# Disjunctive Conic Cuts

#### Ted Ralphs

Joint work with: Pietro Belotti, Julio C. Góez, Imre Pólik, Tamás Terlaky

> INFORMS Computing Society Conference January 7, 2013









#### AGENDA

Introduction

DCCs for MISOCO

Computational Experience



#### AGENDA

Introduction

2 DCCs for MISOCO

3 Computational Experience

## SECOND ORDER CONE OPTIMIZATION

$$\begin{aligned} & \text{min: } c^T x \\ & \text{s.t.: } Ax = b \\ & x \in \mathcal{K} \end{aligned} \tag{SOCO}$$

#### where

- ullet  $A\in\mathbb{R}^{m imes n}$ ,  $c\in\mathbb{R}^n$ ,  $b\in\mathbb{R}^m$
- $\bullet \ x = (x^i, \dots, x^n)$
- $\bullet \ \mathcal{K} = \{\mathbb{L}^{n_i} \times \cdots \times \mathbb{L}^{n_k}\}$
- $\bullet \ \mathbb{L}^{n_i} = \{ x^i | x_1^i \ge \| x_{2:n_i}^i \| \}$
- Rows of A are linearly independent



## EXAMPLE

$$\begin{array}{lll} \text{min:} & x_1 & -2x_2 & +x_3 \\ \text{s.t.:} & x_1 & -0.1x_2 & +0.2x_3 & = 2.5 \\ & x_1 \geq \|(x_2,x_3)\| \end{array}$$



Feasible set



# Intersection of an affine space and a second order cone

• All points satisfying Ax = b are in the set

$$\mathcal{H} := \{ x \in \mathbb{R}^n \mid x = x_0 + Hz, \ \forall z \in \mathbb{R}^{n-m} \},$$

where  $Ax_0 = b$  and  $H \in \mathbb{R}^{n \times n - m}$  is a basis for Null(A).

• There exist a matrix  $P \in \mathbb{R}^{n-m \times n-m}$ ,  $p \in \mathbb{R}^{n-m}$ ,  $\rho \in \mathbb{R}$ , s.t.

$$\mathcal{H} \cap \mathbb{L}^n \subset \{ z \in \mathbb{R}^{n-m} \mid z^\top P z + 2p^\top z + \rho \le 0 \},$$

and P has at most one negative eigenvalue.

• The set  $\mathcal{Q} = \{z \in \mathbb{R}^{n-m} \mid z^{\top}Pz + 2p^{\top}z + \rho \leq 0\}$  is a quadric and we denote it as  $(P, p, \rho)$ .



# MIXED INTEGER SECOND ORDER CONE OPTIMIZATION

$$\begin{aligned} & \text{min: } c^T x \\ & \text{s.t.: } Ax = b \\ & \quad x \in \mathcal{K} \\ & \quad x \in \mathbb{Z}^d \times \mathbb{R}^{n-d}, \end{aligned}$$

#### where

- $\bullet$   $A \in \mathbb{R}^{m \times n}$ ,  $c \in \mathbb{R}^n$ ,  $b \in \mathbb{R}^m$
- $\bullet$   $x = (x^i, \dots, x^n)$
- $\bullet \ \mathcal{K} = \{\mathbb{L}^{n_i} \times \cdots \times \mathbb{L}^{n_k}\}\$
- $\mathbb{L}^{n_i} = \{x^i | x_1^i \ge ||x_{2:n_i}^i||\}$
- Rows of A are linearly independent



#### AGENDA

Introduction

2 DCCs for MISOCO

3 Computational Experience

#### Algorithmic Framework

- We propose an algorithm similar to a standard branch-and-cut algorithm.
  - Solve the continuous relaxation (a SOCO problem).
  - Identify a violated disjunction (fractional variable).
  - Either branch or generate a disjunctive constraint.
- Procedure for cut generation is similar to lift and project for mixed integer linear optimization (MILO) problems.
- The convex hull of the disjunctive set associated with a variable disjunction can be obtained by the addition of a single conic constraint.
- This constraint is easy to obtain.

## STEP 1: SOLVE THE RELAXED PROBLEM

Find the optimal solution  $x^{*}_{soco}$  for the continuous relaxation

min: 
$$3x_1 + 2x_2 + 2x_3 + x_4$$
  
s.t.:  $9x_1 + x_2 + x_3 + x_4 = 10$   
 $(x_1, x_2, x_3, x_4) \in \mathbb{L}^4$   
 $x_4 \in \mathbb{Z}$ .

Relaxing the integrality constraint we get the optimal solution:

$$x_{soco}^* = (1.36, -0.91, -0.91, -0.45),$$

with and optimal objective value:  $z^* = 0.00$ .

