Latest Developments in the MibS solver for Mixed Integer Bilevel Optimization

Ted Ralphs¹ Primary Collaborators: Sahar Tahernejad¹, Scott DeNegre¹

 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

EURO, Copenhagen, June, 2024

Attributions

Many Ph.D students and postdocs contributed to development of this work over time.

Current/Former Students/Postdocs

- **Federico Battista**
- Suresh Bolusani
- Scott DeNegre
- Samira Fallah
- Menal Gúzelsoy
- Anahita Hassanzadeh
- Ashutosh Mahajan
- Sahar Tahernajad
- Yu Xie

Thanks!

1 [Basic Concepts](#page-3-0)

² [Branch-and-Cut](#page-11-0)

- [Theory](#page-11-0)
- **•** [Computation](#page-23-0)

Setting

- *First-level variables:* $x \in X$ where $X = \mathbb{Z}_+^{r_1} \times \mathbb{R}_+^{n_1-r_1}$
- *Second-level variables:* $y \in Y$ where $Y = \mathbb{Z}_+^{r_2} \times \mathbb{R}_+^{n_2 r_2}$

MIBLP

$$
\min_{x,y} \left\{ cx + d^1 y \mid x \in X, y \in \mathcal{P}_1(x), y \in \operatorname{argmin} \{ d^2 z \mid z \in \mathcal{P}_2(x) \cap Y \} \right\}
$$
\n(MIBLP)

where

$$
\mathcal{P}_1(x) = \{ y \in \mathbb{R}^{n_2}_+ \mid G^1 y \ge b^1 - A^1 x \}
$$

$$
\mathcal{P}_2(x) = \{ y \in \mathbb{R}^{n_2}_+ \mid G^2 y \ge b^2 - A^2 x \}
$$

Later, we'll need to refer to

$$
\mathcal{P} = \{(x, y) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \mid y \in \mathcal{P}_1(x) \cap \mathcal{P}_2(x)\}\
$$

Ralphs, et al. (COR@L Lab) [Recent Advances in MibS](#page-0-0)

The Second-level Value Function

The second-level *value function* is

MILP Value Function

$$
\phi(\beta) = \min \left\{ d^2 y \mid G^2 y \ge \beta, y \in Y \right\}
$$

(VF)

We let $\phi(\beta) = \infty$ if $\{y \in Y \mid G^2y \ge \beta\} = \emptyset$.

The Standard Running Example

Example 1 [Moore and Bard \[1990\]](#page-42-0)

Value Function Reformulation

- *First-level variables:* $x \in X$ where $X = \mathbb{Z}_+^{r_1} \times \mathbb{R}_+^{n_1-r_1}$
- *Second-level variables:* $y \in Y$ where $Y = \mathbb{Z}_+^{r_2} \times \mathbb{R}_+^{n_2 r_2}$

MIBLP
\n
$$
\min_{x,y} \left\{ cx + d^1y \mid x \in X, y \in \mathcal{P}_1(x) \cap \mathcal{P}_2(x) \cap Y, d^2y \le \phi(b^2 - A^2x) \right\}
$$
\n(MIBLP-VF)

Bilevel Feasible Region

$$
\mathcal{F} = \left\{ (x, y) \in \mathcal{S} \mid d^2y \le \phi(b^2 - A^2x) \right\},\
$$

where

$$
\mathcal{S} = \{(x, y) \in X \times Y \mid y \in \mathcal{P}_1(x) \cap \mathcal{P}_2(x)\}\
$$

- This reformulation seems to suggest a Benders-type algorithm in which we approximate the second-level value function.
- Convexification helps avoid approximating the entire function.

Ralphs, et al. (COR@L Lab) [Recent Advances in MibS](#page-0-0)

Polyhedral Reformulation

Convexification considers the following conceptual reformulation.

