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A Bit of Game Theory

The optimization problems we address can be conceptualized as finite
extensive-form games, which are sequential games involving n players.

Loose Definition

The game is specified on a tree with each node corresponding to a move and
the outgoing arcs specifying possible choices.

The leaves of the tree have associated payoffs.

Each player’s goal is to maximize payoff.

There may be chance players who play randomly according to a probability
distribution and do not have payoffs (stochastic games).

All players are rational and have perfect information.
The problem faced by a player in determining the next move is a multistage
optimization problem.
The move must be determined by taking into account the uncertainty about
future stages.
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Multilevel and Multistage Games

In the literature, the term multilevel is used for competitive games in which there
is no chance player.
Multistage is used for cooperative games in which all players receive the same
payoff, but there are chance players.
A subgame is the part of a game that remains after some moves have been made.

Stackelberg Game

A Stackelberg game is a game with two players who make one move each.
The goal is to find a subgame perfect Nash equilibrium, i.e., the move by
each player that ensures that player’s best outcome.

Recourse Game
A cooperative game in which play alternates between cooperating players
and chance players.
The goal is to find a subgame perfect Markov equilibrium, i.e., the move
that ensures the best outcome in a probabilistic sense.
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Quick Examples
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Multistage Optimization

A standard mathematical program models a (set of) decision(s) to be made
simultaneously by a single decision-maker (i.e., with a single objective).
Decision problems arising in sequential games and other real-world applications
involve

multiple, independent decision-makers (DMs),
sequential/multi-stage decision processes, and/or
multiple, possibly conflicting objectives.

Modeling frameworks
Multiobjective Programming⇐ multiple objectives, single DM
Mathematical Programming with Recourse⇐ multiple stages, single DM
Multilevel Programming⇐ multiple stages, multiple objectives, multiple DMs

Multilevel programming generalizes standard mathematical programming by
modeling hierarchical decision problems, such as finite extensive-form games.
Such models arises in a remarkably wide array of applications.
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Brief Overview of Practical Applications

Hierarchical decision systems
Government agencies
Large corporations with multiple subsidiaries
Markets with a single “market-maker.”
Decision problems with recourse

Parties in direct conflict
Zero sum games
Interdiction problems

Modeling “robustness”: Chance player is external phenomena that cannot be
controlled.

Weather
External market conditions

Controlling optimized systems: One of the players is a system that is optimized
by its nature.

Electrical networks
Biological systems
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Two-Stage Mixed Integer Linear Optimization

With two stages, we hav the following general formulation:

z2SMILP = min
x∈P1

Ψ(x) = min
x∈P1

{
c>x + Ξ(x)

}
, (1)

where
P1 = {x ∈ X | Ax = b, x ≥ 0} (2)

is the first-stage feasible region with X = Zr1
+ × Rn1−r1

+ .
Ξ represents the leader’s expectation of the impact of future uncertainty.
The canonical form employed in stochastic programming with recourse is

Ξ(x) = Eω∈Ω [φ(hω − Tωx)] , (3)

φ is the second-stage value function to be defined shortly.
Tω ∈ Qm2×n1 and hω ∈ Qm2 represent the input to the second-stage problem for
scenario ω ∈ Ω.
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The Second-Stage Value Function

The structure of the objective function Psi depends primarily on the structure of
the value function

φ(β) = min
{

d>y | y ∈ argminy∈PL(β) q>y
}
. (4)

where
P2(β) = {y ∈ Y | Wy = β} (5)

is the second-stage feasible region with respect to a given right-hand side β and
Y = Zr2

+ × Rn2−r2
+ .

The second-stage problem is parameterized on the unknown value β of the
right-hand side.
This value is determined jointly by the realized value of ω and the values of the
first-stage decision variables.
The second-stage solution is evaluated with respect to two objective vectors, q
and d, that represent the (possibly) differing valuations of the two players.
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Two-Stage Stochastic Program with Recourse

For the remainder of the talk, we consider the simpler case of two-stage stochastic
programming:

min Ψ(x) = min
x∈P1

c>x +
∑
ω∈Ω

pωφ(hω − Tωx) (SP)

where
φ(β) = min

y∈P2(β)
q>y (RP)

In this talk, we assume

ω follows a discrete distribution with a finite support,
W and q are fixed,
P1 is compact, and
Ew∈Ω[φ(hω − Tωx)] is finite for all x ∈ X.

