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Setting

First-level variables: x ∈ X where X = Zr1
+ × Rn1−r1

+

Second-level variables: y ∈ Y where Y = Zr2
+ × Rn2−r2

+

MIBLP

min
x,y

{
cx + d1y

∣∣ x ∈ X, y ∈ P1(x), y ∈ argmin{d2z
∣∣ z ∈ P2(x) ∩ Y

}
(MIBLP)

where

P1(x) =
{

y ∈ Rn2
+

∣∣ G1y ≥ b1 − A1x
}

P2(x) =
{

y ∈ Rn2
+

∣∣ G2y ≥ b2 − A2x
}

Later, we’ll need to refer to

P = {(x, y) ∈ Rn1 × Rn2 | y ∈ P1(x) ∩ P2(x)}
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The Second-level Value Function

The second-level value function is

MILP Value Function

ϕ(β) = min
{

d2y
∣∣ G2y ≥ β, y ∈ Y

}
(VF)

We let ϕ(β) = ∞ if {y ∈ Y | G2y ≥ β} = ∅.
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The Standard Running Example

Example 1 Moore and Bard [1990]

1 2 3 4 5 6 7 8

1

2

3

4

5

objective

F

x

y

FLP min
x∈Z+

−x − 10y

s.t. y ∈ argmin
{

y :

−25x + 20y ≤ 30

x + 2y ≤ 10

2x − y ≤ 15

2x + 10y ≥ 15

y ∈ Z+ }
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Value Function Reformulation

First-level variables: x ∈ X where X = Zr1
+ × Rn1−r1

+

Second-level variables: y ∈ Y where Y = Zr2
+ × Rn2−r2

+

MIBLP

min
x,y

{
cx + d1y

∣∣ x ∈ X, y ∈ P1(x) ∩ P2(x) ∩ Y, d2y ≤ ϕ(b2 − A2x)
}

(MIBLP-VF)

Bilevel Feasible Region

F =
{
(x, y) ∈ S

∣∣ d2y ≤ ϕ(b2 − A2x)
}
,

where
S = {(x, y) ∈ X × Y | y ∈ P1(x) ∩ P2(x)}

This reformulation seems to suggest a Benders-type algorithm in which we
approximate the second-level value function.
Convexification helps avoid approximating the entire function.
Ralphs, et al. (COR@L Lab) Recent Advances in MibS



Polyhedral Reformulation

Convexification considers the following conceptual reformulation.

1 2 3 4 5 6 7 8

1

2
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4

5

x

y

conv(F)

F

ϕ(b − A2x)

P

conv(S)
min cx + d1y

s.t. (x, y) ∈ conv(F)

This reformulation suggests a branch-and-cut algorithm similar to that used for
solving MILPs DeNegre and Ralphs [2009].
To get dual bounds, we optimize over a relaxed feasible region.
We iteratively approximate conv(F) with linear inequalities.
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Basic Principle: Disjunction

Definition 1 (Valid Disjunction). A collection of disjoint sets Xi ⊆ Rn1+n2 for
i = 1, ..., k represents a valid disjunction for F if

F ⊆
k⋃

i=1

Xi.

Two classes of disjunction
(x̄, ȳ) ∈ P \ S ⇐ must violate a variable disjunction.
(x̄, ȳ) ∈ S \ F ⇐ must violate this valid disjunction (points in P \ S may also).A1x ≥ b1 − G1y∗

A2x ≥ b2 − G2y∗

d2y ≤ d2y∗

 OR

A1x ̸≥ b1 − G1y∗

OR

A2x ̸≥ b2 − G2y∗,

 (OPT-DISJ)

where y∗ ∈ P2(x̄) ∩ Y and d2ȳ > d2y∗.
Note that such a y∗ ̸= ȳ must exist when ȳ ∈ S.
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Basic Principle: Identifying Infeasible Solutions

Just as in MILP, an important key to solving MIBLPs is identifying large
(convex) subsets of P that contain no member of F .

This should be done by carefully exploiting available information and keeping
computational overhead low.

Two methods for proving a solution infeasible underlie much of the methodology
for doing this.

Second-level Improving Solutions

Let (x, y) ∈ P and y∗ ∈ P2(x) ∩ Y . Then d2y > d2y∗ ⇒ (x, y) ̸∈ F .

