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What Is This Talk About?

Duality in integer programming (and more generally)
Connecting some concepts.

Separation problem
Inverse optimization
Decomposition methods
Primal cutting plane algorithms for MILP

(a) (b)
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Setting

We focus on the case of the mixed integer linear optimization problem
(MILP), but many of the concepts are more general.

zIP = max
x∈S

c>x, (MILP)

where, c ∈ Rn, S = {x ∈ Zr × Rn−r | Ax ≤ b} with A ∈ Qm×n, b ∈ Qm.

For most of the talk, we consider the case r = n and P bounded for
simplicity.
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Duality in Mathematical Optimization

It is difficult to define precisely what is meant by “duality” in general
mathematics, though the literature is replete with various “dualities.”

Set Theory and Logic (De Morgan Laws)
Geometry (Pascal’s Theorem & Brianchon’s Theorem)
Combinatorics (Graph Coloring)

In optimization, duality is the central concept from which much theory
and computational practice emerges.

Forms of Duality in Optimization

NP versus co-NP (computational complexity)

Separation versus optimization (polarity)

Inverse optimization versus forward optimization

Weyl-Minkowski duality (representation theorem)

Economic duality (pricing and sensitivity)

Primal/dual functions/problems
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What is Duality Used For?

One way of viewing duality is as a tool for transformation.

Primal⇒ Dual

H-representation⇒ V-representation

Membership⇒ Separation

Upper bound⇒ Lower bound

Primal solutions⇒ Valid inequalities

Optimization methodologies exploit these dualities in various ways.

Solution methods based on primal/dual bounding

Generation of valid inequalities

Inverse optimization

Sensitivity analysis, pricing, warm-starting
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Duality in Integer Programming

The following generalized dual can be associated with the base
instance (MILP) (see Güzelsoy and Ralphs [2007])

min {F(b) | F(β) ≥ φD(β), β ∈ Rm,F ∈ Υm} (D)

where Υm ⊆ {f | f : Rm→R} and φD is the (dual) value function
associated with the base instance (MILP), defined as

φD(β) = max
x∈S(β)

c>x (DVF)

for β ∈ Rm, where S(β) = {x ∈ Zr × Rn−r | Ax ≤ β}.
We call F∗ strong for this instance if F∗ is a feasible dual function and
F∗(b) = φD(b).
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The Membership Problem

Membership Problem

Given x∗ ∈ Rn and polyhedron P , determine whether x∗ ∈ P .

For P = conv(S), the membership problem can be formulated as the
following LP.

min
λ∈RE

+

{
0>λ

∣∣∣ Eλ = x∗, 1>λ = 1
}

(MEM)

where E is the set of extreme points of P and E is a matrix whose
columns are the members of E .
When (MEM) is feasible, then we have a proof that x∗ ∈ P .
When (MEM) is infeasible, we obtain a separating hyperplane.
It is perhaps not too surprising that the dual of (MEM) is a variant of the
separation problem.
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The Separation Problem

Separation Problem

Given a polyhedron P and x∗ ∈ Rn, either certify x∗ ∈ P or deter-
mine (π, π0), a valid inequality for P , such that πx∗ > π0.

For P , the separation problem can be formulated as the dual of (MEM).

max
{
πx∗ − π0

∣∣∣ π>x ≤ π0 ∀x ∈ E , (π, π0) ∈ Rn+1
}

(SEP)

where E is the set of extreme points of P .

Note that we need some appropriate normalization.
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The Separation Problem

Assuming 0 is in the interior of P , we can normalize by taking π0 = 1.

In this case, we are optimizing over the 1-polar of P .

This is equivalent to changing the objective of (MEM) to min 1>λ.

We can interpret this essentially as how much we need to expand P in
order to include x∗.

If the result is more than one, x∗ is not in P , otherwise it is.
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The 1-Polar

Assuming 0 is in the interior of P , the set of all inequalities valid for P is

P∗ =
{
π ∈ Rn

∣∣∣ π>x ≤ 1 ∀x ∈ P
}

(1)

and is called its 1-polar.

