
Complexity and Multi-level Optimization

Ted Ralphs1

Joint work with:
Aykut Bulut1, Scott DeNegre2,

Andrea Lodi4, Fabrizio Rossi5, Stefano Smriglio5, Gerhard Woeginger6

1COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University
2Technomics, Inc. 4DEIS, Universitá di Bologna

5Dipartimento di Informatica, Universitá di L’Aquila
6Department of Mathematics and Computer Science, Eindhoven University of Technology

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 1 / 51

Outline

1 Introduction
2 Complexity

Basic Notions
Turing Functions
Multi-level Functions

3 Special Optimization Function
Separation Functions
Inverse Functions
Functions in Branch and Cut

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 2 / 51

Motivation

What started it all: Proving something “obvious”.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 3 / 51

Motivation

The framework traditionally used for complexity analysis of discrete
optimization problems does not extend easily to multi-level optimization.
“Difficult” optimization problems are typically characterized as being NP-hard,
but this class is far too broad to be useful.
In the traditional framework, optimization problems are converted into
associated decision problems, which

results in a less refined classification scheme,
does not (directly) include the role of solutions and associated values, notions that
are needed in many settings.
is difficult to do with multi-level optimization problems.

Krentel (1988, 1992) suggested a framework for complexity based on the
interpretation of problems as functions.
This point of view is more natural for optimization.
The point of view adopted here is largely similar to that proposed by Krentel, but
there are substantial additions and deviations.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 4 / 51

What This Talk is About

This talk is about questions of complexity that are more general than those that
can be asked in the framework traditionally used by discrete optimizers.
The goal of the talk is to develop notions of complexity that

encompass multi-level and multi-stage optimization problems, and
are based on a more general framework of function evaluation that is better suited
for optimization than the traditional set-based framework.

We’ll discuss two hierarchies that can be used to classify multi-level
optimization problems.

The polynomial time hierarchy classifies multi-level decision problems.
The min-max hierarchy classifies multi-level optimization problems.

We’ll discuss the complexity of some special classes of optimization problems in
light of this framework.
We’ll also re-interpret some well-known results in terms of this framework.
Finally, we’ll discuss the inherent multi-level nature of some optimization
problems that arise in the implementation of branch and cut.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 5 / 51

Outline

1 Introduction

2 Complexity
Basic Notions
Turing Functions
Multi-level Functions

3 Special Optimization Function
Separation Functions
Inverse Functions
Functions in Branch and Cut

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 6 / 51

Basic Notions

The formal complexity framework traditionally used in discrete optimization is
for classifying decision problems (Garey and Johnson, 1979).
The formal model of computation is a deterministic Turing machine (DTM).

A DTM specifies an algorithm computing the value of a Boolean function.

The DTM executes a program, reading the input from a tape.

We equate a given DTM with the program it executes.

The output is YES or NO.

A YES answer is returned if the machine reaches an accepting state.

A problem is specified in the form of a language, defined to be the subset of the
possible inputs over a given alphabet (Γ) that are expected to output YES.
A DTM that produces the correct output for inputs w.r.t. a given language is said
to recognize the language.
Informally, we can then say that the DTM represents an “algorithm that solves
the given problem correctly.”

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 7 / 51

Non-deterministic Turing Machines

A non-deterministic Turing machine (NDTM) can be thought of as a Turing
machine with an infinite number of parallel processors.
An NDTM follows all possible execution paths simultaneously.
It returns YES if an accepting state is reached on any path.
The running time of an NDTM is the minimum running time (length) of any
execution paths that end in an accepting state.
The running time is the minimum time required to verify that some path (given
as input) leads to an accepting state.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 8 / 51

Complexity Classes

Languages can be grouped into classes based on the best worst-case running
time of any TM that recognizes the language.

The class P is the set of all languages for which there exists a DTM that
recognizes the language in time polynomial in the length of the input.