#### REFORMULATION

#### Reformulation of the relaxed problem

$$\begin{aligned} & \min: & \quad \frac{1}{3} \left( 10 + 5x_2 + 5x_3 + 2x_4 \right) \\ & \text{s.t.:} & \quad \left[ x_2 \quad x_3 \quad x_4 \right] \begin{bmatrix} 8 & -\frac{1}{10} & -\frac{1}{10} \\ -\frac{1}{10} & 8 & -\frac{1}{10} \\ -\frac{1}{10} & -\frac{1}{10} & 8 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \\ x_4 \end{bmatrix} + 2 \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \\ x_4 \end{bmatrix} - 10 & \leq 0 \end{aligned}$$



Feasible set of the reformulated problem



#### STEP 2: FIND A VIOLATED DISJUNCTION

The disjunction  $x_4 \leq -1 \ \bigvee \ x_4 \geq 0$  is violated by  $x_{soco}^*$ 



(A) Disjunction



(B) Disjunctive conic cut

## STEP 3: APPLY THE DISJUNCTION AND CONVEXIFY

The constraints in red represent the disjunctive conic cut.

An integer optimal solution is obtained after adding one cut:

$$x^*_{misoco} = x^*_{soco} = (1.32, \ -0.93, \ -0.93, \ 0.00, \ 10.06, \ -10.06, \ 0.00),$$

with an optimal objective value:  $z_{misoco}^* = x_{soco}^* = 0.24$ .



# Uni-parametric family of quadrics

#### Theorem

Let  $(P, p, \rho)$  be a quadric and consider two hyperplanes

$$\mathcal{A}^{=} = \{ z \mid a^{\top}z = \alpha \} \text{ and } \mathcal{B}^{=} = \{ z \mid d^{\top}z = \beta \}.$$

The family of quadrics  $(P(\tau), p(\tau), \rho(\tau))$  parametrized by  $\tau \in \mathbb{R}$  having the same intersection with  $\mathcal{A}^=$  and  $\mathcal{B}^=$  as the quadric  $(P, p, \rho)$  is given by

$$P(\tau) = P + \tau \frac{ad^{T} + da^{T}}{2}$$
$$p(\tau) = p - \tau \frac{\beta a + \alpha d}{2}$$
$$\rho(\tau) = \rho + \tau \alpha \beta.$$



# Uni-parametric family of quadrics



Sequence of quadrics  $z^\top P(\tau)z + 2p(\tau)^\top z + \rho(\tau) \leq 0,$  for  $-106.863 \leq \tau \leq 1617$ 



# CLASSIFICATION OF SHAPES

| Range                      | $   (P(\tau), p(\tau), \rho(\tau)) $ |
|----------------------------|--------------------------------------|
| au > 1617                  | Two sheets hyperboloids              |
| au = 1617                  | Paraboloid                           |
| $-8.9946 < \tau < 1617$    | Ellipsoids                           |
| $\tau = -8.9946$           | Paraboloid                           |
| $-9.581 < \tau < -8.9946$  | Two sheet hyperboloids               |
| $\tau = -9.581$            | Cone                                 |
| $-106.863 < \tau < -9.581$ | One sheet hyperboloids               |
| $\tau = -106.863$          | Cone                                 |
| $\tau < -106.863$          | Two sheets hyperboloids              |

## DISJUNCTIVE CONIC CUT

#### Theorem

Let  $\mathcal{A}^==\{z|a^\top z=\alpha\}$  and  $\mathcal{B}^==\{z|a^\top z=\beta\}$  be two parallel hyperplanes. The quadric

$$(Q(\hat{\tau}),q(\hat{\tau}),\rho(\hat{\tau}))$$

defines a disjunctive conic cut for MISOCO, where  $\hat{\tau}$  is the larger root of the equation

$$q(\tau)^{\top}Q(\tau)q(\tau) - \rho(\tau) = 0,$$

which is a second degree polynomial in  $\tau$ .

