
COIN-OR: Revving up the Engine

TED RALPHS
ISE Department
COR@L Lab

Lehigh University
ted@lehigh.edu

INFORMS, Austin, 9 November 2010

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 1 / 63

Outline

1 Introduction to COIN

2 Overview of Projects

3 Using COIN
Optimization Services
CHiPPS
DECOMP

4 Conclusion

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 2 / 63

Brief History of COIN-OR

TheCommon Optimization Interface for Operations Research Initiativewas an
initiative launched by IBM at ISMP in 2000.

IBM seeded an open source repository with four initial projects and created a
Web site.

The goal was to develop the project and then hand it over to thecommunity.

The project has now grown to be self-sustaining and was spun off as a nonprofit
educational foundation in the U.S. several years ago.

The name was also changed to theComputational Infrastructure for Operations
Researchto reflect a broader mission.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 3 / 63

What is COIN-OR Today?

The COIN-OR Foundation

A non-profit foundationpromoting the development and use of
interoperable, open-source software for operations research.

A consortiumof researchers in both industry and academia dedicated to
improving the state of computational research in OR.

A venuefor developing and maintaining standards.

A forumfor discussion and interaction between practitioners and
researchers.

The COIN-OR Repository

A collectionof interoperable software tools for building optimization
codes, as well as a few stand alone packages.

A venue for peer reviewof OR software tools.

A development platformfor open source projects, including a wide range
of project management tools.

Seewww.coin-or.org for more information.
T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 4 / 63

What You Can Do With COIN

We currently have 40+ projects and more are being added all the time.

Most projects are now licensed under theEPL(very permissive).

COIN has solvers for most common optimization problem classes.
Linear programming
Nonlinear programming
Mixed integer linear programming
Mixed integer nonlinear programming(convex and nonconvex)
Stochastic linear programming
Semidefinite programming
Graph problems
Combinatorial problems(VRP, TSP, SPP, etc.)

COIN has various utilities for reading/building/manipulating/preprocessing
optimization models and getting them into solvers.

COIN has overarching frameworks that support implementation of broad
algorithm classes.

Parallel search
Branch and cut (and price)
Decomposition-based algorithms

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 6 / 63

COIN-OR Projects Overview: Linear Optimization

Clp: COIN LP Solver

Project Manager: Julian Hall

DyLP: An implementation of the dynamic simplex method

Project Manager: Lou Hafer

Cbc: COIN Branch and Cut

Project Manager: Ted Ralphs

SYMPHONY: a flexible integer programming package that supports sharedand
distributed memory parallel processing, biobjective optimization, warm starting,
sensitivity analysis, application development, etc.

Project Manager: Ted Ralphs

BLIS: Parallel IP solver built to test the scalability of the CHiPPS framework.

Project Manager: Ted Ralphs

Cgl: A library of cut generators

Project Manager: Robin Lougee

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 8 / 63

COIN-OR Projects Overview: Nonlinear Optimization

Ipopt: Interior Point OPTimizer implements interior point methods for solving
nonlinear optimization problems.

Project Manager: Andreas Wächter

Bonmin:Basic Open-source Nonlinear Mixed INteger programming is for
(convex) nonlinear integer programming.

Project Manager: Pierre Bonami

Couenne:Solver for nonconvex nonlinear integer programming problems.

Project Manager: Pietro Belotti

DFO: An algorithm for derivative free optimization.

Project Manager: Katya Scheinburg

CSDP:A solver for semi-definite programs

Project Manager: Brian Borchers

OBOE:Oracle based optimization engine

Project Manager: Nidhi Sawhney

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 10 / 63

COIN-OR Projects Overview: Modeling

FLOPC++:An open-source modeling system.

Project Manager: Tim Hultberg

Pyomo:A python-based modeling language.

Project Manager: Bill Hart

PuLP:Another python-based modeling language.

Project Manager: Stu Mitchell

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 12 / 63

COIN-OR Projects Overview: Interfaces and Solver Links

Osi: Open solver interface is a generic API for linear and mixed integer linear
programs.

