Branch, Cut, and Price for Capacitated Network Routing

Ted Ralphs
Joe Hartman
Matt Galati

Industrial and Systems Engineering
Lehigh University

INFORMS Conference, Miami, November 5, 2001
Outline of Talk

- Introduction and Motivation
- Modeling
- Complexity and Special Cases
- Polyhedral Structure
- Implementation
- Computational Issues and Results
- Future Directions
The Vehicle Routing Problem

The VRP is a combinatorial problem whose ground set is the edges of a graph $G(V, E)$. Notation:

- V is the set of customers and the depot (0).
- d is a vector of the customer demands.
- k is the number of routes.
- C is the capacity of a truck.

A feasible solution is composed of:

- a partition \(\{R_1, \ldots, R_k\}\) of V such that $\sum_{j \in R_i} d_j \leq C$, $1 \leq i \leq k$;
- a permutation σ_i of $R_i \cup \{0\}$ specifying the order of the customers on route i.
Standard IP Formulation for the VRP

IP Formulation:

\[
\sum_{j=1}^{n} x_{0j} = 2k \\
\sum_{j=1}^{n} x_{ij} = 2 \quad \forall i \in V \setminus \{0\} \\
\sum_{\substack{i \in S \atop j \not\in S}} x_{ij} \geq 2b(S) \quad \forall S \subset V \setminus \{0\}, \ |S| > 1.
\]

\(b(S) = \text{lower bound on the number of trucks required to service } S\) (normally \(\lceil \left(\sum_{i \in S} d_i \right)/C \rceil\)).

If \(C = \sum_{i \in S} d_i\), then we have the Multiple Traveling Salesman Problem.

Alternatively, if the edge costs are all zero, then we have the Bin Packing Problem.
How hard is the VRP?

- **Test Set**
 - TSPLIB/VRPLIB
 - Augerat’s repository
 - Available at BranchAndCut.org/VRP

- Largest VRP instance solved: F-n135-k7

- Smallest VRP instance unsolved: B-n50-k8

- Largest TSP instance solved: usa13509

- Time to solve B-n50-k8 as an MTSP: .1 sec

- Why the gap?
Motivation

• Why is the Vehicle Routing Problem difficult?

• It is the intersection of two difficult problems.
 – Traveling Salesman Problem (Routing)
 – Bin Packing Problem (Packing)

• We don’t have an effective, polynomially sized relaxation.

• Current approaches treat it as a routing problem.

• We know very little about the packing aspect.

• Idea: Consider flow-based formulations.
Node Routing

- We are given an undirected graph $G = (V, E)$.
 - The nodes represent supply/demand points.
- We consider problems with one supply point (the depot).
- A node routing is a directed subgraph G' of G satisfying the following properties:
 - G' is (weakly) connected.
 - The in-degree of each non-depot node is 1.
Capacitated Routing

- A *capacitated node routing* is one in which the demand in each component of $G' \setminus \{0\}$ is $\leq C$.
- Feasible solutions are bin packings.
- This restriction is easily modeled using a flow-based formulation.
- With capacities, we can model the VRP and the Capacitated Spanning Tree Problem (CSTP).
Optimal Node Routing

• Properties of a node routing.
 – It is a spanning arborescence plus (possibly) some edges returning to the depot.
 – There is a unique path from the depot to each demand point.

• We wish to construct a least cost routing.

• Cost Measures
 – Lengths of all edges in G'.
 – Length of all paths from the depot.
 – Linear combination of these two.
IP Formulation

IP formulation for this routing problem:

\[
\text{Min} \quad \sum_{(i,j) \in A} \gamma c_{ij} x_{ij} + \tau c_{ij} f_{ij}
\]

s.t.

\[
x(\delta(V \setminus \{i\})) = 1 \quad \forall i \in V \setminus \{0\}
\]

\[
f(\delta(V \setminus \{i\})) - f(\delta(\{i\})) = d_i \quad \forall i \in V \setminus \{0\}
\]

\[
f_{ij} \leq C x_{ij} \quad \forall (i, j) \in A
\]

\[
f_{ij} \geq 0 \quad \forall (i, j) \in A
\]

\[
x_{ij} \in \{0, 1\} \quad \forall (i, j) \in A
\]

where:

- \(x_{ij}, x_{ji}\) (fixed-charge variables) indicate whether \(\{i, j\}\) is in the routing and its orientation.

