play randomly according to a probability
distribution and do not have payoffs (stochastic games).

All players are rational and have perfect information.
The problem faced by a player in determining the next move is a
multilevel/multistage optimization problem.
The move must be determined by taking into account the responses of the other
players.
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Example Game Tree

x1 = FALSE

x3 = FALSE

x2 = FALSE

x2 = FALSE

x1 = TRUE

x2 = TRUE

x2 = TRUE

x3 = TRUE

C1 = FALSE
C2 = FALSE

C1 = TRUE
C2 = x2 | x3

C1 = x1 | x2
C2 = x2 | x3

C1 = TRUE
C2 = TRUE

C1 = x2
C2 = x2 | x3

C1 = TRUE
C2 = TRUE

C1 = TRUE
C2 = x3

C1 = FALSE
C2 = x3

C1 = TRUE
C2 = TRUE
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Multilevel and Multistage Games

We use the term multilevel for competitive games in which there is no chance
player.
We use the term multistage for cooperative games in which all players receive
the same payoff, but there are chance players.
A subgame is the part of a game that remains after some moves have been made.

Stackelberg Game

A Stackelberg game is a game with two players who make one move each.
The goal is to find a subgame perfect Nash equilibrium, i.e., the move by
each player that ensures that player’s best outcome.

Recourse Game
A cooperative game in which play alternates between cooperating players
and chance players.
The goal is to find a subgame perfect Markov equilibrium, i.e., the move
that ensures the best outcome in a probabilistic sense.
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Multilevel and Multistage Optimization

A standard mathematical program models a (set of) decision(s) to be made
simultaneously by a single decision-maker (i.e., with a single objective).
Decision problems arising in sequential games and other real-world applications
involve

multiple, independent decision-makers (DMs),
sequential/multi-stage decision processes, and/or
multiple, possibly conflicting objectives.

Modeling frameworks
Multiobjective Programming⇐ multiple objectives, single DM
Mathematical Programming with Recourse⇐ multiple stages, single DM
Multilevel Programming⇐ multiple stages, multiple objectives, multiple DMs

Multilevel programming generalizes standard mathematical programming by
modeling hierarchical decision problems, such as finite extensive-form games.
Such models arises in a remarkably wide array of applications.
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A Canonical Example: Satisfiability Game

A canonical extensive-form game that illustrates many of the basic principles is
the k-player satisfiability game.

k players determine the value of a set of Boolean variables with each in control of a
specific subset.
In round i, player i determines the values of her variables.
Each player tries to choose values that force a certain end result, given that
subsequent players may be trying to achieve the opposite result.

Examples
k = 1: SAT
k = 2: The first player tries to choose values such that any choice by the second
player will result in satisfaction.
k = 3: The first player tries to choose values such that the second player cannot
choose values that will leave the third player without the ability to find satisfying
values.

Note that the odd players and the even players are essentially “working together”
and the same game can be described with only two players.
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A Simple Example

This diagram illustrates the search for solutions to the problem as a tree.
The nodes in green represent settings of the truth values that satisfy all the given
clauses; red represents non-satisfying truth values.

With one player, the solution is any path to one of the green nodes.
With two players, the solution is a subtree in which there are no red nodes.

The latter requires knowledge of all leaf nodes (important!).

x1 = FALSE

x3 = FALSE

x2 = FALSE

x2 = FALSE

x1 = TRUE

x2 = TRUE

x2 = TRUE

x3 = TRUE

C1 = FALSE
C2 = FALSE

C1 = TRUE
C2 = x2 | x3

C1 = x1 | x2
C2 = x2 | x3

C1 = TRUE
C2 = TRUE

C1 = x2
C2 = x2 | x3

C1 = TRUE
C2 = TRUE

C1 = TRUE
C2 = x3

C1 = FALSE
C2 = x3

C1 = TRUE
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More Formally

More formally, we are given a Boolean formula with variables partitioned into k
sets X1, . . . ,Xk.
For k odd, the SAT game can be formulated as

∃X1∀X2∃X3 . . .?Xk (1)

for even k, we have

∀X1∃X2∀X3 . . .?Xk (2)

A more general form of this problem, known as the quantified Boolean formula
problem (QBF) allows an arbitrary sequence of quantifiers.
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From SAT Game to Multilevel Optimization

For k = 1, SAT can be formulated as the (feasibility) integer program

∃x ∈ {0, 1}n :
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ 1 ∀j ∈ J. (SAT)

(SAT) can be formulated as the optimization problem

max
x∈{0,1}n

∑
i∈C0

0

xi +
∑
i∈C1

0

(1− xi)

s.t.
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ 1 ∀j ∈ J \ {0}

For k = 2, we then have

max
xI1∈{0,1}

I1
min

xI2∈{0,1}
I2

∑
i∈C0

0

xi +
∑
i∈C1

0

(1− xi)

s.t.
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ 1 ∀j ∈ J \ {0}
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Branch and Bound for Optimization Version of SAT