The class NP is the set of all languages for which there exists an NDTM that
recognizes the language in time polynomial in the length of the input.

The class coNP is the set of languages whose complements are in NP.

As we will see, additional classes are formed hierarchically by the use of
oracles.

A language L1 can be reduced to a language L2 if there is an output-preserving
polynomial transformation of members of L1 to members of L2.
A language L is said to be complete for a class if all languages in the class can be
reduced to L.
This talk primarily addresses time complexity, though space complexity must
ultimately also be considered.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 9 / 51

Sets and Complexity

The view of complexity just described is implicitly based on solutions and sets.
A solution (or certificate) can be thought of as a path that can be followed in a TM
to reach an accepting state.
In many cases, we have a notion of solution that is indepdendent of a particular TM.
The YES answer means ∃ a solution, i.e., a path to an accepting state was found.
The NO answer means no solution was found, i.e., the final terminating state ∀ paths
was a rejecting one.

We can say, loosely, that problems in NP pose existentially quantified questions,
whereas problems in coNP pose universally quantified questions.
With any language (and perhaps a TM that recognizes it), we can associate a set
of solutions.

The set of all possible solutions can be viewed as the feasible set, which we shall
denote as feas(l) for an input l.
A YES answer can be said to indicate an instance that is “feasible.”
A NO answer can be said to indicate “infeasible.”

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 10 / 51

Outline

1 Introduction

2 Complexity
Basic Notions
Turing Functions
Multi-level Functions

3 Special Optimization Function
Separation Functions
Inverse Functions
Functions in Branch and Cut

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 11 / 51

Turing Functions

The complexity framework based on decision problems, sets, and feasibility can
be generalized to include functions and optimization.
The functions here are not quite the same as mathematical functions.
We use the term Turing function (TF) to refer to this type of “function.”

A TF f is defined with respect to a given language L.

For l ∈ L, there is a (mathematical) function gl (the objective function) that
associates each x ∈ feas(l) with a value gl(x).

The objective function may depend on the instance and may be encoded as
part of the input.

Evaluating the TF involves both identifying a solution (if it exists) and
computing its associated value.

The output of a TF (the solution) is generally not unique—we are allowed to
choose any of the alternatives.

In this framework, decision problems are TFs for which the objective is Boolean.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 12 / 51

Metric Turing Machines and Classes of Functions

A TF can be evaluated by a TM modified to output a numerical value.
Krentel (1988) called such a TM a metric Turing machine, but we use the generic
term “Turing machine” to refer to all variants.
Solutions can be encoded into the single output value.
Just as with languages, we can group functions into classes based on the best
worst-case running time of a TM for evaluating them.
We can also define notions of reduction and completeness.

Function Classes
FP is the class of functions for which there exists a DTM that can
evaluate the function in time polynomial in the length of the input.
FNP is the class of functions for which there exists a NDTM that can
evaluate the function in time polynomial in the length of the input.
We denote by AB class of functions that are in complexity class A if we
are given an oracle for functions in class B.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 13 / 51

Optimization Functions

Let MaxA be the class of TFs for which the accepting states are associated only
with solutions of maximum value w.r.t. an underlying TF in class A.
Formally, we define the set MaxA of optimization functions by

f ∈ MaxA⇔ f (l) = (x, gl(x)) ∀l ∈ L,

where x ∈ argmaxy∈feas(l) gl(y) and L is a language in class A.
We can similarly define MinA and MidA and OptA = MaxA ∪MinA.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 14 / 51

Relationship of Turing Functions and Decision Problems

From any TF f , we can construct an associated decision problem as follows.
We define the hypograph of a TF f as

hypo(f) := {(l, k) | ∃x ∈ feas(l) s.t. gl(x) ≥ k}

This can be interpreted as a language specifying a decision problem.
This is the mapping we use to reduce optimization problems to decision problems.
We can similarly define the hypograph of classes of functions.