- \(f_{ij}\) (flow variable) represents demand flow from \(i\) to \(j\).
Complexity

• This node routing problem is **NP-complete** even in the uncapacitated case.

• Polynomially solvable special cases.

 – $\tau = 0 \Rightarrow$ Minimum Spanning Tree Problem.

 – $\gamma = 0 \Rightarrow$ Shortest Paths Tree Problem.

 – Note that demands are irrelevant.

• Other special cases.

 – $\tau, \gamma > 0 \Rightarrow$ Cable-Trench Problem.

 – $\tau = 0$ and $x(\delta(\{i\})) = 1 \Rightarrow$ Traveling Salesman Problem.

 – $\tau > 0$ and $x(\delta(\{i\})) = 1 \Rightarrow$ Variable Cost TSP.

 – $x(\delta(V \setminus \{0\})) = x(\delta(\{0\})) = k \Rightarrow$ VRP.
Figure 1: Optimal Uncpacitated Spanning Trees
Figure 2: Uncapacitated and Capacitated Spanning Tree ($\tau = 0$)
Connection to Other Models

- There are connections to many well-studied models.
- The basic model can be seen as an instance of the Fixed-charge Network Flow Problem.
- Removing the upper bounds on the fixed-charge variables yields the Capacitated Network Design Problem.
- We have already mentioned several other related combinatorial models.
- We are looking to make stronger connections among these varied areas of the literature.
Valid Inequalities

• Note that any inequalities valid for the TSP, VRP, or CSTP have counterparts here.

• Many can be strengthened by taking advantage of the directed formulation.

• Fractional Capacity Constraints

\[
\sum_{i \notin S, j \in S} x_{ij} \geq \frac{d(S)}{C}, \ 0 \notin S
\]

• Multi-star Inequalities

\[
\sum_{i \notin S, j \in S} x_{ij} \geq \frac{d(S)}{C} + \frac{\sum_{i \notin S, j \in S} x_{ji}d_i}{C}, \ 0 \notin S
\]
Valid Inequalities

- Rounded Capacity Constraints
 \[\sum_{i \notin S, j \in S} x_{ij} \geq \lceil d(S)/C \rceil \]

- Generalized, framed capacity constraints
- Combs, Hypo-tours, Clique Clusters
- Path-bin inequalities
Flow Linking

• Note that only the edge variables are required to be integral.

• We use the flow variables to force integrality of the edge variables through \textit{flow linking constraints}.

• Flow Linking Constraints

\[f_{ij} \leq (C - d_i)x_{ij} \iff x_{ij} \geq \frac{f_{ij}}{C - d_i} \]

\[f_{ij} - \sum_{k \neq j} f_{jk} \leq x_{ij}d_j \]

• Edge Cuts

\[x_{ij} + x_{ji} \leq 1 \]
Separation

- The **fractional capacity constraints** and **multi-star inequalities** are automatically satisfied.
- **Flow linking constraints** and **edge cuts** can be included explicitly or separated in **polynomial time**.
- Separating **rounded capacity constraints** is **NP-complete**, but can be done effectively.
- **Heuristic procedures** for other classes have not yet been implemented.
Solver Implementation

- The implementation uses SYMPHONY, a parallel framework for branch, cut, and price (relative of COIN/BCP).

- In SYMPHONY, the user supplies:
 - the initial LP relaxation,
 - separation subroutines,
 - feasibility checker, and
 - other optional subroutines.

- SYMPHONY handles everything else.