Project Manager: Matthew Saltzman

GAMSlinks: Allows you to use the GAMS algebraic modeling language and call
COIN-OR solvers.

Project Manager: Stefan Vigerske

AIMMSlinks: Allows you to use the AIMMS modeling system and call
COIN-OR solvers.

Project Manager: Marcel Hunting

MSFlinks:Allows you to call COIN-OR solvers through Miscrosoft Solver
Foundation.

Project Manager: Lou Hafer

CoinMP:A callable library that wraps around CLP and CBC, providing an API
similar to CPLEX, XPRESS, Gurobi, etc.

Project Manager: Bjarni Kristjansson

Optimization Services:A framework defining data interchange formats and
providing tools for calling solvers locally and remotely through Web services.

Project Managers: Jun Ma, Gus Gassmann, and Kipp Martin
T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 14 / 63

COIN-OR Projects Overview: Frameworks

Bcp: A generic framework for implementing branch, cut, and pricealgorithms.

Project Manager: Laci Ladanyi

CHiPPS:A framework for developing parallel tree search algorithms.

Project Manager: Ted Ralphs

DIP: A framework for implementing decomposition-based algorithms for integer
programming, including Dantzig-Wolfe, Lagrangian relaxation, cutting plane,
and combinations.

Project Manager: Ted Ralphs

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 16 / 63

COIN-OR Projects Overview: Miscellaneous

CoinBazaar:A collection of examples, application codes, utilities, etc.

Project Manager: Bill Hart

Coopr:A collection of Python-based utilities

Project Manager: Bill Hart

Cgc: Coin graph class utilities, etc.

Project Manager: Phil Walton

LEMON: Library of Efficient Models and Optimization in Networks

Project Manager: Alpar Juttner

METSlib: METSlib, an object oriented metaheuristics optimization framework
and toolkit in C++

Project Manager: Mirko Maischberger

PFunc:Parallel Functions, a lightweight and portable library that provides C and
C++ APIs to express task parallelism

Project Manager: Prabhanjan Kambadur

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 18 / 63

CoinAll, CoinBinary, BuildTools, and TestTools

Many of the tools mentioned interoperate by using the configuration and build
utilities provided by theBuildTools project.

TheBuildTools includes autoconf macros and scripts that allow PMs to
smoothly integrate code from other projects into their own.

TheCoinAll project is an über-project that includes a set of mutually
interoperable projects and specifies specific sets of versions that are compatible.

TheTestTools project is the focal point for testing of COIN code.

TheCoinBinary project is a long-term effort to provide pre-built binariesfor
popular platforms.

Installers for Windows
RPMs for Linux
.debs for Linux

You can downloadCoinAll (source and/or binaries) here:

http://projects.coin-or.org/svn/CoinBinary/CoinAll/
http://www.coin-or.org/download/binary/CoinAll

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 20 / 63

The Old Build Philosophy

The root directory of each project contains scripts for detecting the presence of
sources.

The source for each project is contained in a subdirectory.

The source for externals are checked out into subdirectories at the same level
using the SVN externals

Difficulties
To tweak and build the source of one library, the sources of all libraries must be
present.
Cannot mix and match versions very easily.
No smooth upgrade path.
Not very compatible with the philosophy of RPMs and .debs
Difficult to determine dependencies for building apps against installed libararies.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 21 / 63

New Build Philosophy

The new philosophy is to de-couple projects.
Libraries and binaries packaged separately for each project.
Down-stream dependencies managed by installer, RPM, .deb,or pkg-config.
Smooth upgrade path.
Separate release cycles for each project.

New features supporting this philosophy
Libtool library versioning.
Support for pkg-config.
Build against installed binaries.
Third party open source projects treated in the same way as COIN projects.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 22 / 63

Building Projects (old style)

For MSVC++, there are project files provided.

In *nix environments (Linux, Solaris, AIX, CYGWIN, MSys, etc.)