Similarly, we can either interpret decision problems as TFs with a Boolean
objective or specify a different objective function.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 15 / 51

Relationship of Complexity Classes

Theorem 1 (Krentel, 1987) f ∈ FPNP if and only if f (l) = h(l, g(l)), where
g ∈ OptNP and h ∈ FP.

Roughly, all functions that can be computed in polynomial time with an oracle
for a language complete for NP can be reduced to optimization functions.
It’s really true that “everything is optimization”!
We further have (Vollmer and Wagner, 1995)

NP = hypo(MaxNP)

coNP = hypo(MinNP)

PP = hypo(MedNP)

Krentel (1987) shows OptNP-completeness results for weighted SAT, Max-SAT,
TSP, 0-1 IP, and Knapsack.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 16 / 51

Outline

1 Introduction

2 Complexity
Basic Notions
Turing Functions
Multi-level Functions

3 Special Optimization Function
Separation Functions
Inverse Functions
Functions in Branch and Cut

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 17 / 51

The Polynomial Hierarchy

The polynomial hierarchy is a scheme for classifying multi-level and multi-stage
decision problems. We have

∆p
0 := Σp

0 := Πp
0 := P,

where P is the set of decision problems that can be solved in polynomial time. Higher
levels are defined recursively as:

∆p
k+1 := PΣp

k ,

Σp
k+1 := NPΣp

k , and

Πp
k+1 := coNPΣp

k .

PH is the union of all levels of the hierarchy.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 18 / 51

First Three Levels of the Hierarchy

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 19 / 51

Collapsing the Hierarchy

In general, we have

Σp
0 ⊆ Σp

1 ⊆ . . .Σ
p
k ⊆ . . .

Πp
0 ⊆ Πp

1 ⊆ . . .Π
p
k ⊆ . . .

∆p
0 ⊆ ∆p

1 ⊆ . . .∆
p
k ⊆ . . .

It is not known whether any of the inclusions are strict. We do have that

(Σp
k = Σp

k+1)⇒ Σp
k = Σp

j ∀j ≥ k

In particular, if P = NP, then every problem in the PH is solvable in polynomial time.
Similar results hold for the Π and ∆ hierarchies.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 20 / 51

Satisfiability Game

The canonical complete problem in PH is the k-player satisfiability game.
k players determine the value of a set of Boolean variables with each in control of a
specific subset.
In round i, player i determines the values of her variables.
Each player tries to choose values that force a certain end result, given that
subsequent players may be trying to achieve the opposite result.

Examples
k = 1: SAT
k = 2: The first player tries to choose values such that any choice by the second
player will result in satisfaction.
k = 3: The first player tries to choose values such that the second player cannot
choose values that will leave the third player without the ability to find satisfying
values.

Note that the odd players and the even players are essentially “working together”
and the same game can be described with only two players.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 21 / 51

More Formally

More formally, we are given a Boolean formula with variables partitioned into k
sets X1, . . . ,Xk.
The decision problem

∃X1∀X2∃X3 . . .?Xk

is complete for Σp
k .

The decision problem

∀X1∃X2∀X3 . . .?Xk

is complete for Πp
k .

A more general form of this problem, known as the quantified Boolean formula
problem (QBF) allows an arbitrary sequence of quantifiers.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 22 / 51

Reduction from SAT Game to Multi-level Optimization

It is easy to formulate SAT games as multi-level integer programs.
For k = 1, SAT can be formulated as the (feasibility) integer program

?∃x ∈ {0, 1}n :
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ 1 ∀j ∈ J. (SAT)