Second-level Improving Directions

Let (x, y) ∈ P and ∆y ∈ Zn2 such that d2∆y < 0. Then
y +∆y ∈ P2(x) ⇒ (x, y) ̸∈ F .
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Basic Principle: Bilevel Free Sets [Fischetti et al., 2018]

Bilevel Free Set

A bilevel free set (BFS) is a set C ⊆ Rn1+n2 such that int(C) ∩ F = ∅.

General Recipe for Valid Inequalities

Identify a BFS C ⊆ Rn1+n2 .
Then inequalities valid for for conv(int(C) ∩ P) are also valid for F .
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Branch-and-Cut Algorithm

The basic framework is very similar to that used for solving MILPs, but with
many subtle differences.

Components

Bounding
Dual bound ⇒ A “tractable” relaxation strengthened with valid inequalities
Primal bound ⇒ Feasible solutions

Branching ⇒ Valid disjunctions

Cut generation ⇒ Inequalities valid for conv(F).

Search strategies

Preprocessing methods

Primal heuristics

Control mechanisms ⇒ Important but tricky!

This talk will focus on the highlighted areas.
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Challenges

On the surface, branch-and-cut for MIBLPs looks similar to that for MILPs.
Digging deeper, they are very different and there is a lot we still don’t know.
We have to tear down the solver and re-examine every aspect of its performance.
Some challenges that remain.

In contrast with MILP, it can be difficult to move the bound in the root node.

Thus, we don’t have a very good approximation of conv(F) in the early stages.

This (probably) makes it difficult to predict the impact of branching.

Because the disjunctions used for cutting are much stronger than those used for
branching, it seems more important to emphasize cuts.

On the other hand, cuts are expensive to generate.

We don’t really know how to integrate MILP cuts and MIBLP cuts.

In general, the interaction of cutting and branching is much more intricate, which
makes good control mechanisms vitally important.

Specific properties of instances (e.g., degree of alignment of objectives) can affect
performance dramatically and this needs to be understood better.
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Dual Bound

Possible relaxations
1 Remove the optimality constraint of the second-level problem (MIP relaxation)

S =
{
(x, y) ∈ Rn1×n2

+

∣∣ x ∈ X, y ∈ P1(x) ∩ P2(x) ∩ Y
}

2 Remove the optimality constraint of the second-level problem and the integrality
constraints (LP relaxation)

P =
{
(x, y) ∈ Rn1×n2

+

∣∣ y ∈ P1(x) ∩ P2(x)
}

3 Something in between? (Neighborhood relaxation)

RN (x) = {y ∈ Projy(S) | d2y ≤ d2ȳ ∀ ȳ ∈ N (y) ∩ Projy(S)}

where N (y) is a neighborhood of y Xueyu et al. [2022].
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Branching

In general, there has been very little study of how to branch in solving MIBLPs.

What we do today is use roughly the same rules for branching that are used in
solving MILPs.

Does this make sense? Not always...

We may need to branch on variables that
already have an integer value (more on this).

MILP strategies predict the impact of
branching using the dual bound as a proxy.

In MIBLP, this is probably not a very good
proxy.

1 2 3 4 5 6 7 8

1

2

3

4

5

x

y

FLP

F

One of the open challenges is to figure out a better prediction function.
Currently, MibS uses straightforward pseudo-cost branching.
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Cut Generation

Unlike in MILP, we have several
distinct classes of infeasible
solution.

Each requires different handling.

Which types arise is (somewhat)
dictated by the objective
alignment.

This region can only be

separated by MIBLP cuts

1 2 3 4 5 6 7 8

1

2

3

4

5

These regions can only be separated

These regions can only be separated

by either MIBLP or MILP cuts

by MILP cuts

x

y

conv(F)

F

ϕ(b − A2x)

P

conv(S)

1 (x̄, ȳ) ∈ Rn1+n2 for which d2ȳ ≤ ϕ(b2 − A2x̄) ⇐ (x̄, ȳ) ̸∈ S
Need MILP cuts, but it’s not easy to recognize this case!