Unless otherwise indicated, all probability distributions will be uniform.
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Illustrating the Value Function

Example 1
φ(β) = min 6y1 + 4y2 + 3y3 + 4y4 + 5y5 + 7y6

s.t. 2y1 + 5y2 − 2y3 − 2y4 + 5y5 + 5y6 = β

y1, y2, y3 ∈ Z+, y4, y5, y6 ∈ R+.

(Ex.MILP)
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Illustrating the Objective Function

Example 2

Ψ(x) = −3x1 − 4x2 +
∑
ω∈Ω

φ(hω − 2x1 − 0.5x2) (Ex.SMP)

and Ω = {1, 2}, h1 = 6, h2 = 12.

Note the similarity in structure of the objective function to the value function.
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MILP Value Function (Pure Integer)

MILP value function is non-convex, discontinuous,and piecewise polyhedral in
general.

Example 3
φ(b) = min 3x1 +

7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = b

x1, x2, x3, x4, x5, x6 ∈ Z+
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MILP Value Function (Mixed)

Example 4
φ(b) = min 3x1 +

7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = b

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+
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Continuous and Integer Restriction of an MILP

Consider the general form of the second-stage value function

φ(β) = min q>I yI + q>C yC

s.t. WIyI + WCyC = b,

y ∈ Zr2
+ × Rn2−r2

+

(MILP)

The structure is inherited from that of the continuous restriction:

φC(β) = min q>C yC

s.t. WCyC = β,

yc ∈ Rn2−r2
+

(CR)

and the similarly defined integer restriction:

φI(β) = min q>I yI

s.t. WIyI = β

yI ∈ Zr2
+

(IR)
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Discrete Representation of the Value Function

For β ∈ Rm2 , we have that

φ(β) = min q>I yI + φC(β −WIyI)

s.t. yI ∈ Zr2
+

(6)

From this we see that the value function is comprised of the minimum of a set of
shifted copies of φC.

The set of shifts, along with φC describe the value function exactly.

For ŷI ∈ Zr2
+, let

φC(β, ŷI) = q>I ŷI + φC(β −WI ŷI) ∀β ∈ Rm2 . (7)

Then we have that φ(β) = minyI∈Z
r2
+
φC(β, ŷI).
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Illustrating the Continuous Restriction

Example 5
φC(β) = min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = β

y1, y2, y3 ∈ R+
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Value Function of the Continuous Restriction

Recall the previously defined continuous restriction.

φC(β) = min q>C yC

s.t. WCyC = β

yC ∈ Rn
+

(CR)

When the dual of (CR) is feasible, the epigraph of φC is the convex cone

L := cone{(W1, q1), (W2, q2), . . . , (Wn, qn), (0, 1)} (8)

Let u1, . . . , uk be extreme points of the feasible region of the dual of (CR) and
d1, . . . , dp be its extreme directions. Then

L := {(β, z) : z ≥ u>i β, i = 1, . . . , k, d>j β ≤ 0, j = 1, . . . , p}. (9)
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Properties of MILP Value Function

We can improve on the previous representation by deriving a minimal discrete
set that suffices to describe φ.

Theorem 1 [Hassanzadeh et al., 2014]
Under the assumption that {β ∈ Rm2 | φI(β) <∞} is finite, there exists a finite
set S ⊆ Y such that

φ(β) = min
yI∈S
{q>I yI + φC(β −WIyI)}. (10)

The points in S are the points of strict local convexity of the value function.
Associated with each of these points is a region (the local stability set) over
which the integer part of the optimal solution remains constant.
The value function of the MILP, when restricted to that region, is a translation of
the value function of the continuous restriction (and thus convex).
In [Hassanzadeh et al., 2014], we describe an algorithm for constructing a
superset of S that is easy to implement.

Ralphs, et al. (COR@L Lab) Multilevel Integer Programming 21 / 55



Points of Strict Local Conexity

Example 6

The figure above shows the points of strict local convexity and the associated local
stability sets for the previous example.
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Benders’ Principle (Linear Programming)

zLP = min
(x,y)∈Rn

{
c′x + c′′y

∣∣ A′x + A′′y ≥ b
}

= min
x∈Rn′

{
c′x + φ(b− A′x)