- This reformulation suggests a branch-and-cut algorithm similar to that used for solving MILPs [DeNegre and Ralphs \[2009\]](#page-41-1).
- To get dual bounds, we optimize over a relaxed feasible region.
- We iteratively approximate $conv(\mathcal{F})$ with linear inequalities.

Basic Principle: Disjunction

Definition 1 (Valid Disjunction). A collection of disjoint sets $X_i \subseteq \mathbb{R}^{n_1+n_2}$ for $i = 1, \ldots, k$ represents a *valid disjunction* for $\mathcal F$ if

$$
\mathcal{F} \subseteq \bigcup_{i=1}^k X_i.
$$

Two classes of disjunction

- $(\bar{x}, \bar{y}) \in \mathcal{P} \setminus \mathcal{S} \Leftarrow$ must violate a variable disjunction.
- \bullet $(\bar{x}, \bar{y}) \in S \setminus \mathcal{F} \Leftarrow$ must violate this valid disjunction (points in $\mathcal{P} \setminus \mathcal{S}$ may also).

$$
\begin{pmatrix} A^1x \ge b^1 - G^1y^* \\ A^2x \ge b^2 - G^2y^* \\ d^2y \le d^2y^* \end{pmatrix} \qquad \text{OR} \qquad \begin{pmatrix} A^1x \not\ge b^1 - G^1y^* \\ \text{OR} \\ A^2x \not\ge b^2 - G^2y^* \end{pmatrix} \qquad \text{(OPT-DISJ)}
$$

where $y^* \in \mathcal{P}_2(\bar{x}) \cap Y$ and $d^2\bar{y} > d^2y^*$.

Note that such a $y^* \neq \overline{y}$ must exist when $\overline{y} \in S$.

Ralphs, et al. (COR@L Lab) [Recent Advances in MibS](#page-0-0)

Basic Principle: Identifying Infeasible Solutions

- Just as in MILP, an important key to solving MIBLPs is identifying large (convex) subsets of $\mathcal P$ that contain no member of $\mathcal F$.
- This should be done by carefully exploiting available information and keeping computational overhead low.
- Two methods for proving a solution infeasible underlie much of the methodology for doing this.

Second-level Improving Solutions

Let $(x, y) \in \mathcal{P}$ and $y^* \in \mathcal{P}_2(x) \cap Y$. Then $d^2y > d^2y^* \Rightarrow (x, y) \notin \mathcal{F}$.

Second-level Improving Directions

Let $(x, y) \in \mathcal{P}$ and $\Delta y \in \mathbb{Z}^{n_2}$ such that $d^2 \Delta y < 0$. Then $y + \Delta y \in \mathcal{P}_2(x) \Rightarrow (x, y) \notin \mathcal{F}.$

Basic Principle: Bilevel Free Sets [\[Fischetti et al., 2018\]](#page-41-2)

Bilevel Free Set

A *bilevel free set* (BFS) is a set $C \subseteq \mathbb{R}^{n_1+n_2}$ such that $\text{int}(C) \cap \mathcal{F} = \emptyset$.

General Recipe for Valid Inequalities

- Identify a BFS $C \subseteq \mathbb{R}^{n_1+n_2}$.
- Then inequalities valid for for conv $(int(C) \cap P)$ are also valid for F.

1 [Basic Concepts](#page-3-0)

- [Theory](#page-11-0)
- [Computation](#page-23-0)

• The basic framework is very similar to that used for solving MILPs, but with many subtle differences.

Components

- Bounding
	- Dual bound \Rightarrow A "tractable" relaxation strengthened with valid inequalities
	- **•** Primal bound \Rightarrow Feasible solutions
- Branching \Rightarrow Valid disjunctions
- Cut generation \Rightarrow Inequalities valid for $conv(\mathcal{F})$.
- Search strategies
- Preprocessing methods
- **•** Primal heuristics
- Control mechanisms \Rightarrow Important but tricky!
- This talk will focus on the highlighted areas.