Installing CoinAll
svn co http://projects.coin-or.org/svn/CoinBinary/CoinAll/releases/1.5.0 \

CoinAll-1.5.0
cd CoinAll-1.5.0
./get.AllThirdParty
mkdir build
cd build
../configure --enable-gnu-packages -C [--prefix=/path/to/install/location]
make -j 2
make test
make install

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 23 / 63

Building Projects (new style)

Assuming libraries are already installed in/path/to/install/location

Tweaking a Single Library
svn co http://projects.coin-or.org/svn/Cbc/stable/2.6/Cbc Cbc-2.6
cd Cbc-2.6
mkdir build
cd build
../configure --enable-gnu-packages -C --prefix=/path/to/install/location
make -j 2
make test
make install

Note that this checks out Cbc without externals and links against installed
libraries.

Old style builds will still work.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 24 / 63

Usingpkg-config

pkg-config is a utility available on most *nix systems.

It helps automatically determine how to build against installed libraries.

To determine the libraries that need to be linked against, the command is

pkg-config --libs cbc

To determine the flags that should be given to the compiler, the command is

pkg-config --cflags cbc

Note that the user no longer needs to know what any of the downstream
dependencies are.

Depending on the install location, may need to set the environment variable
PKG_CONFIG_PATH.

The .pc files are installed in
/path/to/install/location/lib/pkgconfig.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 25 / 63

Libtool versioning (shared libraries)

Libtools versioning allows smooth upgrading without breaking existing builds.

The libtool version number indicates backward compatibility.

Versions of the same library can be installed side-by-side (version number is
encoded in the name).

When a new version of a library is installed, codes built against the older library
are automatically linked to the new version (if it is backward compatible).

Based on concepts ofage, current, andrevision

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 26 / 63

Installers

Coming soon!

We are developing cross-platform installers using the opensource InstallJammer.

We’ll be (re)deploying RPM and .deb support over the next fewmonths.

COIN can already be installed withapt-get on Ubuntu.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 27 / 63

Entry Points: CoinBazaar and Application Templates

CoinBazaar is a collection of examples, utilities, and light-weight applications
built using COIN-OR.

Application Templates is a project within CoinBazaar that provides templates for
different kinds of projects.

In CoinAll, it’s in theexamples directory.

Otherwise, get it with

svn co https://projects.coin-or.org/svn/CoinBazaar/projects/
es/1.0.0

Examples
Branch-cut-price
Algorithmic differentiation
Cgl cuts

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 29 / 63

Entry Points: CoinEasy

How to get started quickly with COIN.

Talk about this later in the session.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 31 / 63

Entry Points: Optimization Services (OS)

Optimization Services (OS) integrates numerous COIN-OR projects. The OS project
provides:

A set ofXML based standardsfor representing optimization instances (OSiL),
optimization results (OSrL), and optimization solver options (OSoL).

A uniform API for constructing optimization problems (linear, nonlinear,
discrete) and passing them to solvers.

A command line executableOSSolverService for reading problem
instances in several formats and calling a solver either locally or remotely.

Utilities that convert AMPL nl and MPS files into the OSiL format.

Client side software for creatingWeb ServicesSOAP packages with OSiL
instances and contact a server for solution.

Standards that facilitate the communication between clients and solvers using
Web Services.

Server softwarethat works with Apache Tomcat.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 33 / 63

Solving a Problem on the Command Line

The OS project provides an single executableOSSolverService that can be
used to call most COIN solvers.

To solve a problem in MPS format

OSSolverService -mps ../../data/mpsFiles/parinc.mps

The solver also accepts AMPL nl and OSiL formats.

You can display the results in raw XML, but it’s better to print to a file to be
parsed.

OSSolverService -osil ../../data/osilFiles/parincLinear.osil
-osrl result.xml

You can then display the solution in a browser using XSLT.

Copy the stylesheets to your output directory.
Open in your browser

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 34 / 63

Specifying a Solver

OSSolverService -osil ../../data/osilFiles/p0033.osil
-solver cbc

To solve alinear program set the solver options to:

clp

dylp

To solve amixed integer linear program set the solver options to:

cbc

symphony

To solve acontinuous nonlinear program set the solver options to:

ipopt

To solve amixed integer nonlinear program set the solver options to:

bonmin

couenne

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 35 / 63

Calling a Solver Remotely

You can use the OSSolverService to call a solver remotely using Web services.