Properties of the 1-Polar

P∗ is a polyhedron;

P∗∗ = P;

x ∈ P if and only if π>x ≤ 1 ∀π ∈ P∗;
If E andR are the extreme points and extreme rays of P ,
respectively, then

P∗ =
{
π ∈ Rn

∣∣∣ π>x ≤ 1 ∀x ∈ E , π>r ≤ 0 ∀r ∈ R
}
.

A converse of the last result also holds.
Separation can be interpreted as optimization over the polar.
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Separation Using an Optimization Oracle

We can solve (SEP) using a cutting plane algorithm that separates
intermediate solutions from the 1-polar.
The separation problem for the 1-polar of P is precisely a linear
optimization problem over P .
We can visualize this in the dual space as column generation wrt (MEM).
Example
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Separation Example: Iteration 1

Figure: Separating x∗ from P (Iteration 1)
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Separation Example: Iteration 2

Figure: Separating x∗ from P (Iteration 2)
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Separation Example: Iteration 3

Figure: Separating x∗ from P (Iteration 3)
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Separation Example: Iteration 4

Figure: Separating x∗ from P (Iteration 4)
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Separation Example: Iteration 5

Figure: Separating x∗ from P (Iteration 5)
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Inverse Problems

What is an inverse problem?
Given a function, an inverse problem is that of determining input that
would produce a given output.

The input may be partially specified.

We may want an answer as close as possible to a given target.

This is precisely the mathematical notion of the inverse of a function.

A value function is a function whose value is the optimal solution of an
optimization problem defined by the given input.

The inverse problem with respect to an optimization problem is to
evaluate the inverse of a given value function.
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Why is Inverse Optimization Useful?

Inverse optimization is useful when we can observe the result of solving an
optimization problem and we want to know what the input was.

Example: Consumer preferences
Let’s assume consumers are rational and are making decisions by
solving an underlying optimization problem.

By observing their choices, we try ascertain their utility function.

Example: Analyzing seismic waves
We know that the path of seismic waves travels along paths that
are optimal with respect to some physical model of the earth.

By observing how these waves travel during an earthquake, we can
infer things about the composition of the earth.
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Formal Setting

We consider the inverse of the (primal) value function φP, defined as

φP(d) = max
x∈S

d>x = min
x∈conv(S)

d>x ∀d ∈ Rn. (PVF)

With respect to a given x0 ∈ S, the inverse problem is defined as

min
{

f (d)
∣∣∣ d>x0 = φP(d)

}
, (INV)

The classical objective function is taken to be f (d) = ‖c− d‖, where c ∈ Rn

is a given target.
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A Small Example

The feasible set of the inverse problem is the set of objective vectors that
make x0 optimal.
This is precisely the dual of cone(S − {x0}), which is, roughly, a
translation of the polyhedron described by the inequalities binding at x0.

Figure: conv(S) and cone D of feasible objectives

Ralphs, Bulut (COR@L Lab) Separation, Inverse Optim., and Decomposition



Inverse Optimization as a Mathematical Program

To formulate as a mathematical program, we need to represent the
implicit constraints of (INV) explicitly.
The cone of feasible objective vectors can be described as

D =
{

d ∈ Rn
∣∣∣ d>x ≤ d>x0 ∀x ∈ S

}
(IFS)

Since P is bounded, we need only the inequalities corresponding to
extreme points of conv(S).
This set of constraints is exponential in size, but we can generate them
dynamically, as we will see.
Note that this corresponds to the set of inequalities valid for S that are
binding at x0.
Alternatively, it is the set of all inequalities valid for the so-called corner
relaxation with respect to x0.

Ralphs, Bulut (COR@L Lab) Separation, Inverse Optim., and Decomposition



Formulating the Inverse Problem

General Formulation

min f (d)

s.t. d>x ≤ d>x0 ∀x ∈ E (INVMP)

With f (d) = ‖c− d‖, this can be linearized for `1 and `∞ norms.