(SAT) can be re-formulated as the optimization problem

max
x∈{0,1}n

α

s.t.
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ α ∀j ∈ J

For k = 2, we then have

min
xI1∈{0,1}

I1
max

xI2∈{0,1}
I2
α

s.t.
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ α ∀j ∈ J

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 23 / 51

Complexity of Multi-Level Optimization

The reductions on the previous slide can be generalized to k levels.
For the k-level optimization problem, the optimal value is ≥ 1 if and only if the
first player has a winning strategy.
This means the satisfiability game can be reduced to the (decision) problem of
whether the optimal value ≥ 1?
This decision problem is then complete for Σp

k .
More generally, this means that (the decision version of) k-level mixed integer
programming is also complete for Σp

k .
By swapping the “min” and the “max,” we can get a similar decision problem
that is complete for Πp

k .

min
xN1∈{0,1}

N1
max

xN2∈{0,1}
N2
α

s.t.
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ α ∀j ∈ J

The question remains whether the optimal value is ≥ 1, but now we are asking it
with respect to a minimization problem.
Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 24 / 51

The Min-Max Hierarchy

The Min-Max hierarchy is a hierarchy of function classes defined by Krentel
(1992) mirroring the polynomial hierarchy.

∆MM
0 := ΣMM

0 := ΠMM
0 := FP,

∆MM
k+1 := FPΣMM

k ∪ΠMM
k ,

ΣMM
k+1 := MaxΠMM

k ,

ΠMM
k+1 := MinΣMM

k .

We can thus more accurately say that k-level maximization integer programs are
complete for ΣMM

k+1.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 25 / 51

Relationship of the Hierarchies

Many of the earlier results can be generalized. For example, we have (Vollmer
and Wagner, 1995)

Σp
k = hypo(ΣMM

k)

Also, any language L ∈ ∆p
k+1 can be expressed as L = {x | g(x, f (x))} for some

f ∈ ΣMM
k and some Boolean function g ∈ FP Krentel (1992).

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 26 / 51

Alternating Turing Machines

An alternating Turing machine (ATM) can directly model the computations
required to solve multi-level optimization problems.
In addition to accepting and rejecting states, these machines have two other
special classes of state.

The “∨” is accepting if there exists some configuration reachable in one step
that is accepting and rejecting otherwise (∃).

The “∧” is accepting if all configurations reachable in one step are accepting,
and rejecting otherwise (∀).

Another way of thinking of this is that the final result is obtained by combining
the states of all paths using the ∨ and ∧ operators.
Such a machine can switch between existential and universal quantification and
is thus capable of solving multi-level decision problems directly.
ΣMM

k can be defined as languages recognizable on a machine with at most k
alternations on any given path.
The canonical problem that can be solved by an ATM is the aforementioned
QBF problem.
Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 27 / 51

Metric ATMs

A metric version of an ATM is one for which each branch is associated with a
“max” or “min” operator.
The value output by the machine is calculated by combining the values in each
accepting state with the “max” and “min” operators.
Metric ATMs can solve general multi-level optimization problems.
Subtrees of the execution tree encode the value functions of lower level
problems.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 28 / 51

Outline

1 Introduction

2 Complexity
Basic Notions
Turing Functions
Multi-level Functions

3 Special Optimization Function
Separation Functions
Inverse Functions
Functions in Branch and Cut

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 29 / 51

Separation Functions

The membership problem for a set S and a point x is the decision problem of
determining whether x ∈ S.
An optimization version of this problem is

min
y∈S
‖y− x‖ (SEP)

for norm ‖ · ‖.
We call (SEP) the separation problem associated with S.
The separation function associated with f ∈ OptA, defined over a language L, is
an optimization function

f p
sep(x, l) = (y∗, ‖y∗ − x‖p),

where y∗ ∈ argminy∈feas(l) ‖y− x‖p for l ∈ L.
For f ∈ OptA with convex feasible set, f 2

sep is closely related to the usual
separation problem.

From the point y∗, we can obtain a separating hyperplane.
There are a number of alternative objective functions that can be employed.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 30 / 51

Equivalence of Optimization and Separation

The well-known equivalence of optimization and separation was proven
by Grötschel et al. (1988).
This result depends on the interpretation of the separation problem as an
optimization problem (we need the separating hyperplane).