OSSolverService -osil ../../data/osilFiles/p0033.osil
-solver cbc
-serviceLocation
http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 36 / 63

Getting a Model into the Solver

What is the point of the OSiL format?
Provides a single interchange standard for all classes of mathematical programs.
Makes it easy to use existing tools for defining Web services,etc.
Generally, however, one would not build an OSiL file directly.

To construct a model and pass it to a COIN solver, there are several routes.

Use a modeling language—AMPL, GAMS, MPL, and AIMMS all work with
COIN-OR solvers.
Use FlopC++.
Use Pyomo or PuLP.
Build the instance in memory using COIN-OR utilities.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 38 / 63

Using AMPL with OS

To use OS to call solvers in AMPL, you specify theOSAmplClient as the solver.

model hs71.mod;
tell AMPL that the solver is OSAmplClient
option solver OSAmplClient;

now tell OSAmplClient to use Ipopt
option OSAmplClient_options "solver ipopt";

now solve the problem
solve;

In order to call a remote solver service, set the solverservice option to the address
of the remote solver service.

option ipopt_options
"service http://webdss.ise.ufl.edu:2646/OSServer/services/OSSolverService";

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 39 / 63

Building a Model in Memory using OS

Step 1: Construct an instance in a solver-independent format using the OS API.
Step 2:Create a solver object

CoinSolver *solver = new CoinSolver();
solver->sSolverName = "clp";

Step 3: Feed the solver object the instance created in Step 1.

solver->osinstance = osinstance;

Step 4: Build solver-specific model instance

solver->buildSolverInstance();

Step 5: Solve the problem.

solver->solve();

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 40 / 63

Building an OS Instance

TheOSInstance class provides an API for constructing models and getting those
models into solvers.

set() andadd() methods for creating models.

get() methods for getting information about a problem.

calculate() methods for finding gradient and Hessians using algorithmic
differentiation.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 42 / 63

Building an OS Instance (cont.)

Create anOSInstance object.

OSInstance *osinstance = new OSInstance();

Put some variables in

osinstance->setVariableNumber(2);
osinstance->addVariable(0, "x0", 0, OSDBL_MAX, ’C’, OSNAN, "");
osinstance->addVariable(1, "x1", 0, OSDBL_MAX, ’C’, OSNAN, "");

There are methods for constructing

the objective function
constraints with all linear terms
quadratic constraints
constraints with general nonlinear terms

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 43 / 63

Other Options for Linear Problems

CoinUtils has a number of utilities for constructing instances.
PackedMatrix andPackedVector classes.
CoinBuild
CoinModel

Osi provides an interface for building models and getting them into solvers for
linear probes.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 45 / 63

Quick Introduction to CHiPPS

CHiPPS stands for COIN-OR High Performance Parallel Search.

CHiPPS is a set of C++ class libraries for implementingtree searchalgorithms
for both sequential and parallel environments.

CHiPPS Components (Current)

ALPS (Abstract Library for Parallel Search)

is the search-handling layer (parallel and sequential).
provides various search strategies based on node priorities.

BiCePS (Branch, Constrain, and Price Software)

is the data-handling layer for relaxation-based optimization.
adds notion ofvariablesandconstraints.
assumes iterative bounding process.

BLIS (BiCePS Linear Integer Solver)

is a concretization of BiCePS.
specific to models withlinearconstraints and objective function.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 46 / 63

ALPS: Design Goals

Intuitive object-oriented class structure.
AlpsModel
AlpsTreeNode
AlpsNodeDesc
AlpsSolution
AlpsParameterSet

Minimal algorithmic assumptions in the base class.
Support for a wide range of problem classes and algorithms.
Support for constraint programming.

Easy for user to develop a custom solver.

Design forparallel scalability, but operate effective in a sequential environment.

Explicit support formemory compression techniques (packing/differencing)
important for implementing optimization algorithms.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 47 / 63

ALPS: Overview of Features

The design is based on a very general concept ofknowledge.