The separation problem for the feasible region is again optimization over
conv(S).
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Separation and Inverse Optimization

It should be clear that inverse optimization and separation are very
closely related.

First, note that the inequality

π>x ≤ π0 (PI)

is valid for P if and only if π0 ≥ φP(π).

We refer to inequalities of the form (PI) for which π0 = φP(π) as primal
inequalities.

This is as opposed to dual inequalities for which π0 = φπ(b), where φπ

is a dual function for (MILP) when the objective function is taken as π.

The feasible set of (INV) can be seen as the set of all valid primal
inequalities that are tight at x0.
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Primal Separation

Suppose we take f (d) = d>x0 − d>x∗ for given x∗ ∈ Rn.

Then this problem is something like the classical separation problem.

This variant is what Padberg and Grötschel [1985] called the primal
separation problem (see also Lodi and Letchford [2003]).

Their original idea was to separate x∗ with an inequality binding at the
current incumbent.

Taking x0 to be the current incumbent, this is exactly what we’re doing.

With this objective, we need a normalization to ensure boundedness, as
before.

A straightforward option is to take d>x0 = 1 (Note: For this
normalization, 0 must be in the interior of conv(S))

(INVMP) is then precisely the separation problem for the corner
relaxation with repsect to x0 (alternatively, the conic hull of S − {x0}).
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Dual of the Inverse Problem

Roughly speaking, the dual of (INVMP) is the membership problem for
cone(S − {x0}).

min
λ∈RE

+

{
0>λ

∣∣∣ Ēλ = x∗ − x0
}

(CMEM)

where Ē is the set of extreme rays of cone(S − {x0})
With the normalization, this becomes

min
λ∈RE

+

{
α
∣∣ Ēλ = x∗ − αx0} , (CMEMN)

We can interpret the value of α as the amont by which we need to shift x∗

along the direction x0 in order for it to be inside cone(S − {x0}).
If the optimal value is greater than one, then x∗ − x0 is not in the cone,
otherwise it is.
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Inverse Optimization with Forward Optimization Oracle

We can use an algorithm almost identical to the one from earlier.
We now generate inequalities valid for the corner relaxation associated
with x0.

Figure: x0 and P
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Inverse Example: Iteration 1

Figure: Solving the inverse problem for P (Iteration 1)
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Inverse Example: Iteration 2

Figure: Solving the inverse problem for P (Iteration 3)
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Inverse Example: Iteration 3

Figure: Solving the inverse problem for P (Iteration 3)
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Tractability of Inverse MILP

Theorem 1 Bulut and Ralphs [2015] Inverse MILP optimization prob-
lem under `∞/`1 norm is solvable in time polynomial in the size of the
problem input, given an oracle for the MILP decision problem.

This is a direct result of the well-known result of Grötschel et al. [1993].
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Complexity of Inverse MILP

Sets

K(γ) = {d ∈ Rn | ‖c− d‖ ≤ γ}
X (γ) = {x ∈ S | ∃d ∈ K(γ) s.t. d>(x0 − x) > 0},
K∗(γ) = {x ∈ Rn | d>(x0 − x) ≥ 0 ∀d ∈ K(γ)}.

Inverse MILP Decision Problem (INVD)

Inputs: γ, c, x0 ∈ S and MILP feasible set S.
Problem: Decide whether K(γ) ∩ D is non-empty.

Theorem 2 Bulut and Ralphs [2015] INVD is coNP–complete.

Theorem 3 Bulut and Ralphs [2015]Both (MILP) and (INV) optimal
value problems are Dp–complete.
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Connections to Constraint Decomposition

As usual, we divide the constraints into two sets.

max c>x

s.t. A′x ≤ b′ (the “nice” constraints)

A′′x ≤ b′′ (the “complicating” constraints)

x ∈ Zn

P ′ = {x ∈ Rn | A′x ≤ b′},
P ′′ = {x ∈ Rn | A′′x ≤ b′′},
P = P ′ ∩ P ′′,
S = P ∩ Zn, and

SR = P ′ ∩ Zn.