- The source code and documentation are available from www.BranchAndCut.org

- For more information, see Workshop TB42.
Preliminary Computation: Formulation Issues

- The new formulation is *polynomial* and yields *stronger relaxations* initially, but there are drawbacks.
- For the VRP, the formulation creates *symmetry*.
- It also seems to make branching less effective.
- There is a related “undirected” formulation which uses one fixed-charge variable per edge.
 - This formulation is smaller and performs much better for the VRP.
 - For the CSTP and CTP, however, the undirected formulation is extremely weak.
Preliminary Computation

• So far, the presence of the flow variables does not seem to help.

• Capacitating the model does increase difficulty significantly.

• Consider relaxations of the VRP.
 – The TSP is very easy relative to the VRP.
 – The CSTP is not much easier than the VRP.

• Versions of these models with positive variable (flow) costs are extremely difficult.
 – Is this due to the upper bound or lower bound?
 – The flow linking constraints are important for these models.
<table>
<thead>
<tr>
<th>Problem</th>
<th>TSP Tree Size</th>
<th>CPU sec</th>
<th>CSTP Tree Size</th>
<th>CPU sec</th>
<th>VRP Tree Size</th>
<th>CPU sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>eil13</td>
<td>1</td>
<td>0.00</td>
<td>13</td>
<td>0.09</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>eil22</td>
<td>1</td>
<td>0.11</td>
<td>2</td>
<td>0.10</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>eil33</td>
<td>1</td>
<td>0.02</td>
<td>69</td>
<td>3.97</td>
<td>2</td>
<td>0.44</td>
</tr>
<tr>
<td>bayg29</td>
<td>1</td>
<td>0.12</td>
<td>1</td>
<td>0.04</td>
<td>4</td>
<td>0.32</td>
</tr>
<tr>
<td>bays29</td>
<td>1</td>
<td>0.17</td>
<td>15</td>
<td>1.12</td>
<td>5</td>
<td>0.55</td>
</tr>
<tr>
<td>ulysses16.tsp</td>
<td>1</td>
<td>0.00</td>
<td>1</td>
<td>0.03</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>ulysses22.tsp</td>
<td>1</td>
<td>0.00</td>
<td>1</td>
<td>0.06</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>gr17</td>
<td>1</td>
<td>0.01</td>
<td>5</td>
<td>0.05</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>gr21</td>
<td>1</td>
<td>0.00</td>
<td>1</td>
<td>0.02</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>gr24</td>
<td>1</td>
<td>0.02</td>
<td>5</td>
<td>0.27</td>
<td>4</td>
<td>0.40</td>
</tr>
<tr>
<td>fri26</td>
<td>1</td>
<td>0.02</td>
<td>1</td>
<td>0.07</td>
<td>8</td>
<td>0.39</td>
</tr>
<tr>
<td>swiss42</td>
<td>1</td>
<td>0.02</td>
<td>35</td>
<td>3.66</td>
<td>10</td>
<td>2.45</td>
</tr>
<tr>
<td>att48</td>
<td>2</td>
<td>0.30</td>
<td>92</td>
<td>5.04</td>
<td>193</td>
<td>30.10</td>
</tr>
<tr>
<td>gr48</td>
<td>2</td>
<td>1.38</td>
<td>1</td>
<td>0.07</td>
<td>16</td>
<td>4.17</td>
</tr>
<tr>
<td>hk48</td>
<td>1</td>
<td>0.19</td>
<td>209</td>
<td>22.88</td>
<td>45</td>