Challenges

- On the surface, branch-and-cut for MIBLPs looks similar to that for MILPs.
- Digging deeper, they are *very* different and there is a lot we still don't know.
- We have to tear down the solver and re-examine every aspect of its performance. Some challenges that remain.
	- In contrast with MILP, it can be difficult to move the bound in the root node.
	- Thus, we don't have a very good approximation of $conv(\mathcal{F})$ in the early stages.
	- This (probably) makes it difficult to predict the impact of branching.
	- Because the disjunctions used for cutting are much stronger than those used for branching, it seems more important to emphasize cuts.
	- On the other hand, cuts are expensive to generate.
	- We don't really know how to integrate MILP cuts and MIBLP cuts.
	- In general, the interaction of cutting and branching is much more intricate, which makes good control mechanisms vitally important.
	- \bullet Specific properties of instances (e.g., degree of alignment of objectives) can affect performance dramatically and this needs to be understood better.

Dual Bound

Possible relaxations

¹ Remove the *optimality constraint of the second-level problem* (MIP relaxation)

 $S = \{(x, y) \in \mathbb{R}_+^{n_1 \times n_2} \mid x \in X, y \in \mathcal{P}_1(x) \cap \mathcal{P}_2(x) \cap Y\}$

² Remove the *optimality constraint of the second-level problem* and the *integrality constraints* (LP relaxation)

$$
\mathcal{P} = \left\{ (x, y) \in \mathbb{R}_+^{n_1 \times n_2} \mid y \in \mathcal{P}_1(x) \cap \mathcal{P}_2(x) \right\}
$$

³ Something in between? (Neighborhood relaxation)

 $\mathcal{R}_{\mathcal{N}}(x) = \{y \in \text{Proj}_y(\mathcal{S}) \mid d^2y \leq d^2\bar{y} \quad \forall \ \bar{y} \in \mathcal{N}(y) \cap \text{Proj}_y(\mathcal{S})\}\$

where $\mathcal{N}(v)$ is a neighborhood of v [Xueyu et al. \[2022\]](#page-43-0).

Branching

- In general, there has been very little study of how to branch in solving MIBLPs.
- What we do today is use roughly the same rules for branching that are used in solving MILPs.
- Does this make sense? Not always...
- We may need to branch on variables that already have an integer value (more on this).
- MILP strategies predict the impact of branching using the dual bound as a proxy.
- In MIBLP, this is probably not a very good proxy.

- One of the open challenges is to figure out a better prediction function. \bullet
- Currently, MibS uses straightforward pseudo-cost branching.

Cut Generation

- Unlike in MILP, we have several distinct classes of infeasible solution.
- Each requires different handling.
- Which types arise is (somewhat) dictated by the objective

- **1** $(\bar{x}, \bar{y}) \in \mathbb{R}^{n_1 + n_2}$ for which $d^2\bar{y} \leq \phi(b^2 A^2\bar{x}) \Leftarrow (\bar{x}, \bar{y}) \notin S$
	- Need MILP cuts, but it's not easy to recognize this case!
- **2** $(\bar{x}, \bar{y}) \in \mathbb{R}^{n_1 + n_2}$ for which $d^2\bar{y} > \phi(b^2 A^2\bar{x}) \Leftarrow (\bar{x}, \bar{y})$ may or may not be in S.

y

- $\bar{x} \in X \Leftarrow$ Can evaluate $\phi(b^2 A^2 \bar{x})$ or $\Xi(\bar{x})$ to separate.
- $\overline{y} \in Y \Leftarrow$ Relatively easier to separate with MIBLP cuts
- $\bullet \ \bar{x} \notin X, \bar{y} \notin Y \Leftarrow$ Important, but tricky case!

Ralphs, et al. (COR@L Lab) [Recent Advances in MibS](#page-0-0)

Classes of Inequalities Valid for MIBLPs

Generalized Chvátal Cuts

- Let $C = \{(x, y) \in \mathcal{P} \mid \pi^x x + \pi^y y \le \beta\}$ be a BFS, where $(\pi^x, \pi^y) \in X \times Y$, $\beta \in \mathbb{Z}$.
- Then $(\pi^x, \pi^y, \beta + 1)$ is valid for F.