Knowledge is sharedasynchronouslythroughpools andbrokers.

Management overhead is reduced with themaster-hub-worker paradigm.

Overhead is decreased usingdynamic task granularity.

Two static load balancingtechniques are used.

Threedynamic load balancingtechniques are employed.

Usesasynchronousmessaging to the highest extent possible.

A scheduler on each process manages tasks like
node processing,
load balaning,
update search states, and
termination checking, etc.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 48 / 63

Knowledge Sharing

All knowledge to be shared is derived from a single base classand has an
associatedencoded form.

Encoded form is used foridentification, storage, andcommunication.

Knowledge is maintained by one or moreknowledge pools.

The knowledge pools communicate throughknowledge brokers.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 49 / 63

Master-Hub-Worker Paradigm

Master WorkersHubs

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 50 / 63

Alps Class Hierarchy

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 51 / 63

Using ALPS: A Knapack Solver

The formulation of the binary knapsack problem is

max{
m∑

i=1

pixi :

m∑

i=1

sixi ≤ c, xi ∈ {0, 1}, i = 1, 2, . . . , m}, (1)

We derive the following classes:

KnapModel (fromAlpsModel) : Stores the data used to describe the
knapsack problem and implementsreadInstance()

KnapTreeNode (fromAlpsTreeNode) : Implementsprocess() (bound)
andbranch()

KnapNodeDesc (fromAlpsNodeDesc) : Stores information about which
variables/items have been fixed by branching and which are still free.

KnapSolution (fromAlpsSolution) Stores a solution (which items are in
the knapsack).

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 52 / 63

Using ALPS: A Knapack Solver

Then, supply the main function.

int main(int argc, char* argv[])
{

KnapModel model;

#if defined(SERIAL)
AlpsKnowledgeBrokerSerial broker(argc, argv, model);

#elif defined(PARALLEL_MPI)
AlpsKnowledgeBrokerMPI broker(argc, argv, model);

#endif

broker.search();
broker.printResult();
return 0;

}

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 53 / 63

BiCePS: Support for Relaxation-based Optimization

Adds notion ofmodeling objects (variables and constraints).

Models are built from sets of such objects.

Bounding is an iterative process that produces new objects.

A differencing scheme is used to store the difference between the descriptions of
a child node and its parent.

struct BcpsObjectListMod template<class T>
{ struct BcpsFieldListMod

int numRemove; {
int* posRemove; bool relative;
int numAdd; int numModify;
BcpsObject **objects; int *posModify;
BcpsFieldListMod<double> lbHard; T *entries;
BcpsFieldListMod<double> ubHard; };
BcpsFieldListMod<double> lbSoft;
BcpsFieldListMod<double> ubSoft;

};

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 54 / 63

BLIS: A Generic Solver for MILP

MILP

min cTx (2)

s.t. Ax ≤ b (3)

xi ∈ Z ∀ i ∈ I (4)

where(A, b) ∈ R
m×(n+1), c ∈ R

n.

Basic Algorithmic Components

Bounding method.

Branching scheme.

Object generators.

Heuristics.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 55 / 63

BLIS: Branching Scheme

BLIS Branching scheme comprise three components:

Object: has feasible region and can be branched on.

Branching Object:
is created from objects that do not lie in they feasible regions or objects that will be
beneficial to the search if branching on them.
contains instructions for how to conduct branching.

Branching method:
specifies how to create a set of candidate branching objects.
has the method to compare objects and choose the best one.

pgflastimage

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 56 / 63

BLIS: Constraint Generators

BLIS constraint generator:

provides an interface between BLIS and the algorithms in COIN/Cgl.

provides a base class for deriving specific generators.

has the ability to specify rules to control generator:
where to call: root, leaf?
how many to generate?
when to activate or disable?

contains the statistics to guide generating.

pgflastimage

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 57 / 63

BLIS: Heuristics

BLIS primal heuristic:

defines the functionality to search for solutions.

has the ability to specify rules to control heuristics.
where to call: before root, after bounding, at solution?
how often to call?
when to activate or disable?

collects statistics to guide the heuristic.

provides a base class for deriving specific heuristics.

pgflastimage

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 58 / 63

BLIS Applications

BLIS can be customized easily by deriving the base C++ classes.