# Hyperboloid with Unbounded Intersection



# Hyperboloid with Unbounded Intersection



#### AGENDA

Introduction

DCCs for MISOCO

Computational Experience

# CLAY PROBLEMS (BONAMI ET AL. 2008)

- Constrained layout problems
- Quadratic constraints corresponding to Euclidean-distance

$$(x1 - 17.5)^2 + (x5 - 7)^2 + 6814 * b33 \le 6850$$

|             | 0203M | 0204M | 0205M | 0303M | 0304M | 0305M |
|-------------|-------|-------|-------|-------|-------|-------|
| Var         | 31    | 52    | 81    | 34    | 57    | 86    |
| Binary      | 18    | 21    | 50    | 21    | 36    | 55    |
| Constraints | 55    | 91    | 136   | 67    | 107   | 156   |
| Quad        | 24    | 32    | 40    | 36    | 48    | 60    |

# CLAY PROBLEMS (BONAMI ET AL. 2008)



CLay Quadratic Constraints



DCC cut



# CLAY PROBLEMS (BONAMI ET AL. 2008)



Original Formulation



DCC Formulation



## CLAY PROBLEMS SOLVED WITH CPLEX 12.4

#### Original Formulation

|       | 0203M    | 0204M   | 0205M  | 0303M    | 0304M    | 0305M  |
|-------|----------|---------|--------|----------|----------|--------|
| Time  | 0.84     | 1.12    | 2.03   | 1.001    | 2.02     | 4.04   |
| Nodes | 167      | 738     | 8212   | 453      | 2549     | 11188  |
| Iter  | 1677     | 3601    | 47125  | 6483     | 23560    | 65174  |
| Obj   | 41572.98 | 6545.00 | 8092.5 | 26668.75 | 40261.08 | 8029.5 |

#### DCC Formulation

|       | 0203M    | 0204M   | 0205M  | 0303M    | 0304M    | 0305M  |
|-------|----------|---------|--------|----------|----------|--------|
| Time  | 0.44     | 0.41    | 1.56   | 0.467    | 1.19     | 1.80   |
| Nodes | 165      | 656     | 6244   | 481      | 1336     | 8957   |
| Iter  | 1285     | 3302    | 37118  | 3190     | 11336    | 62290  |
| Obj   | 41565.61 | 6545.00 | 8092.5 | 26662.49 | 40241.57 | 8092.5 |

#### Difference

|       | 0203M | 0204M | 0205M | 0303M | 0304M | 0305M |
|-------|-------|-------|-------|-------|-------|-------|
| Time  | 48%   | 63%   | 23%   | 53%   | 41%   | 55%   |
| Nodes | 1%    | 11%   | 24%   | -6%   | 47%   | 20%   |
| Iter  | 23%   | 8%    | 21%   | 51%   | 52%   | 4%    |



## CLAY PROBLEMS SOLVED WITH MOSEK 6.0

#### Original Formulation

|       | 0203M    | 0204M   | 0205M  | 0303M    | 0304M    | 0305M   |
|-------|----------|---------|--------|----------|----------|---------|
| Time  | 3.06     | 16.91   | 339.40 | 7.15     | 101.98   | 621.41  |
| Nodes | 484      | 1974    | 25400  | 868      | 8467     | 38184   |
| Iter  | 6981     | 28450   | 377914 | 12674    | 130714   | 570935  |
| Obj   | 41573.26 | 6545.00 | 8092.5 | 26669.10 | 40262.38 | 8092.50 |

#### DCC Formulation

|       | 0203M    | 0204M   | 0205M   | 0303M    | 0304M    | 0305M   |
|-------|----------|---------|---------|----------|----------|---------|
| Time  | 2.29     | 15.10   | 207.90  | 5.84     | 76.74    | 487.46  |
| Nodes | 400      | 2194    | 20528   | 838      | 7013     | 32875   |
| Iter  | 5272     | 27714   | 271433  | 10944    | 104978   | 455239  |
| Obj   | 41565.75 | 6545.00 | 8092.50 | 26652.50 | 40241.57 | 8092.50 |

#### Difference

|       | 0203M | 0204M | 0205M | 0303M | 0304M | 0305M |
|-------|-------|-------|-------|-------|-------|-------|
| Time  | 25%   | 11%   | 39%   | 18%   | 25%   | 22%   |
| Nodes | 17%   | -11%  | 19%   | 3%    | 17%   | 14%   |
| Iter  | 24%   | 3%    | 28%   | 14%   | 20%   | 20%   |





## Branch and Cut Solver

- Solver built using the COIN High Performance Parallel Search (CHiPPs) framework on top of the BiCePS layer.
- MOSEK 6 is used to solve the relaxations.
- Experimental Setup
  - Randomly generated problems
  - Naming convention is: R(num Rows).C(num Cols).Con(num Cones).Int(num IntVar)
  - One conic cut is added every 10 nodes with a limit of 10 conic cuts in total.