Intersection Cuts

- \bullet Let *C* be a convex set containing no improving solutions and let (x, y) be an extreme point of $\mathcal P$ in the interior of $\mathcal C$.
- Then the intersection cut with respect to *C* and (x, y) is valid for *F*.

Benders Cuts

- Let $\bar{\psi}: \mathbb{R}^{n_1} \to \mathbb{R}$ be such that $\bar{\psi}(x) \ge \phi(b^2 A^2x)$ (a *primal function*).
- Then $C = \{(x, y) \in \mathcal{P} \mid d^2y \ge \bar{\psi}(x) \text{ is a BFS and } d^2y \le \bar{\psi}(x) \text{ for all }$ $(x, y) \in \mathcal{F}$.

Classes Implemented in MibS

- MILP cuts.
- Generalized Chvátal (Integer no-good cut) [\[DeNegre and Ralphs, 2009\]](#page-41-1)
- **Benders Cuts**
	- Benders Binary Cut [\[DeNegre, 2011\]](#page-41-3)
	- Benders Interdiction Cut [\[Ralphs et al., 2015,](#page-42-1) [Caprara et al., 2014\]](#page-41-4)
	- Benders Bound Cut [\[Tahernejad, 2019\]](#page-42-2)
- Intersection cuts [\[Fischetti et al., 2017,](#page-41-5) [2018\]](#page-41-2)
	- Improving Solution (Types I and II)
	- Improving Direction
	- Hypercube
- Generalized no-good cut [\[DeNegre, 2011\]](#page-41-3)

Improving Solution Intersection Cut (ISIC)

- For simplicity, assume all problem data are integral.
- Let (\hat{x}, \hat{y}) be an extreme point of \mathcal{P} such that $d^2\hat{y} > d^2y^*$ for some $y^* \in \mathcal{P}_2(\hat{x}) \cap Y$ (\Leftarrow the improving solution).

- ò. The basic logic is very similar to the Benders cut.
- Crucially, note that we don't need $\hat{x} \in X$ or $\hat{y} \in Y$.

Improving Direction Intersection Cut (IDIC)

- Once again, assume all problem data are integral.
- Let (\hat{x}, \hat{y}) be an extreme point of \mathcal{P} and let $\Delta y \in \mathbb{Z}^{n_2}$ (\Leftarrow the improving direction) such that $\hat{y} + \Delta y \in \mathcal{P}_2(\hat{x})$ and $d^2\Delta y < 0$

Bilevel Free Set

$$
C = \{(x, y) \in \mathbb{R}^{n_1 \times n_2} \mid A^2x + G^2y \ge b^2 - G^2\Delta y - 1, y + \Delta y \ge -1\}.
$$

Once again, note that we don't need $\hat{x} \in X$ or $\hat{y} \in Y$.

Comparing the Classes Analytically : Size of int(*C*)

Generalized Chvátal cuts

Only a single point $(x, y) \in S \setminus F$

HICs and Generalized no-good cuts

All $(\hat{x}, y) \in S$ (feasible or not) for some $\hat{x} \in X$ such that $\Xi(\hat{x})$ is known \Rightarrow All combinations of a fixed \hat{x} with any *y*.

Benders cuts and ISICs

All $(x, y) \in \mathcal{P}$ such that $y^* \in \mathcal{P}_2(x)$ and $d^2y > d^2y^*$ \Rightarrow All (x, y^*) for which a fixed y^* proves infeasibility.

IDICs

 (x, y) ∈ P such that Δy is an improving feasible direction for *y*, given *x* \Rightarrow All (x, y) for which a fixed Δy proves infeasibility.

