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Second Order Cone Optimization

min: cTx

s.t.: Ax = b (SOCO)

x ∈ K

where

A ∈ Rm×n, c ∈ Rn, b ∈ Rm

x = (xi, . . . , xn)

K = {Lni × · · · × Lnk}
Lni = {xi|xi1 ≥ ‖xi2:ni

‖}
Rows of A are linearly independent
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Example

min: x1 −2x2 +x3
s.t.: x1 −0.1x2 +0.2x3 = 2.5

x1 ≥ ‖(x2, x3)‖

Feasible set
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Intersection of an affine space and a second
order cone

All points satisfying Ax = b are in the set

H := {x ∈ Rn | x = x0 +Hz, ∀z ∈ Rn−m},

where Ax0 = b and H ∈ Rn×n−m is a basis for Null(A).

There exist a matrix P ∈ Rn−m×n−m, p ∈ Rn−m, ρ ∈ R, s.t.

H ∩ Ln ⊂ {z ∈ Rn−m | z>Pz + 2p>z + ρ ≤ 0},

and P has at most one negative eigenvalue.

The set Q = {z ∈ Rn−m | z>Pz + 2p>z + ρ ≤ 0} is a quadric and
we denote it as (P, p, ρ).
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Mixed Integer Second Order Cone
Optimization

min: cTx

s.t.: Ax = b (MISOCO)

x ∈ K
x ∈ Zd × Rn−d,

where

A ∈ Rm×n, c ∈ Rn, b ∈ Rm

x = (xi, . . . , xn)

K = {Lni × · · · × Lnk}
Lni = {xi|xi1 ≥ ‖xi2:ni

‖}
Rows of A are linearly independent
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Algorithmic Framework

We propose an algorithm similar to a standard branch-and-cut
algorithm.

Solve the continuous relaxation (a SOCO problem).
Identify a violated disjunction (fractional variable).
Either branch or generate a disjunctive constraint.

Procedure for cut generation is similar to lift and project for mixed
integer linear optimization (MILO) problems.

The convex hull of the disjunctive set associated with a variable
disjunction can be obtained by the addition of a single conic
constraint.

This constraint is easy to obtain.
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Step 1: Solve the relaxed problem

Find the optimal solution x∗soco for the continuous relaxation

min: 3x1 +2x2 +2x3 +x4
s.t.: 9x1 +x2 +x3 +x4 = 10

(x1, x2, x3, x4) ∈ L4

x4 ∈ Z.

Relaxing the integrality constraint we get the optimal solution:

x∗soco = (1.36,−0.91,−0.91,−0.45),

with and optimal objective value: z∗ = 0.00.
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Reformulation

Reformulation of the relaxed problem

min: 1
3
(10 + 5x2 + 5x3 + 2x4)

s.t.:
[
x2 x3 x4

]  8 − 1
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1 1 1

] x2

x3

x4

− 10 ≤ 0

x4 ∈ Z .
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Step 2: Find a violated disjunction

The disjunction x4 ≤ −1
∨

x4 ≥ 0 is violated by x∗soco
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Step 3: Apply the disjunction and Convexify

The constraints in red represent the disjunctive conic cut.

min: 3x1 +2x2 +2x3 +x4
s.t: 9x1 +x2 +x3 +x4 = 10

−0.04x2 −0.04x3 −3.56x4 +x5 = 10.14
−6.28x2 −6.28x3 +0.14x4 +x6 = 1.65
6.36x2 −6.36x3 +x7 = 0

(x1, x2, x3, x4) ∈ L4

(x5, x6, x7) ∈ L3

x4 ∈ Z.

An integer optimal solution is obtained after adding one cut:

x∗misoco = x∗soco = (1.32, −0.93, −0.93, 0.00, 10.06, −10.06, 0.00),

with an optimal objective value: z∗misoco = x∗soco = 0.24.
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Uni-parametric family of quadrics

Theorem

Let (P, p, ρ) be a quadric and consider two hyperplanes

A= = {z | a>z = α} and B= = {z | d>z = β}.