Ralphs, Bulut (COR@L Lab) Separation, Inverse Optim., and Decomposition



Reformulation

We replace the H-representation of the polyhedron P ′ with a
V-representation of conv(SR).

max c>x (2)

s.t.
∑
s∈E

λss = x (3)

A′′x ≤ b′′ (4)∑
s∈E

λs = 1 (5)

λ ∈ RE+ (6)

x ∈ Zn (7)

where E is the set of extreme points of conv(SR).
If we relax the integrality consraints (7), then we can also drop (3) and
we obtain a relaxation which is tractable.
This relaxation may yield a bound better than that of the LP relaxation.
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The Decomposition Bound

Using the aformentioned relaxation, we obtain a formulation for the so-called
decomposition bound.

zIP = max
x∈Zn

{
c>x

∣∣ A′x ≤ b′,A′′x ≤ b′′
}

zLP = max
x∈Rn

{
c>x

∣∣ A′x ≤ b′,A′′x ≤ b′′
}

zD = max
x∈conv(SR)

{
c>x

∣∣ A′′x ≤ b′′
}

zIP ≤ zD ≤ zLP

It is well-known that this bound can be computed using various
decomposition-based algorithms:

Lagrangian relaxation

Dantzig-Wolfe decomposition

Cutting plane method

Shameless plug: Try out DIP/DipPy!
A framework for switching between
various decomp-based algorithms.
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Example

max −x1

−x1 − x2 ≥ −8, (8)

−0.4x1 + x2 ≥ 0.3, (9)

x1 + x2 ≥ 4.5, (10)

3x1 + x2 ≥ 9.5, (11)

0.25x1 − x2 ≥ −3, (12)

7x1 − x2 ≥ 13, (13)

x2 ≥ 1, (14)

−x1 + x2 ≥ −3, (15)

−4x1 − x2 ≥ −27, (16)

−x2 ≥ −5, (17)

0.2x1 − x2 ≥ −4, (18)

x ∈ Z′′. (19)
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Example (cont)

Q′ = {x ∈ R2 | x satisfies (8)− (12)},
Q′′ = {x ∈ R2 | x satisfies (13)− (18)},
Q = Q′ ∩Q′′,
S = Q∩ Zn, and

SR = Q′ ∩ Zn.
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Constraint Decomposition in Integer Programming
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Geometry of Dantzig-Wolfe Decomposition
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Geometry of Dantzig-Wolfe Decomposition
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Geometry of Dantzig-Wolfe Decomposition
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Lagrange Cuts

Boyd [1990] observed that for u ∈ Rm
+, a Lagrange cut of the form

(c− uA′′)>x ≤ LR(u)− ub′′ (LC)

is valid for P .
If we take u∗ to be the optimal solution to the Lagrangian dual, then this
inequality reduces to

(c− u∗A′′)>x ≤ zD − ub′′ (OLC)

If we now take

xD ∈ argmax
{

c>x | A′′x ≤ b′′, (c− u∗A′′)>x ≤ zD − ub′′
}
,

then we have c>xD = zD.
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Connecting the Dots

Results

The inequality (OLC) is a primal inequality for conv(SR) wrt xD.

c− uA′′ is a solution to the inverse problem wrt conv(SR) and xD.

These properties also hold for e ∈ E such that λ∗e > 0 in the RMP.
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Conclusions and Future Work

We gave a brief overview of connections between a number of different
problems and methodologies.

Exploring these connections may be useful to improving intuition and
understanding.

The connection to primal cutting plane algorithms is still largely
unexplored, but may lead to new algorithms for inverse problems.

Much of that is discussed here can be further generalized to general
computation via Turing machines (useful?).
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Thank You!
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