2 (x̄, ȳ) ∈ Rn1+n2 for which d2ȳ > ϕ(b2 − A2x̄) ⇐ (x̄, ȳ) may or may not be in S .
x̄ ∈ X ⇐ Can evaluate ϕ(b2 − A2x̄) or Ξ(x̄) to separate.
ȳ ∈ Y ⇐ Relatively easier to separate with MIBLP cuts
x̄ ̸∈ X, ȳ ̸∈ Y ⇐ Important, but tricky case!
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Classes of Inequalities Valid for MIBLPs

Generalized Chvátal Cuts

Let C = {(x, y) ∈ P | πxx + πyy ≤ β} be a BFS, where (πx, πy) ∈ X × Y ,
β ∈ Z.
Then (πx, πy, β + 1) is valid for F .

Intersection Cuts

Let C be a convex set containing no improving solutions and let (x, y) be
an extreme point of P in the interior of C.
Then the intersection cut with respect to C and (x, y) is valid for F .

Benders Cuts

Let ψ̄ : Rn1 → R be such that ψ̄(x) ≥ ϕ(b2 − A2x) (a primal function).
Then C = {(x, y) ∈ P | d2y ≥ ψ̄(x) is a BFS and d2y ≤ ψ̄(x) for all
(x, y) ∈ F .
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Classes Implemented in MibS

MILP cuts.

Generalized Chvátal (Integer no-good cut) [DeNegre and Ralphs, 2009]
Benders Cuts

Benders Binary Cut [DeNegre, 2011]

Benders Interdiction Cut [Ralphs et al., 2015, Caprara et al., 2014]

Benders Bound Cut [Tahernejad, 2019]

Intersection cuts [Fischetti et al., 2017, 2018]
Improving Solution (Types I and II)

Improving Direction

Hypercube

Generalized no-good cut [DeNegre, 2011]
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Improving Solution Intersection Cut (ISIC)

For simplicity, assume all problem data are integral.
Let (x̂, ŷ) be an extreme point of P such that d2ŷ > d2y∗ for some
y∗ ∈ P2(x̂) ∩ Y (⇐ the improving solution).

Bilevel Free Set

C =
{
(x, y) ∈ Rn1×n2

∣∣ d2y ≥ d2y∗,A2x ≥ b2 − G2y∗ − 1
}
.

The basic logic is very similar to the Benders cut.
Crucially, note that we don’t need x̂ ∈ X or ŷ ∈ Y .
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Improving Direction Intersection Cut (IDIC)

Once again, assume all problem data are integral.
Let (x̂, ŷ) be an extreme point of P and let ∆y ∈ Zn2 (⇐ the improving
direction) such that ŷ +∆y ∈ P2(x̂) and d2∆y < 0

Bilevel Free Set

C =
{
(x, y) ∈ Rn1×n2

∣∣ A2x + G2y ≥ b2 − G2∆y − 1, y +∆y ≥ −1
}
.

Once again, note that we don’t need x̂ ∈ X or ŷ ∈ Y .
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Comparing the Classes Analytically : Size of int(C)

Generalized Chvátal cuts

Only a single point (x, y) ∈ S \ F

HICs and Generalized no-good cuts

All (x̂, y) ∈ S (feasible or not) for some x̂ ∈ X such that Ξ(x̂) is known
⇒ All combinations of a fixed x̂ with any y.

Benders cuts and ISICs

All (x, y) ∈ P such that y∗ ∈ P2(x) and d2y > d2y∗

⇒ All (x, y∗) for which a fixed y∗ proves infeasibility.

IDICs

(x, y) ∈ P such that ∆y is an improving feasible direction for y, given x
⇒ All (x, y) for which a fixed ∆y proves infeasibility.
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ISICs versus IDICs

For general IBLPs, it seems apparent that ISICs and IDICs provide the most
“bang for the buck,” but how do they compare to each other?

Both classes of inequalities can be used to separate arbitrary fractional solutions,
which sets them apart.

Both also require solving an MILP subproblem.

The feasible regions of these subproblems are even (in a certain sense) equivalent.

Let
W(x̂, ŷ) =

{
w ∈ Zr2 × Rn2−r2 | d2w < 0, ŷ + w ∈ P2(x̂)

}
.

be the set of improving feasible directions with respect to (x̂, ŷ) ∈ P .
Then for any (x, y) ∈ S,

(x, y) ∈ F ⇔ W(x̂, ŷ) = ∅ ⇔ ∃y∗ ∈ P2(x) ∩ Y with d2y∗ < d2y

The crucial difference is that the construction of large bilevel free sets using the
two different recipes requires much different solutions/directions.