Definition 1 If f ∈ OptA is an optimization function defined over a language L, f
is said to have a linear objective if ∃dl ∈ Rn such that gl(x) = d>l x ∀x ∈ feas(l).

We conjecture it is possible to state the result of GLS using functions, roughly as
follows.

Conjecture 1 (Grötschel et al., 1988) Let f be an optimization function defined
over a language L. If f has a linear objective and feas(l) is polyhedral for all
l ∈ L, then f ∈ OptA⇔ f 2

sep ∈ OptA.

We assume f 2
sep returns the separating hyperplane, so the complexity of f

implicitly depends on the facet complexity.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 31 / 51

Outline

1 Introduction

2 Complexity
Basic Notions
Turing Functions
Multi-level Functions

3 Special Optimization Function
Separation Functions
Inverse Functions
Functions in Branch and Cut

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 32 / 51

Inverse Problems

An inverse problem is one in which we want to determine the input that would
produce a given output.
To be more formal, let f be a TF defined over a language L.
For a given partial input l ∈ Γ∗ and a solution x, an inverse problem associated
with f is of the form

?∃̂l ∈ Γ∗ s.t. (̂l, l) ∈ L and f (̂l, l) = (x, g(x))

As stated, this is a decision problem with input (l, x).
In principle, it can be solved by an NDTM accepting the language

Linv = {(l, x) | ∃̂l ∈ Γ∗ s.t. (̂l, l) ∈ L and f (̂l, l) = (x, g(x))}

Conjecture 2 If Linv is the language arising from an inverse problem associated
with a TF f ∈ A, then Linv ∈ NPA.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 33 / 51

Inverse Functions

Inverse problems can also be expressed in the form of an optimization problem
by requiring a “target” l∗ as part of the input.
The challenge is to find a feasible completion of the input that is as close as
possible to the target.
Formally, we can define an inverse function f p

inv over the language Linv by adding
the objective function

g(l,x,l∗)(̂l) = ‖l− l̂‖p

We can generalize the previous conjecture to

Conjecture 3 If Linv is the language arising from an inverse problem associated
with a TF f ∈ A, then f∞inv , f

1
inv ∈ FNPA.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 34 / 51

Special Inverse Problems

When f has a linear objective function, we assume the objective vector is an
explicit part of the input.
Let a q be the description of a given feasible region, c ∈ Rn a given objective
function vector, and x ∈ feas(c, q).
Then the inverse problem for the `∞ norm can be stated as

min‖c− d‖∞
s.t. dTx ≤ dTy ∀y ∈ feas(c, q)

d ∈ Rn

This can be linearized, as follows
min z

s.t.

ci − di ≤ z ∀i ∈ {1, 2, . . . , n}
di − ci ≤ z ∀i ∈ {1, 2, . . . , n}
dTx ≤ dTy ∀y ∈ feas(c, q)

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 35 / 51

Complexity of Inverse Functions

Theorem 2 Let f ∈ MaxA be a TF defined over a language L such that feas(l) is
polyhedral for all l ∈ L and f has a linear objective function. Then
f∞inv , f

1
inv ∈ FPMaxA = FPA.

Proof: Follows from Theorem 1 (GLS).

Corollary 1 Inverse integer programming with the `∞ and `1 norms is in FPOptNP.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 36 / 51

Outline

1 Introduction

2 Complexity
Basic Notions
Turing Functions
Multi-level Functions

3 Special Optimization Function
Separation Functions
Inverse Functions
Functions in Branch and Cut

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 37 / 51

Multilevel Nature of Branch and Cut

Consider an instance of MILP

MILP

min{c>x | x ∈ P ∩ (Zp × Rn−p)}, (MILP)

where P = {x ∈ Rn
+ | Ax = b}, A ∈ Qm×n, b ∈ Qm, c ∈ Qn.

A branch-and-cut algorithm to solve this problem requires the solution of two
fundamental problems.