}
,

where

φ(d) = min c′′y

s.t. A′′y ≥ d

y ∈ Rn′′

1 2 3 4 5 6 7 8

1

2

3

4

5

φ(x)

x

y

Basic Strategy:
The function φ is the value function of a linear program.
The value function is piecewise linear and convex.
We iteratively generate a lower approximation by sampling the domain.
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Example

zLP = min x + y

s.t. 25x− 20y ≥ −30
−x− 2y ≥ −10
−2x + y ≥ −15
2x + 10y ≥ 15

x, y ∈ R

5

1 2 3 4 5 6 7 8

1

2

3

4

x

y
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Value Function Reformulation

zLP = minx∈R x + φ(x),

where

φ(x) = min y

s.t. −20y ≥ −30− 25x

−2y ≥ −10 + x

y ≥ −15 + 2x

10y ≥ 15− 2x

y ∈ R

1 2 3 4 5 6 7 8

1

2

3

4

5

φ(x)

x

y

Ralphs, et al. (COR@L Lab) Multilevel Integer Programming 26 / 55



Benders’ Principle (Integer Programming)

zIP = min
(x,y)∈Zn

{
c′x + c′′y

∣∣ A′x + A′′y ≥ b
}

= min
x∈Rn′

{
c′x + φ(b− A′x)

}
,

where

φ(d) = min c′′y

s.t. A′′y ≥ d

y ∈ Zn′′

1 2 3 4 5 6 7 8

1

2

3

4

5
φ(x)

x

y

Basic Strategy:
Here, φ is the value function of an integer program.
In the general case, the function φ is piecewise linear but not convex.
Here, we also iteratively generate a lower approximation by evaluating φ.
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Example

zIP = min x + y

s.t. 25x− 20y ≥ −30
−x− 2y ≥ −10
−2x + y ≥ −15
2x + 10y ≥ 15

x, y ∈ Z

5

1 2 3 4 5 6 7 8
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Value Function Reformulation

zIP = minx∈Z x + φ(x),

where

φ(x) = min y

s.t. −20y ≥ −30− 25x

−2y ≥ −10 + x

y ≥ −15 + 2x

10y ≥ 15− 2x

y ∈ Z

1 2 3 4 5 6 7 8

1

2

3

4

5
φ(x)

x

y
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Related Algorithms

The algorithmic framework we utilize builds on a number of previous works.
Modification to the L-shaped framework [Laporte and Louveaux, 1993, Carøe
and Tind, 1998, Sen and Higle, 2005]

Linear cuts in first stage for binary first stage
Optimality cuts from B&B and cutting plane, applied to pure integer second stage
Disjunctive programming approaches and cuts in the second stage

Value function approaches: Pure integer case [Ahmed et al., 2004, Kong et al.,
2006]
Scenario decomposition [Carøe and Schultz, 1998]
Enumeration/Gröbner basis reduction [Schultz et al., 1998]
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Summary of Related Work

First Stage Second Stage Stochasticity
R Z B R Z B W T h q

[Laporte and Louveaux, 1993] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Carøe and Tind, 1997] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Carøe and Tind, 1998] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Carøe and Schultz, 1998] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Schultz et al., 1998] ∗ ∗ ∗ ∗
[Sherali and Fraticelli, 2002] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Ahmed et al., 2004] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Sen and Higle, 2005] ∗ ∗ ∗ ∗ ∗
[Sen and Sherali, 2006] ∗ ∗ ∗ ∗ ∗ ∗
[Sherali and Zhu, 2006] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Kong et al., 2006] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Sherali and Smith, 2009] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Yuan and Sen, 2009] ∗ ∗ ∗ ∗ ∗ ∗
[Ntaimo, 2010] ∗ ∗ ∗ ∗ ∗
[Gade et al., 2012] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[Trapp et al., 2013] ∗ ∗ ∗ ∗ ∗
Current work ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Lower Bounds on the Value Function

We already observed that for an effective integer Benders’ method, we need effective
lower bounding functions to approximate the MILP value function.
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Dual Functions

A dual function ϕ : Rm2 → R ∪ {±∞} is

ϕ(β) ≤ φ(β) ∀b ∈ Rm2 (11)

For a particular instance β̂, the dual problem is

φD = max{ϕ(β̂) : ϕ(β) ≤ φ(β) ∀β ∈ Rm2 , ϕ : Rm2 → R ∪ {±∞}} (12)

Let F be a set of dual functions generated so far. Then Benders’ master problem is

min c>x + θ

θ ≥
∑
ω∈Ω

max
f∈F

f (hω − Tωx)]

x ∈ P1

(MP)
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MILP Duals from Branch-and-Bound

Let T be set of the terminating nodes of the tree. Then in a terminating node t ∈ T we
solve:

min c>x

s.t. Ax = b,

lt ≤ x ≤ ut, x ≥ 0

(13)

The dual at node t:

max {πtb + πtlt + π̄tut}
s.t. πtA + πt + π̄t ≤ c>

π ≥ 0, π̄ ≤ 0

(14)