To construct large bilevel free sets with IDICs, directions should be short

To construct large bilevel free sets with ISICs, solutions should be high quality.

These two objectives seem to be directly at odds with each other!Ralphs, et al. (COR@L Lab) Recent Advances in MibS
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Software Framework

MibS is an open-source solver for MIBLPs.
Implements the branch-and-cut algorithm for MIBLPs described here.
Implemented in C++.
Built on top of the BLIS MILP solver [Xu et al., 2009].
Employs software available from the Computational Infrastructure for
Operations Research (COIN-OR) repository

COIN High Performance Parallel Search (CHiPPS): To manage the global
branch-and-bound

SYMPHONY: To solve the required MIPs (can also use Cbc or CPLEX)

COIN LP Solver (CLP): To solve the LPs arising in the branch and cut.

Cut Generation Library (CGL): To generate cutting planes within both
SYMPHONY and MibS

Open Solver Interface (OSI): To interface with other solvers
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Data Sets

Table: The summary of data sets

Data Set # VT V# C# Align Notes

INT-DEN 300
B
B

10-40
10-40

1
11-41 -1

Interdiction
DeNegre [2011]

DEN 50
I
I

5-15
5-15

0
20 Varies DeNegre [2011]

DEN2 110
I
I

5-10
5-20

0
5-15 Varies DeNegre [2011]

ZHANG 30
B
I

50-80
70-110

0
6-7 0.6-0.8 Zhang and Ozaltın [2017]

ZHANG2 30
I
I

50-80
70-110

0
6-7 0.6-0.8 Zhang and Ozaltın [2017]

FIS 57
B
B Varies Varies -1

MIPLIB
Fischetti et al. [2018]

XU 100
I

IC
10-460
4-184

10-460
4-184 ≈ 0

Mixed
Xu and Wang [2014]
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Computational Experiments

Nearly 20K CPU hours with four different versions of MibS with both
SYMPHONY and CPLEX as subsolvers (and filmosi for comparison).
Run on the COR@L cluster: 14 nodes, dual 8-core .8 GHz CPUs, 32 Gb memory
Instances that took less than 5 seconds to solve for all versions were filtered.
Which data sets are included are indicated in the title (X = XU, F=FIS, etc.)
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Comparing Branching Schemes
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Comparing Cuts Empirically

In the MILP context, it is typical to compare cuts using a closure bound or root
gap to isolate the separate effects of branching and cutting.
Results are displayed using a combination of

Performance profiles (CDF of the ratio
Cumulative profiles
Baseline profiles

Performance measure
CPU time
Nodes evaluated
Root bound
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Summary Results (IDICs versus ISICs)
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Summary Results (IDICs versus ISICs)
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Summary Results (IDICs versus ISICs)
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Do MILP Cuts Help?
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Overall Results: Different Versions of MibS
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Overall Results: Different Versions of MibS
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Overall Results: Comparing MibS with filmosi
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Overall Results: Different Versions of MibS
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Future Directions

There are still many avenues for improving performance and
much low-hanging fruit.

Improved branching

Better dynamic control mechanisms for cut generation (better integration of MIBLP
and MILP cuts)

Warm-starting of subproblem solvers (SYMPHONY)

Pools of solutions/directions/cuts

...

Existing capabilities that need further development.
Stochastic bilevel solver

Pessimistic solver

Bounded rationality
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The Dream

How would we design a solver if we could do it from the ground up?

No explicit subsolvers, just one tightly integrated solver.
Flexible reaction sets (bounded rationality).
Flexible base relaxations.
Solver based completely on improving directions?
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Conclusions

Solutions of MIBLPs is where solution of MILPs was 15 years ago.
The basic theory is well-developed, but in practice, solvers are
well-tuned bags of tricks.
MILP solvers are still improving, thanks largely to commercial
viability and fierce competition.
It remains to be seen if MIBLP solvers will follow a similar
trajectory.
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M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. A new general-purpose algorithm
for mixed-integer bilevel linear programs. Operations Research, 65(6):1615–1637,
2017.
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