Sample Applications (Scott DeNegre, Ted Ralphs, Yan Xu, andothers)

Vehicle Routing Problem (VRP)

Traveling Salesman Problem (TSP)

Mixed Integer Bilevel Programming (MiBS)

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 59 / 63

BLIS Applications: VRP Formulation

min
∑

e∈E

cexe

∑

e={0,j}∈E

xe = 2k, (5)

∑

e={i,j}∈E

xe = 2 ∀i ∈ N, (6)

∑

e={i,j}∈E
i∈S,j/∈S

xe ≥ 2b(S) ∀S ⊂ N, |S| > 1, (7)

0 ≤ xe ≤ 1 ∀e = {i, j} ∈ E, i, j 6= 0, (8)

0 ≤ xe ≤ 2 ∀e = {i, j} ∈ E, (9)

xe ∈ Z ∀e ∈ E. (10)

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 60 / 63

BLIS Applications: VRP

First, derive a few subclasses to specify the algorithm and model

VrpModel (fromBlisModel),

VrpSolution (fromBlisSolution),

VrpCutGenerator (fromBlisConGenerator),

VrpHeurTSP (fromBlisHeuristic),

VrpVariable (fromBlisVariable), and

VrpParameterSet (fromAlpsParameterSet).

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 61 / 63

BLIS Applications: VRP (cont.)

int main(int argc, char* argv[])
{

OsiClpSolverInterface lpSolver;
VrpModel model;
model.setSolver(&lpSolver);

#ifdef COIN_HAS_MPI
AlpsKnowledgeBrokerMPI broker(argc, argv, model);

#else
AlpsKnowledgeBrokerSerial broker(argc, argv, model);

#endif
broker.search(&model);
broker.printBestSolution();
return 0;

}

Shameless Self-Promotion

In October, 2007, the VRP/TSP solver won the Open Contest of Parallel
Programming at the 19th International Symposium on Computer Architecture

and High Performance Computing.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 62 / 63

DECOMP Framework: Motivation

DECOMP Framework

DECOMPis a software framework that provides a virtual sandbox for testing and comparing various
decomposition-based bounding methods.

It’s difficult to compare variants of decomposition-based algorithms.

The method for separation/optimization over a given relaxation is the primary custom component of
any of these algorithms.

DECOMPabstracts the common, generic elements of these methods.

Key: The user defines methods in the space of the compact formulation.
The framework takes care of reformulation and implementation for all variants.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 63 / 63

DECOMP Framework: Motivation

DECOMP Framework

DECOMPis a software framework that provides a virtual sandbox for testing and comparing various
decomposition-based bounding methods.

It’s difficult to compare variants of decomposition-based algorithms.

The method for separation/optimization over a given relaxation is the primary custom component of
any of these algorithms.

DECOMPabstracts the common, generic elements of these methods.

Key: The user defines methods in the space of the compact formulation.
The framework takes care of reformulation and implementation for all variants.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 63 / 63

DECOMP Framework: Motivation

DECOMP Framework

DECOMPis a software framework that provides a virtual sandbox for testing and comparing various
decomposition-based bounding methods.

It’s difficult to compare variants of decomposition-based algorithms.

The method for separation/optimization over a given relaxation is the primary custom component of
any of these algorithms.

DECOMPabstracts the common, generic elements of these methods.

Key: The user defines methods in the space of the compact formulation.
The framework takes care of reformulation and implementation for all variants.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 63 / 63

Traditional Decomposition Methods

TheCutting Plane Method (CP)iteratively builds anouter approximation ofP ′ by solving acutting plane
generation subproblem.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 64 / 63

Traditional Decomposition Methods

TheCutting Plane Method (CP)iteratively builds anouter approximation ofP ′ by solving acutting plane
generation subproblem.