The family of quadrics (P (τ), p(τ), ρ(τ)) parametrized by τ ∈ R having
the same intersection with A= and B= as the quadric (P, p, ρ) is given by

P (τ) = P + τ
adT + daT

2

p(τ) = p− τ βa+ αd

2
ρ(τ) = ρ+ ταβ.
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Uni-parametric family of quadrics

Sequence of quadrics z>P (τ)z + 2p(τ)>z + ρ(τ) ≤ 0,
for −106.863 ≤ τ ≤ 1617
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Classification of Shapes

Range (P (τ), p(τ), ρ(τ))

τ > 1617 Two sheets hyperboloids

τ = 1617 Paraboloid

−8.9946 < τ < 1617 Ellipsoids

τ = −8.9946 Paraboloid

−9.581 < τ < −8.9946 Two sheet hyperboloids

τ = −9.581 Cone

−106.863 < τ < −9.581 One sheet hyperboloids

τ = −106.863 Cone

τ < −106.863 Two sheets hyperboloids
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Disjunctive Conic Cut

Theorem

Let A= = {z|a>z = α} and B= = {z|a>z = β} be two parallel
hyperplanes. The quadric

(Q(τ̂), q(τ̂), ρ(τ̂))

defines a disjunctive conic cut for MISOCO, where τ̂ is the larger root of
the equation

q(τ)>Q(τ)q(τ)− ρ(τ) = 0,

which is a second degree polynomial in τ .
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Hyperboloid with Unbounded Intersection

Feasible set Disjunction
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Hyperboloid with Unbounded Intersection

Disjunctive Conic Cut
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CLay Problems (Bonami et al. 2008)

Constrained layout problems

Quadratic constraints corresponding to Euclidean-distance

(x1− 17.5)2 + (x5− 7)2 + 6814 ∗ b33 ≤ 6850

0203M 0204M 0205M 0303M 0304M 0305M
Var 31 52 81 34 57 86

Binary 18 21 50 21 36 55
Constraints 55 91 136 67 107 156

Quad 24 32 40 36 48 60

20 / 32



CLay Problems (Bonami et al. 2008)

CLay Quadratic Constraints DCC cut
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CLay Problems (Bonami et al. 2008)

Original Formulation DCC Formulation
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CLay Problems Solved With CPLEX 12.4

Original Formulation

0203M 0204M 0205M 0303M 0304M 0305M
Time 0.84 1.12 2.03 1.001 2.02 4.04
Nodes 167 738 8212 453 2549 11188
Iter 1677 3601 47125 6483 23560 65174
Obj 41572.98 6545.00 8092.5 26668.75 40261.08 8029.5

DCC Formulation

0203M 0204M 0205M 0303M 0304M 0305M
Time 0.44 0.41 1.56 0.467 1.19 1.80
Nodes 165 656 6244 481 1336 8957
Iter 1285 3302 37118 3190 11336 62290
Obj 41565.61 6545.00 8092.5 26662.49 40241.57 8092.5

Difference

0203M 0204M 0205M 0303M 0304M 0305M
Time 48% 63% 23% 53% 41% 55%
Nodes 1% 11% 24% -6% 47% 20%
Iter 23% 8% 21% 51% 52% 4%
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CLay Problems Solved With MOSEK 6.0

Original Formulation

0203M 0204M 0205M 0303M 0304M 0305M
Time 3.06 16.91 339.40 7.15 101.98 621.41
Nodes 484 1974 25400 868 8467 38184
Iter 6981 28450 377914 12674 130714 570935
Obj 41573.26 6545.00 8092.5 26669.10 40262.38 8092.50

DCC Formulation

0203M 0204M 0205M 0303M 0304M 0305M
Time 2.29 15.10 207.90 5.84 76.74 487.46
Nodes 400 2194 20528 838 7013 32875
Iter 5272 27714 271433 10944 104978 455239
Obj 41565.75 6545.00 8092.50 26652.50 40241.57 8092.50

Difference

0203M 0204M 0205M 0303M 0304M 0305M
Time 25% 11% 39% 18% 25% 22%
Nodes 17% -11% 19% 3% 17% 14%
Iter 24% 3% 28% 14% 20% 20%
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Branch and Cut Solver

Solver built using the COIN High Performance Parallel Search
(CHiPPs) framework on top of the BiCePS layer.