We obtain the following strong dual function:

min
t∈T
{πtb + πtlt + π̄tut} (15)
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Warm Starting the Solution Process

Here, we illustrate the procedure.
We can improve on the basic scheme by warm starting the solution of each
subproblem from the tree generated during solution of the previous subproblem.
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Generating the Value Function in a Single Tree

Continuing the process, we eventually generate the entire value function.
Consider the strengthened dual

φ∗(β) = min
t∈T

q>It
yt

It
+ φN\It (β −WIt y

t
It
), (16)

It is the set of indices of fixed variables, yt
It

are the values of the corresponding
variables in node t.
φN\It is the value function of the linear program including only the unfixed
variables.

Theorem 2 Under the assumption that {β ∈ Rm2 | φI(β) <∞} is finite, there
exists a branch-and-bound tree with respect to which φ∗ = φ.
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Example of Value Function Tree

Node 0

Node 8

Node 10

Node 12

Node 14

Node 16

Node 18
β + 30

Node 17
max{β + 25,−2β − 5}

y3 = 5 y3 ≥ 6

Node 15
max{β + 20,−2β − 4}

y3 = 4 y3 ≥ 5

Node 13
max{β + 15,−2β − 3}

y3 = 3 y3 ≥ 4

Node 11
max{β + 10, g9 = −2β − 2}

y3 = 2 y3 ≥ 3

Node 9
max{β + 5, g7 = −2β − 1}

y3 = 1 y3 ≥ 2

Node 1

Node 3

Node 5

Node 7
−2β + 42

Node 6
max{2β + 28, β − 2}

y2 = 2 y2 ≥ 3

Node 4
max{−2β + 14, β − 1}

y2 = 1 y2 ≥ 2

Node 2
max{−2β, β}

y2 = 0 y2 ≥ 1

y3 = 0 y3 ≥ 1
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Example of Value Function Tree
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Master Problem Formulation

Notation:
s, r ∈ {1, . . . , S} where S is the number of scenarios
p ∈ {1, . . . , k} where k is the iteration number
n ∈ {1, . . . ,N(p, r)} where N(p, r) is the number of terminating nodes in the
B&B tree solved for scenario r at iteration p.
θs = F(h(s)− β)

tspr = Fp
r (h(s)− β) the approximation of scenario s’s recourse obtained from the

optimal dual function of iteration p and scenario r.
νprn, aprn respectively, the dual vector and intercept obtained from node n of the
B&B tree solved for scenario r in iteration p.
ps probability of scenario s

M > 0 an appropriate large number
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Master Problem Formulation

f k = min c>x +

S∑
s=1

psθs

s.t. θs ≥ tspr ∀s, p, r
tspr ≤ aprn + ν>prn(h(s)− T(s)x) ∀s, r, p, n
tspr ≥ aprn + ν>prn(h(s)− T(s)x)−Musprn ∀s, p, r, n

N∑
n=1

usprn = N(p, r)− 1 ∀s, p, r

x ∈ X, usprn ∈ B ∀s, p, r, n

(master)
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Example

Consider

min f (x) = min − 3x1 − 4x2 +

2∑
s=1

0.5Q(x, s)

s.t. x1 + x2 ≤ 5
x ∈ Z+

(17)

where

Q(x, s) = min 3y1 +
7
2

y2 + 3y3 + 6y4 + 7y5

s.t. 6y1 + 5y2 − 4y3 + 2y4 − 7y5 = h(s)− 2x1 −
1
2

x2

y1, y2, y3 ∈ Z+, y4, y5 ∈ R+

(18)

with h(s) ∈ {−4, 10}.
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Example
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Conclusions

Non-convex optimality cuts are ugly. But they may be worthwhile!

We have developed an algorithm for the two-stage problem with general mixed integer in
both stages.
The algorithm uses the Benders’ framework with B&B dual functions as the optimality
cuts.
Such cuts have computationally desirable properties such as warm-starting.
We need to keep the size of approximations small. This can be done through
warm-starting trees and scenario bunching.
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Future Work

We have implemented the algorithm using SYMPHONY as our mixed-integer
linear optimization solver.
Warm-starting a B&B tree is possible in the solver.
We so far have a fairly “naive” implementation and anticipate much improvment
is possible.
In particular, we shuld be able to exploit parallelism much more easily here than
in the traditional MILP case.
We also need to develop a scenario bunching scheme. Doing this, we decide on
the local area of the tree to examine.
Finally, we hope to move on soon to the more general case of multilevel
programming.
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