The Dantzig-Wolfe Method (DW)iteratively builds aninner approximation ofP ′ by solving acolumn
generation subproblem.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 64 / 63

Traditional Decomposition Methods

TheCutting Plane Method (CP)iteratively builds anouter approximation ofP ′ by solving acutting plane
generation subproblem.

The Dantzig-Wolfe Method (DW)iteratively builds aninner approximation ofP ′ by solving acolumn
generation subproblem.

TheLagrangian Method (LD)iteratively solves aLagrangian relaxation subproblem.

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 64 / 63

Common Threads

TheLP boundis obtained by optimizing over the intersection of two explicitly
defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

Thedecomposition boundis obtained by optimizing over the intersection of one
explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomposition-based bounding methods contain two primary steps

Master Problem: Update the primal/dualsolutioninformation.

Subproblem: Update theapproximationof P ′: SEP(x,P ′) or
OPT(c,P ′).

Integrated decomposition methodsfurther improve the bound by considering two
implicitly defined polyhedra whose descriptions are iteratively refined.

Price and Cut(PC)

Relax and Cut(RC)

Decompose and Cut(DC)

Q′′

Q′ ∩ Q′′

c⊤

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 65 / 63

Common Threads

TheLP boundis obtained by optimizing over the intersection of two explicitly
defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

Thedecomposition boundis obtained by optimizing over the intersection of one
explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomposition-based bounding methods contain two primary steps

Master Problem: Update the primal/dualsolutioninformation.

Subproblem: Update theapproximationof P ′: SEP(x,P ′) or
OPT(c,P ′).

Integrated decomposition methodsfurther improve the bound by considering two
implicitly defined polyhedra whose descriptions are iteratively refined.

Price and Cut(PC)

Relax and Cut(RC)

Decompose and Cut(DC)

Q′′

Q′ ∩ Q′′

P
′
∩ Q

′′

c⊤

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 65 / 63

Common Threads

TheLP boundis obtained by optimizing over the intersection of two explicitly
defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

Thedecomposition boundis obtained by optimizing over the intersection of one
explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomposition-based bounding methods contain two primary steps

Master Problem: Update the primal/dualsolutioninformation.

Subproblem: Update theapproximationof P ′: SEP(x,P ′) or
OPT(c,P ′).

Integrated decomposition methodsfurther improve the bound by considering two
implicitly defined polyhedra whose descriptions are iteratively refined.

Price and Cut(PC)

Relax and Cut(RC)

Decompose and Cut(DC)

Q′′

Q′ ∩ Q′′

P
′
∩ Q

′′

c⊤

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 65 / 63

DECOMP Framework

TheDECOMPframework, written in C++, is accessed through two user interfaces:

Applications Interface: DecompApp
Algorithms Interface: DecompAlgo

DECOMPprovides the bounding method for branch and bound.

ALPS(Abstract Library for Parallel Search) provides the framework for parallel tree search.

AlpsDecompModel : public AlpsModel
a wrapper class that calls (data access) methods fromDecompApp

AlpsDecompTreeNode : public AlpsTreeNode
a wrapper class that calls (algorithmic) methods fromDecompAlgo

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 66 / 63

DECOMP Framework

TheDECOMPframework, written in C++, is accessed through two user interfaces:

Applications Interface: DecompApp
Algorithms Interface: DecompAlgo

DECOMPprovides the bounding method for branch and bound.

ALPS(Abstract Library for Parallel Search) provides the framework for parallel tree search.

AlpsDecompModel : public AlpsModel
a wrapper class that calls (data access) methods fromDecompApp

AlpsDecompTreeNode : public AlpsTreeNode
a wrapper class that calls (algorithmic) methods fromDecompAlgo

T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 66 / 63

COIN needs your help!

Contribute a project

Help develop an existing project

Use projects and report bugs

Volunteer to review new projects

Develop documentation

Develop Web site

Chair a committee

Questions? & Thank You!
T.K. Ralphs (Lehigh University) COIN-OR 9 November 2010 67 / 63

	Introduction to COIN
	Overview of Projects
	Using COIN
	Optimization Services
	CHiPPS
	DECOMP

	Conclusion