ISICs versus IDICs

- For general IBLPs, it seems apparent that ISICs and IDICs provide the most "bang for the buck," but how do they compare to each other?
	- Both classes of inequalities can be used to separate arbitrary fractional solutions, which sets them apart.
	- Both also require solving an MILP subproblem.
	- The feasible regions of these subproblems are even (in a certain sense) equivalent.
	- Let $\mathcal{W}(\hat{x}, \hat{y}) = \left\{ w \in \mathbb{Z}^{r_2} \times \mathbb{R}^{n_2 - r_2} \mid d^2w < 0, \ \hat{y} + w \in \mathcal{P}_2(\hat{x}) \right\}.$

be the set of improving feasible directions with respect to $(\hat{x}, \hat{y}) \in \mathcal{P}$.

• Then for any $(x, y) \in S$,

 $(x, y) \in \mathcal{F} \Leftrightarrow \mathcal{W}(\hat{x}, \hat{y}) = \emptyset \Leftrightarrow \exists y^* \in \mathcal{P}_2(x) \cap Y \text{ with } d^2y^* < d^2y$

- The crucial difference is that the construction of large bilevel free sets using the two different recipes requires much different solutions/directions.
	- To construct large bilevel free sets with IDICs, directions should be *short*
	- To construct large bilevel free sets with ISICs, solutions should be *high quality*.

1 [Basic Concepts](#page-3-0)

- [Theory](#page-11-0)
- **•** [Computation](#page-23-0)

Software Framework

MibS is an open-source solver for MIBLPs.

- Implements the branch-and-cut algorithm for MIBLPs described here.
- Implemented in C++.
- Built on top of the BLIS MILP solver [\[Xu et al., 2009\]](#page-42-3). \bullet
- Employs software available from the *Computational Infrastructure for Operations Research (COIN-OR)* repository
	- *COIN High Performance Parallel Search (CHiPPS)*: To manage the global branch-and-bound
	- *SYMPHONY*: To solve the required MIPs (can also use Cbc or CPLEX)
	- *COIN LP Solver (CLP)*: To solve the LPs arising in the branch and cut.
	- *Cut Generation Library (CGL)*: To generate cutting planes within both SYMPHONY and MibS
	- *Open Solver Interface (OSI)*: To interface with other solvers

Table: The summary of data sets

Computational Experiments

- Nearly 20K CPU hours with four different versions of MibS with both SYMPHONY and CPLEX as subsolvers (and filmosi for comparison).
- Run on the COR@L cluster: 14 nodes, dual 8-core .8 GHz CPUs, 32 Gb memory
- Instances that took less than 5 seconds to solve for all versions were filtered. \bullet
- Which data sets are included are indicated in the title $(X = XU, F = FIS, etc.)$

Comparing Branching Schemes

Comparing Cuts Empirically

- In the MILP context, it is typical to compare cuts using a closure bound or root gap to isolate the separate effects of branching and cutting.
- Results are displayed using a combination of
	- Performance profiles (CDF of the ratio
	- Cumulative profiles
	- Baseline profiles
- **•** Performance measure
	- \bullet CPU time
	- Nodes evaluated
	- Root bound

Summary Results (IDICs versus ISICs)

Summary Results (IDICs versus ISICs)

Summary Results (IDICs versus ISICs)

Do MILP Cuts Help?

Overall Results: Different Versions of MibS

Overall Results: Different Versions of MibS

Ralphs, et al. (COR@L Lab) [Recent Advances in MibS](#page-0-0)

Overall Results: Comparing MibS with filmosi

Ratio of baseline (Default, 1.2.1-opt)

Overall Results: Different Versions of MibS

1 [Basic Concepts](#page-3-0)

² [Branch-and-Cut](#page-11-0)

- [Theory](#page-11-0)
- **•** [Computation](#page-23-0)

There are still many avenues for improving performance and much low-hanging fruit.

- Improved branching
- Better dynamic control mechanisms for cut generation (better integration of MIBLP and MILP cuts)
- Warm-starting of subproblem solvers (SYMPHONY)
- Pools of solutions/directions/cuts
- ...