MOSEK 6 is used to solve the relaxations.

Experimental Setup

Randomly generated problems
Naming convention is:
R(num Rows).C(num Cols).Con(num Cones).Int(num IntVar)
One conic cut is added every 10 nodes with a limit of 10 conic cuts in
total.
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Branching rule: Strong Branching

Selection of Disjunctive Conic Cut
Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R14C18Cone3Int15
Number of Nodes 377 319 375
CPU time (s) 0.42 0.44 0.48

R17C30Cone3Int15
Number of Nodes 845 845 1035
CPU time (s) 1.21 1.42 1.69

R17C30Cone3Int21
Number of Nodes 540405 540039 393405
CPU time (s) 4736.22 5282.25 2110.55

R23C45Cone3Int24
Number of Nodes 1121 1113 1115
CPU time (s) 1.99 2.44 2.42

R27C50Cone5Int35
Number of Nodes 2226749 2227761 2186683
CPU time (s) 67741.79 85598.07 84121.83

R27C50Cone5Int50
Number of Nodes 2795427 NaN 3021913
CPU time (s) 135873.60 NaN 145516.09

R32C60Cone15Int45
Number of Nodes 217115 216787 214887
CPU time (s) 893.78 936.39 1012.89

R52C75Cone5Int60
Number of Nodes 359195 418927 418865
CPU time (s) 2140.95 3179.29 3253.12
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Branching rule: Strong Branching
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Branching rule: Strong Branching
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Branching rule: Pseudo Cost

Selection of Disjunctive Conic Cut
Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R14C18Cone3Int15
Num Nodes 109 107 109
CPU time (s) 0.70 0.81 0.77

R17C30Cone3Int15
Num Nodes 536 504 516
CPU time (s) 6.97 7.66 7.85

R17C30Cone3Int21
Num Nodes 314773 314763 313707
CPU time (s) 4707.02 5463.58 5439.03

R23C45Cone3Int24
Num Nodes 6154 5530 6042
CPU time (s) 209.59 217.01 247.99

R27C50Cone5Int35
Num Nodes NaN NaN NaN
CPU time (s) NaN NaN NaN

R27C50Cone5Int50
Num Nodes 3796593 3492829 NaN
CPU time (s) 211121.87 205883.77 NaN

R32C60Cone15Int45
Num Nodes 89307 NaN 94583
CPU time (s) 1445.38 NaN 1648.51

R52C75Cone5Int60
Num Nodes NaN NaN NaN
CPU time (s) NaN NaN NaN
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Branching rule: Pseudo Cost
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Branching rule: Pseudo Cost
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Conclusions

The computational experiments show that conic cuts can help to
decrease the size of the tree.

The criteria for selecting the disjunction is important to the
effectiveness of the cuts.

In this case, using the most fractional variables seems to be the best
option.

The addition of conic cuts can significantly increase the solution time
of the relaxations, negating the decrease in the size of the tree.

Numerical issues also arise when adding too many cuts.

These issues are similar to the ones seen when adding disjunctive cuts
in MILO.

Controlling them will require active management of the relaxation.
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Future work

Investigate more criteria for the construction of the conic cut.

Investigate methods for actively managing the relaxation to maintain
efficiency and numerical stability.

Investigate the potential to use disjunctive conic cuts in the
reformulation of special quadratic constraints like the ones in the
CLay problems

The availability of a good test set for MISOCO problems is needed for
a better evaluation and comparison of the cutting techniques available
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