# Branching Rule: Strong Branching

|                      |                 | Selection of Disjunctive Conic Cut |          |             |
|----------------------|-----------------|------------------------------------|----------|-------------|
| Rows.Cols.Cones.IntV |                 | No cuts added                      | Max Inf  | Pseudo Cost |
| R14C18Cone3Int15     | Number of Nodes | 377                                | 319      | 375         |
|                      | CPU time (s)    | 0.42                               | 0.44     | 0.48        |
| R17C30Cone3Int15     | Number of Nodes | 845                                | 845      | 1035        |
|                      | CPU time (s)    | 1.21                               | 1.42     | 1.69        |
| R17C30Cone3Int21     | Number of Nodes | 540405                             | 540039   | 393405      |
|                      | CPU time (s)    | 4736.22                            | 5282.25  | 2110.55     |
| R23C45Cone3Int24     | Number of Nodes | 1121                               | 1113     | 1115        |
|                      | CPU time (s)    | 1.99                               | 2.44     | 2.42        |
| R27C50Cone5Int35     | Number of Nodes | 2226749                            | 2227761  | 2186683     |
|                      | CPU time (s)    | 67741.79                           | 85598.07 | 84121.83    |
| R27C50Cone5Int50     | Number of Nodes | 2795427                            | NaN      | 3021913     |
| K27C50Cone5iiit50    | CPU time (s)    | 135873.60                          | NaN      | 145516.09   |
| R32C60Cone15Int45    | Number of Nodes | 217115                             | 216787   | 214887      |
| 1.52C00C0He15HH45    | CPU time (s)    | 893.78                             | 936.39   | 1012.89     |
| R52C75Cone5Int60     | Number of Nodes | 359195                             | 418927   | 418865      |
| N32C13Conesintou     | CPU time (s)    | 2140.95                            | 3179.29  | 3253.12     |



#### Branching Rule: Strong Branching



Performance profile using the size of the tree



## Branching Rule: Strong Branching



Performance profile using the solution time



# Branching Rule: Pseudo Cost

|                      |              | Selection of Disjunctive Conic Cut |           |             |  |
|----------------------|--------------|------------------------------------|-----------|-------------|--|
| Rows.Cols.Cones.IntV |              | No cuts added                      | Max Inf   | Pseudo Cost |  |
| R14C18Cone3Int15     | Num Nodes    | 109                                | 107       | 109         |  |
| N14C10Conesint15     | CPU time (s) | 0.70                               | 0.81      | 0.77        |  |
| R17C30Cone3Int15     | Num Nodes    | 536                                | 504       | 516         |  |
| N17C30Conesint13     | CPU time (s) | 6.97                               | 7.66      | 7.85        |  |
| R17C30Cone3Int21     | Num Nodes    | 314773                             | 314763    | 313707      |  |
| K17C30Cone3int21     | CPU time (s) | 4707.02                            | 5463.58   | 5439.03     |  |
| R23C45Cone3Int24     | Num Nodes    | 6154                               | 5530      | 6042        |  |
| K23C43Cone3iiit24    | CPU time (s) | 209.59                             | 217.01    | 247.99      |  |
| R27C50Cone5Int35     | Num Nodes    | NaN                                | NaN       | NaN         |  |
| K27C50Cone5int55     | CPU time (s) | NaN                                | NaN       | NaN         |  |
| R27C50Cone5Int50     | Num Nodes    | 3796593                            | 3492829   | NaN         |  |
| K27C50Conesint50     | CPU time (s) | 211121.87                          | 205883.77 | NaN         |  |
| R32C60Cone15Int45    | Num Nodes    | 89307                              | NaN       | 94583       |  |
| K32C00Cone13III(43   | CPU time (s) | 1445.38                            | NaN       | 1648.51     |  |
| R52C75Cone5Int60     | Num Nodes    | NaN                                | NaN       | NaN         |  |
| N32C73Conestitiou    | CPU time (s) | NaN                                | NaN       | NaN         |  |



## Branching Rule: Pseudo Cost



Performance profile using the size of the tree



## Branching Rule: Pseudo Cost



Performance profile using the solution time



## Conclusions

- The computational experiments show that conic cuts can help to decrease the size of the tree.
- The criteria for selecting the disjunction is important to the effectiveness of the cuts.
- In this case, using the most fractional variables seems to be the best option.
- The addition of conic cuts can significantly increase the solution time of the relaxations, negating the decrease in the size of the tree.
- Numerical issues also arise when adding too many cuts.
- These issues are similar to the ones seen when adding disjunctive cuts in MILO.
- Controlling them will require active management of the relaxation.



#### FUTURE WORK

- Investigate more criteria for the construction of the conic cut.
- Investigate methods for actively managing the relaxation to maintain efficiency and numerical stability.
- Investigate the potential to use disjunctive conic cuts in the reformulation of special quadratic constraints like the ones in the CLay problems
- The availability of a good test set for MISOCO problems is needed for a better evaluation and comparison of the cutting techniques available

