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“It’s All Just Duality”

Quote from the Internet: Duality is a woefully overloaded mathematical term for a
relation that groups elements of a set into “dual” pairs.
Bold claim: Many (most?) duality concepts can be seen as roughly “isomorphic”.

Duality Concepts

Sets: Projection/complement, intersection/union
Conic duality: Cones and their duals, convexity/nonconvexity
Farkas duality: Theorems of the alternative, empty/non-empty
Complexity: Languages and their complements (NP vs. co-NP)
Quantifier duality: Existential versus universal quantification
De Morgan duality: Conjunction versus disjunction
Weyl-Minkowski duality: V representation versus H representation
Polarity: Optimization versus separation
Dual problems: Primal and dual problems in optimization
Inverses: Functions and inverses, inverse optimization inverses
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Theorems About Sets

Mathematically speaking, we can think of “solving” an optimization problem
with an “exact” solution method as proving a theorem about a given set.
The solver produces not only a solution, but also a proof.
Let S = {x ∈ Qn | P(x)}, where P : Qn → {TRUE,FALSE}.
The simplest question we can ask is whether S is non-empty

S ?
= ∅.

Given function f and constant K, the related question of

S(f ,K) := {x ∈ S | f (x) < K} ?
= ∅

is the decision version of the optimization problem

min
x∈S

f (x) (OPT)
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Constructing Proofs

What do proofs of theorems about sets look like?
Certifying S ≠ ∅ is “easy”: produce a point in the set.
Certifying S = ∅ is more difficult in general.

The difficulty of proving a set is empty is most easily seen by re-stating the
theorems we are trying to prove/disprove, as follows.

S ≠ ∅ ⇔ ∃x ∈ S
S = ∅ ⇔ ∀x ∈ Qn x /∈ S ⇔ ∀x ∈ Qn x ∈ S̄

The statement that a set is non-empty is existentially quantified, whereas the
statement that a set is empty is universally quantified.
Universally quantified statements are intuitively more difficult to prove than
existentially quantified ones.
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De Morgan Duality

There is a duality between existential and universal quantifiers that can be seen
as one of a number of generalized forms of De Morgan’s Laws.

DeMorgan’s Laws

The complement of the union is the intersection of the complements.

The complement of the intersection is the union of the complements.

These laws can be used to equivalently formulate logical statements in different
dual forms to aid in constructing proofs.

P(x) ∀x ∈ S ⇔ ¬[∃x ∈ S ¬P(x)] ⇔ ¬
∨
x∈S

¬P(x) ⇔
∧
x∈S

P(x)

∃x ∈ S : P(x) ⇔ ¬[∀x ∈ S P(x)] ⇔ ¬
∧
x∈S

¬P(x) ⇔
∨
x∈S

P(x)

Note also the duality between conjunction and disjunction.
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Convexity and Nonconvexity

Related dualities exist between between conjunction and disjunction, which are
reflected in the way convex and nonconvex sets are described.
Convex sets are described by conjunctive logic: the intersection of convex sets is
convex.
Nonconvex sets are described using disjunctive logic: the union of convex sets is
nonconvex (in general).
Proving that a point is not in a convex set is “easy,” whereas doing the same for a
nonconvex set is difficult in general.
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Short Proofs of Emptiness

The essence of the Farkas Lemma is that it allows to obtain a short proof that a
convex set is empty.
Consider again the polyhedron

P = {x ∈ Rn
+ | Ax = b}

given in standard form with A ∈ Qm×n, b ∈ Qm.

Farkas Lemma

P = ∅ ⇔ ∃u ∈ Rm s.t. u⊤A ≤ 0, u⊤b > 0

Equivalently, P = ∅ if and only if we can separate b from the convex cone

C = {Ax | x ∈ Rn
+}

= {β ∈ Rm | u⊤β ≤ 0 ∀u ∈ C∗},

where C∗ = {u ∈ Rm | u⊤A ≤ 0} (the dual of C).
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Example 1

6y1 + 7y2 + 5y3 = 1/2
2y1 − 7y2 + y3 = 1/2

y1, y2, y3 ∈ R+
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Another Interpretation

We lift the problem into a higher dimensional space by making b a vector of
variables and homogenizing.