Definition 2 The separation problem for a polyhedron Q is to determine for a
given x̂ ∈ Rn whether or not x̂ ∈ Q and if not, to produce an inequality
(ᾱ, β̄) ∈ Rn+1 valid for Q and for which ᾱ>x̂ < β̄.

Definition 3 The branching problem for a set S is to determine for a given
x̂ ∈ Rn whether x̂ ∈ S and if not, to produce a disjunction∨

h∈Q
Ahx ≥ bh, x ∈ S (1)

that is satisfied by all points in S, but not satisfied by x̂.
Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 38 / 51

Multilevel Structure of the Separation Problem

Often, we wish to select an inequality that maximizes violation, i.e., (α, 1),
where

ᾱ ∈ argminα∈Rn{α>x̂ | α>x ≥ 1 ∀x ∈ Q} (2)

To make the problem tractable, we may restrict ourselves to a specific template
class of valid inequalities with well-defined structure.
Given a class C, calculation of the right-hand side β required to ensure (α, β) is
a member of C may itself be an optimization problem.
The separation problem for the class C with respect to a given x̂ ∈ Rn can in
principle be formulated as the bilevel program:

min α>x̂− β (3)
α ∈ Cα (4)

β = min
x∈PC
{α>x}, (5)

where the set Cα ⊆ Rn is the projection of C into the space of coefficient
vectors and PC is the closure over the class C.
Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 39 / 51

Formulating the Cut Generation Problem

In other words, Cα is the set of all vectors that are coefficients for some
inequality in C.
The upper-level objective (3) is to find the maximally violated inequality in the
class, while the upper-level constraints (4) require that the inequality is a
member of the class.
The lower-level problem (5) is to generate the strongest possible right-hand side
associated with a given coefficient vector, i.e., the largest β value among the
feasible ones.
The difficulty of the separation problem depends on the form of the right-hand
side generation problem.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 40 / 51

Example: Disjunctive cuts

Given a MIP in the form (MILP), Balas (1979) showed how to derive a valid
inequality by exploiting any fixed disjunction

π>x ≤ π0 OR π>x ≥ π0 + 1 ∀x ∈ Rn, (6)

where π ∈ Zn and π0 ∈ Z.
A disjunctive inequality is one valid for the convex hull of union of P1 and P2,
obtained by imposing the two terms of the disjunction.
The separation problem can be written as the following bilevel program:

min α>x̂− β (7)
α ≥ u>A− uoπ (8)
α ≥ v>A + voπ (9)
u, v, u0, v0 ≥ 0 (10)
u0 + v0 = 1 (11)
β = min{α>x | x ∈ P1 ∪ P2} (12)

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 41 / 51

Example: Disjunctive Cuts (cont.d)

Equation (12) requires β to have the largest value consistent with validity.
To ensure the cut is valid, we need only ensure that

β ≤ min{u>b− u0π0, v>b + v0(π0 + 1)}. (13)

Using the standard modeling trick, we can rewrite (13) as

β ≤ u>b− u0π0 (14)
β ≤ v>b + v0(π0 + 1). (15)

The sense of the optimization ensures that (13) holds at equality.

Theorem 3 For a fixed disjunction (π, π0), the separation function associated
with the disjunctive closure is in FP.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 42 / 51

Example: Capacity Constraints for CVRP

In the Capacitated Vehicle Routing Problem (CVRP), the capacity constraints
are of the form ∑

e={i,j}∈E
i∈S,j 6∈S

xe ≥ 2b(S) ∀S ⊂ N, |S| > 1, (16)

where b(S) is any lower bound on the number of vehicles required to serve
customers in set S.
By defining binary variables

yi = 1 if customer i belongs to S̄, and
ze = 1 if edge e belongs to δ(S̄),

we obtain the following bilevel formulation for the separation problem:

min
∑
e∈E

x̂eze − 2b(S̄) (17)

ze ≥ yi − yj ∀e ∈ E (18)
ze ≥ yj − yi ∀e ∈ E (19)
b(S̄) = max{b(S̄) | b(S̄) is a valid lower bound} (20)