Consider the earlier example of the SAT game, now as an optimization problem.
In the one player version, the goal is simply to maximize payoff.
The two player game is zero-sum with the first player attempting to maximize
while the second player attempts to minimize.
The complexity of the two-player game comes from the requirement to account
for the payoff at all leaf nodes.

x1 = 0

x3 = 0
x2 = 0

x2 = 0

x1 = 1

x2 = 1

x2 = 1
x3 = 1

0

max 1 + x2
s.t. x2 + x3 ≥ 1

max x1 + x2 ≥ 1
s.t. x2 + x3 ≥ 1

2

max x2
s.t. x2 + x3 ≥ 1 1

max 1
s.t. x3 ≥ 1

0

1
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How Difficult is the SAT Game?

Fundamentally, we would like to know how difficult it is to solve player one’s
decision problem.
It is well-known that the (single player) satisfiability problem is is in the
complexity class NP-complete.
It is perhaps to be expected that the k-player satisfiability game is in a different
class.

The kth player to move is faced with a satisfiability problem.
The (k − 1)th player is faced with a 2-player subgame in which she must take into
account the move of the kth player.
And so on . . .

Each player’s decision problem appears to be exponentially more difficult than
the succeeding player’s problem.
This complexity is captured formally in the hierarchy of complexity classes
known as the polynomial time hierarchy.
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Turing Machines

The formal complexity framework traditionally employed in discrete
optimization applies to decision problems (Garey and Johnson, 1979).
The formal model of computation is a deterministic Turing machine (DTM).
The possible execution paths of a DTM can be thought of as forming a tree.
For problems that are efficiently solvable, we know how to construct an
execution path that is guaranteed to end in an accepting state.
For more difficult problems, some enumeration is needed.
A non-deterministic Turing machine (NDTM) can be thought of as a Turing
machine with an infinite number of parallel processors.
An NDTM follows all possible execution paths simultaneously.
It returns YES if an accepting state is reached on any path.
The running time of an NDTM is the minimum running time (length) of any
execution paths that end in an accepting state.
The “running time” is the minimum time required to verify that some path (given
as input) leads to an accepting state.
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Back to SAT

x1 = 0

x3 = 0
x2 = 0

x2 = 0

x1 = 1

x2 = 1

x2 = 1
x3 = 1

0

max 1 + x2
s.t. x2 + x3 ≥ 1

max x1 + x2 ≥ 1
s.t. x2 + x3 ≥ 1

2

max x2
s.t. x2 + x3 ≥ 1 1

max 1
s.t. x3 ≥ 1

0

1
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The Polynomial Hierarchy

The polynomial hierarchy is a scheme for classifying multi-level and multi-stage
decision problems. We have

∆p
0 := Σp

0 := Πp
0 := P, (3)

where P is the set of decision problems that can be solved in polynomial time. Higher
levels are defined recursively as:

∆p
k+1 := PΣp

k ,

Σp
k+1 := NPΣp

k , and

Πp
k+1 := coNPΣp

k .

PH is the union of all levels of the hierarchy.
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Complexity of Multilevel Games and Optimization

The satisfiability games with k players is complete for Σp
k .

For the corresponding k-level optimization problem, the optimal value is one if
and only if the first player has a winning strategy.
This means the satisfiability game can be reduced to the (decision) problem of
whether the optimal value ≥ 1?
Thus, the (the decision version of) k-level mixed integer programming is also
complete for Σp

k .
By swapping the “min” and the “max,” we can get a similar decision problem
that is complete for Πp

k .

min
xN1∈{0,1}

N1
max

xN2∈{0,1}
N2

∑
i∈C0

0

xi +
∑
i∈C1

0

(1− xi)

s.t.
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ 1 ∀j ∈ J \ {0}

The question remains whether the optimal value is ≥ 1, but now we are asking it
with respect to a minimization problem.
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Multilevel (Integer) Linear Programming

Formally, a bilevel linear program is described as follows.
x ∈ X ⊆ Rn1 are the upper-level variables

y ∈ Y ⊆ Rn2 are the lower-level variables

Bilevel (Integer) Linear Program

max
{

c1x + d1y | x ∈ PU ∩ X, y ∈ argmin{d2y | y ∈ PL(x) ∩ Y}
}

(MIBLP)

The upper- and lower-level feasible regions are:

PU =
{

x ∈ R+ | A1x ≤ b1} and

PL(x) =
{

y ∈ R+ | G2y ≥ b2 − A2x
}
.