Existing capabilities that need further development.

- Stochastic bilevel solver
- Pessimistic solver
- Bounded rationality

How would we design a solver if we could do it from the ground up?

- No explicit subsolvers, just one tightly integrated solver.
- Flexible reaction sets (bounded rationality).
- Flexible base relaxations.
- Solver based completely on improving directions?

Conclusions

- Solutions of MIBLPs is where solution of MILPs was 15 years ago.
- The basic theory is well-developed, but in practice, solvers are well-tuned bags of tricks.
- MILP solvers are still improving, thanks largely to commercial viability and fierce competition.
- It remains to be seen if MIBLP solvers will follow a similar trajectory.

References I

- A. Caprara, M. Carvalho, A. Lodi, and G.J. Woeginger. Bilevel knapsack with interdiction constraints. Technical Report OR-14-4, University of Bologna, 2014.
- S. DeNegre. *Interdiction and Discrete Bilevel Linear Programming*. PhD, Lehigh University, 2011. URL [http://coral.ie.lehigh.edu/~ted/files/](http://coral.ie.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.pdf) [papers/ScottDeNegreDissertation11.pdf](http://coral.ie.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.pdf).
- S. DeNegre and T.K. Ralphs. A Branch-and-Cut Algorithm for Bilevel Integer Programming. In *Proceedings of the Eleventh INFORMS Computing Society Meeting*, pages 65–78, 2009. doi: 10.1007/978-0-387-88843-9_4. URL [http:](http://coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf) [//coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf](http://coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf).
- M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. A new general-purpose algorithm for mixed-integer bilevel linear programs. *Operations Research*, 65(6):1615–1637, 2017.
- Matteo Fischetti, Ivana Ljubic, Michele Monaci, and Markus Sinnl. On the use of ´ intersection cuts for bilevel optimization. *Mathematical Programming*, 172(1-2): 77–103, 2018.

References II

- J.T. Moore and J.F. Bard. The mixed integer linear bilevel programming problem. *Operations Research*, 38(5):911–921, 1990.
- K. Ralphs, T, S. Tahernejad, S. DeNegre, M. Güzelsoy, and A. Hassanzadeh. Bilevel integer optimization: Theory and algorithms. International Symposium on Mathematical Programming 2015, 2015.
- S. Tahernejad. *Two-stage Mixed Integer Stochastic Bilevel Linear Optimization*. PhD, Lehigh University, 2019.
- P. Xu and L. Wang. An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions. *Computers & operations research*, 41:309–318, 2014.
- Y. Xu, T.K. Ralphs, L. Ladányi, and M.J. Saltzman. Computational Experience with a Software Framework for Parallel Integer Programming. *The INFORMS Journal on Computing*, 21:383–397, 2009. doi: 10.1287/ijoc.1090.0347. URL [http:](http://coral.ie.lehigh.edu/~ted/files/papers/CHiPPS-Rev.pdf) [//coral.ie.lehigh.edu/~ted/files/papers/CHiPPS-Rev.pdf](http://coral.ie.lehigh.edu/~ted/files/papers/CHiPPS-Rev.pdf).

References III

Shi Xueyu, Oleg A. Prokopyev, and Ted K. Ralphs. Mixed Integer Bilevel Optimization with a k-optimal Follower: A Hierarchy of Bounds. *Mathematical Programming Computation*, 15:1—-51, 2022. doi: 10.1007/s12532-022-00227-z. URL [http://coral.ie.lehigh.edu/~ted/files/papers/](http://coral.ie.lehigh.edu/~ted/files/papers/HierarchyOfBounds20.pdf) [HierarchyOfBounds20.pdf](http://coral.ie.lehigh.edu/~ted/files/papers/HierarchyOfBounds20.pdf).

Junlong Zhang and Osman Y Ozaltın. A branch-and-cut algorithm for discrete bilevel linear programs. *Optim. Online*, 2017.