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 43 / 51

Example: Capacity Constraints for CVRP (cont.d)

If the bin packing problem is used in the lower-level, the formulation becomes:

min
∑
e∈E

x̂eze − 2b(S̄) (21)

ze ≥ yi − yj ∀e = {i, j} (22)
ze ≥ yj − yi ∀e = {i, j} (23)

b(S̄) = min

n∑
`=1

h` (24)

n∑
`=1

w`i = yi ∀i ∈ N (25)∑
i∈N

diw`i ≤ Kh` ` = 1, . . . , n, (26)

where we introduce the additional binary variables
w`i = 1 if customer i is served by vehicle `, and
h` = 1 if vehicle ` is used.
Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 44 / 51

Complexity of the Separation Function for GSECs

Theorem 4 The optimization function described by (21)–(26) is in the complexity
class ΣMM

2 .

Proof: Reduction to 2-Quantified 1-in-3 SAT.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 45 / 51

Multi-level Structure of the Branching Problem

A typical criteria for selecting a branching disjunction is to maximize the bound
increase resulting from imposing the disjunction.
The problem of selecting the disjunction whose imposition results in the largest
bound improvement has a natural bilevel structure.

The upper-level variables can be used to model the choice of disjunction (we’ll see
an example shortly).
The lower-level problem models the bound computation after the disjunction has
been imposed.

In strong branching, we are solving this problem essentially by enumeration.
The bilevel branching paradigm is to select the branching disjunction directly by
solving a bilevel program.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 46 / 51

Example: Interdiction Branching

The following is a bilevel programming formulation for the problem of finding a
smallest branching set in interdiction branching:

max
∑

c>x (27)

s.t. (28)

c>x ≤ z̄ (29)
y ∈ Bn (30)

x ∈ arg max{c>x | xi + yi ≤ 1∀i ∈ Na, x ∈ Fa} (31)

where Fa is the feasible region of a given relaxation of the original problem used for
computing the bound.

Conjecture 4 The optimization function described by (27)–(31) is in the complexity
class ΣMM

2 .

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 47 / 51

Further Generalizations and Conclusions

We can generate separation and branching functions of any level in the
complexity hierarhcy by “looking ahead” multiple levels.
The separation functions for closures of rank > 1 are also likely in higher levels
of the hierarchy.
The framework presented here seems to be promising in terms of analyzing the
complexity of these and related multi-level optimization problems.
This is a first stab at a general framework, but I’m sure it could use tweaking.
If you have thoughts, feel free to talk to me.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 48 / 51

References I

Balas, E. 1979. Disjunctive programming. In Annals of Discrete Mathematics 5:
Discrete Optimization, pages 3–51. North Holland.

Garey, M. and D. Johnson 1979. Computers and Intractability: A Guide to the Thoery
of NP-Completeness. W.H. Freeman and Company.

Grötschel, M., L. Lovász, and A. Schrijver 1988. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, New York.

Krentel, M. 1987. The Complexity of Optimization Problems. Ph.D. thesis, Cornell
University.

— 1988. The complexity of optimization problems. Journal of Computer and System
Sciences 36, 490–509.

— 1992. Generalizations of optp to the polynomial hierarchy. Theoretical Computer
Science 97, 183–198.

Vollmer, H. and K. Wagner 1995. Complexity classes of optimization functions.
Information and Computation 120, 198–219.

Ralphs, et al. (COR@L Lab) Complexity and Multi-level Optimization MIP Workshop, 17 July 2012 49 / 51

	Introduction
	Complexity
	Basic Notions
	Turing Functions
	Multi-level Functions

	Special Optimization Function
	Separation Functions
	Inverse Functions
	Functions in Branch and Cut

	References