<td>21.19</td>
</tr>
<tr>
<td>eil51</td>
<td>1</td>
<td>0.16</td>
<td>77</td>
<td>15.11</td>
<td>11</td>
<td>10.79</td>
</tr>
<tr>
<td>A – n32 – k5</td>
<td>1</td>
<td>0.02</td>
<td>1</td>
<td>0.07</td>
<td>2</td>
<td>0.20</td>
</tr>
<tr>
<td>A – n33 – k5</td>
<td>3</td>
<td>0.81</td>
<td>3</td>
<td>0.21</td>
<td>7</td>
<td>0.90</td>
</tr>
<tr>
<td>A – n34 – k5</td>
<td>6</td>
<td>2.06</td>
<td>4</td>
<td>0.40</td>
<td>9</td>
<td>2.63</td>
</tr>
<tr>
<td>A – n36 – k5</td>
<td>1</td>
<td>0.03</td>
<td>52</td>
<td>5.17</td>
<td>51</td>
<td>7.95</td>
</tr>
<tr>
<td>A – n37 – k5</td>
<td>1</td>
<td>0.03</td>
<td>5</td>
<td>0.22</td>
<td>11</td>
<td>0.97</td>
</tr>
<tr>
<td>A – n38 – k5</td>
<td>1</td>
<td>0.10</td>
<td>1</td>
<td>0.13</td>
<td>111</td>
<td>21.80</td>
</tr>
<tr>
<td>A – n39 – k5</td>
<td>1</td>
<td>0.30</td>
<td>11</td>
<td>0.99</td>
<td>480</td>
<td>310.92</td>
</tr>
<tr>
<td>A – n44 – k6</td>
<td>3</td>
<td>1.72</td>
<td>586</td>
<td>84.08</td>
<td>1185</td>
<td>1525.78</td>
</tr>
<tr>
<td>A – n45 – k6</td>
<td>2</td>
<td>0.27</td>
<td>47</td>
<td>6.19</td>
<td>133</td>
<td>145.59</td>
</tr>
<tr>
<td>A – n46 – k7</td>
<td>1</td>
<td>1.25</td>
<td>3</td>
<td>0.20</td>
<td>2</td>
<td>1.95</td>
</tr>
<tr>
<td>A – n48 – k7</td>
<td>2</td>
<td>2.01</td>
<td>775</td>
<td>507.41</td>
<td>1949</td>
<td>1620.57</td>
</tr>
<tr>
<td>A – n53 – k7</td>
<td>1</td>
<td>0.62</td>
<td>115</td>
<td>19.99</td>
<td>619</td>
<td>881.05</td>
</tr>
<tr>
<td>B – n31 – k5</td>
<td>1</td>
<td>0.01</td>
<td>3</td>
<td>0.63</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>B – n38 – k6</td>
<td>1</td>
<td>0.04</td>
<td>5</td>
<td>0.56</td>
<td>14</td>
<td>1.73</td>
</tr>
<tr>
<td>B – n39 – k5</td>
<td>1</td>
<td>0.03</td>
<td>188</td>
<td>9.67</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>B – n41 – k6</td>
<td>1</td>
<td>0.08</td>
<td>216</td>
<td>18.96</td>
<td>20</td>
<td>2.89</td>
</tr>
<tr>
<td>B – n43 – k6</td>
<td>1</td>
<td>0.09</td>
<td>1</td>
<td>0.36</td>
<td>138</td>
<td>34.92</td>
</tr>
<tr>
<td>B – n45 – k5</td>
<td>1</td>
<td>0.09</td>
<td>22</td>
<td>1.13</td>
<td>18</td>
<td>5.81</td>
</tr>
<tr>
<td>B – n51 – k7</td>
<td>1</td>
<td>0.26</td>
<td>1</td>
<td>0.13</td>
<td>129</td>
<td>32.48</td>
</tr>
</tbody>
</table>
Conclusions and Future Directions

- So far, this formulation has not proven better than the classical one for the VRP.
- However, we have yet to take advantage of the information provided by the flow variables.
- We need to know much more about polyhedral structure.
- Better flow linking seems to be the key.
- We also need some new branching rules.
- The connection to the network design literature needs to be explored.
- It is easy to generalize the model even further.
 - Pickup and delivery problems.
 - General degree constraints.
MTSP Polytope

BPP/VRP Polytope

Feasible MTSP/Infeasible BPP