We consider the general case in which X = Zp1 × Rn1−p1 and Y = Zp2 × Rn2−p2 . This
basic model can be extended to multiple levels.
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Multistage (iInteger) Linear Programming

If d1 = −d2, we can view this as a mathematical program with recourse.
We can reformulate the bilevel program as follows.

min{−c1x + Q(x) | x ∈ PU ∩ X}, (4)

where

Q(x) = min{d1y | y ∈ PL(x) ∩ Y}. (5)

The function Q is known as the value function of the recourse problem.
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Two-Stage Stochastic Programs with Recourse

For most of the remainder of the talk, we consider the two-stage stochastic
mixed integer program

min{c1x + EξQξ(x) | x ∈ PU ∩ X}, (6)

where

Qξ(x) = min{d2y | y ∈ Y,G2y ≥ ω(ξ)− A2x}, (7)

ξ is a random variable from a probability space (Ξ,F ,P), and for each ξ ∈ Ξ,
ω(ξ) ∈ Rm2 .
If the distribution of ξ is discrete and has finite support, then (6) is a bilevel
program.
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Benders’ Principle (Linear Programming)

zLP = min
(x,y)∈Rn

{
c′x + c′′y

∣∣ A′x + A′′y ≥ b
}

= min
x∈Rn′

{
c′x + φ(b− A′x)

}
,

where

φ(d) = min c′′y

s.t. A′′y ≥ d

y ∈ Rn′′

1 2 3 4 5 6 7 8

1

2

3

4

5

φ(x)

x

y

Basic Strategy:
The function φ is the value function of a linear program.
The value function is piecewise linear and convex.
We iteratively generate a lower approximation by sampling the domain.
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Benders’ Principle (Integer Programming)

zIP = min
(x,y)∈Zn

{
c′x + c′′y

∣∣ A′x + A′′y ≥ b
}

= min
x∈Rn′

{
c′x + φ(b− A′x)

}
,

where

φ(d) = min c′′y

s.t. A′′y ≥ d

y ∈ Zn′′

1 2 3 4 5 6 7 8

1

2

3

4

5
φ(x)

x

y

Basic Strategy:
Here, φ is the value function of an integer program.
In the general case, the function φ is piecewise linear but not convex.
Here, we also iteratively generate a lower approximation by evaluating φ.
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Example: MILP Value Function

The value function of a MILP is non-convex and discontinuous piecewise polyhedral.

Example

φ(d) = min 3x1 +
7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = d

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+
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Example: MILP Value Function

Example

φ(b) = min x1 −
3
4

x2 +
3
4

x3

s.t.
5
4

x1 − x2 +
1
2

x3 = b

x1, x2 ∈ Z+, x3 ∈ R+

(Ex2.MILP)
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Approximating the Value Function

In general, it is difficult to construct the value function explicitly.
We therefore propose to approximate the value function by either upper or lower
bounding functions

Lower bounds
Derived by considering the value function of relaxations of the original
problem or by constructing dual functions⇒ Relax constraints.

Upper bounds

Derived by considering the value function of restrictions of the original
problem⇒ Fix variables.
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Bounding the Value Function From Below

A dual function ϕ : Rm → R ∪ {±∞} is and function such that

ϕ(b) ≤ φ(b) ∀b ∈ Λ

For a particular value of b̂, the dual problem is

φD = max{ϕ(b̂) : ϕ(b) ≤ φ(b) ∀b ∈ Rm, ϕ : Rm → R ∪ {±∞}}
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Related Algorithms

The algorithmic framework we utilize builds on a number of previous works.
Modification to the L-shaped framework (Laporte and Louveaux, 1993; Carøe
and Tind, 1998; Sen and Higle, 2005)

Linear cuts in first stage for binary first stage
Optimality cuts from B&B and cutting plane, applied to pure integer second stage
Disjunctive programming approaches and cuts in the second stage

Value function approaches: Pure integer case (Ahmed et al., 2004; Kong et al.,
2006)
Scenario decomposition (Carøe and Schultz, 1998)
Enumeration/Gröbner basis reduction (Schultz et al., 1998)
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MILP Duals from Branch-and-Bound

Figure : Dual Functions from B&B for right hand sides 1, 2.125, 3.5
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MILP Duals from Branch-and-Bound
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Example
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Example
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Example
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Algorithms for General Bilevel Programs

The general case is much more difficult because we need the solution to the
lower-level problem, not just the value.
Algorithms must involve some kind of relaxation of the problem.
Relaxations are inherently weak.
Some progress has been made, but incorporating knowledge of the value
function into the relaxation has proven exceptionally challenging.
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Conclusions

This has been a high level overview of the complexity of this broad class of
problems.
The complexity of these problems is closely related to the complexity of more
traditional types of problems.
Understanding these issues can provide important insight and lead to practical
algorithms.
This a wide open area and there is much more to be done.
See talks by Anahita Hassanzadeh and Aykut for more details.
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