Pβ = {x ∈ Rn
+, β ∈ Rm | Ax − Iβ = 0}

Then project out the original variables to obtain C.

C = Projβ(Pβ)

In other words, C is just the set of values of β for which the linear system Ax = β
has a solution.
Alternatively, C consists of the feasible members of a parametric family of linear
optimization problems (LPs).
Therefore, if we can separate b from C, we prove that P = ∅ (corresponding
instance is infeasible).
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Example 2

Pβ =


2y1 − 7y2 + y3 = β1

6y1 + 7y2 + 5y3 = β2

y1, y2, y3 ∈ R+

 C =


β1 + β2 ≥ 0

−3β1 + β2 ≥ 0

β ∈ R2


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Connection to Complexity Theory

On one hand, this is a “trick” for recasting a question about an empty set as one
about a non-empty convex set (universal → existential), but there’s a bigger
picture.
We are embedding a single theorem into a parametric class containing both
TRUE and FALSE theorems.
The questions we are asking is being re-cast as a question of where this theorem
lies relative to the set of all TRUE theorems (in the class).
To prove the theorem is FALSE, we separate it from the set of theorems that are
TRUE—this is a “dual” proof based on a separation argument.
In the terminology of complexity theory, the set of true theorems is called a
language.
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Proofs of Optimality

The problem (OPT) is not a decision problem as stated.
We can nevertheless build a proof that the optimal solution value is K using
proofs for two related theorems.

1 ∃x ∈ S : f (x) = K

2 ∄x ∈ S : f (x) < K ⇔ ∀x ∈ S : f (x) ≥ K

The fact that one of these statements is universally quantified is the reason why
short proofs of optimality cannot be expected in general.
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Farkas Proof of Optimality

We now consider the case of an LP, constructed as follows.
Convert a1 (the first row of A) from a constraint to the objective function.
Let M = {1, . . . ,m} and bM\{1} ∈ Rm−1 be all but the first element of b.
The resulting LP is minx∈Rn

+
{a1x | AM\{1}x = bM\{1}}.

The problem of finding the optimal value can then be recast as
z∗ = min{z | (z, bM\{1}) ∈ C}.
To prove optimality, we need to show that (z∗, bM\{1}) is not only a member of
C, but on its boundary.
The LP optimality conditions imply ∃uM\{1} ∈ Rm−1 s.t. uM\{1}

⊤AM\{1} ≤ a1,
uM\{1}

⊤bM\{1} = z∗.

This is equivalent to ∃u ∈ Rm s.t. u⊤A ≤ 0, u⊤(z∗, bM\{1}) = 0, u1 = −1,
implying

(z∗, bM\{1}) is on the boundary of C and
the boundary is one that is in the “right direction” (u1 < 0).

The vector u is a solution to the usual LP dual problem.
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Example 3

z∗ = min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = 1/2
y1, y2, y3 ∈ R+
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Example 4

Note that our choice of objective was arbitrary and the same set C can yield
proofs for other objectives.
The figure shows that miny∈R3

+
{2y1 − 7y2 + y3 | 6y1 + 7y2 + 5y3 = 1} = −1
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The Boundary of C and Optimality Conditions

Under mild conditions, a point β ∈ Rm is on the boundary of C if and only if

βi = min /max {z ∈ R | (z, βM\{i}) ∈ C}
= min

x∈Rn
+

/max
x∈Rn

+

{aix | AM\{i}x = βM\{i}}

for some i ∈ {1, . . . ,m}.
The boundary is comprised of the graphs of the following value functions of LPs
associated with the rows of A over their finite domain.

ϕ+
i (τ) = max

x∈P{i}(τ)
aix ∀τ ∈ Rm−1

ϕ−
i (τ) = min

x∈P{i}(τ)
aix ∀τ ∈ Rm−1,

where

P{i}(τ) = {x ∈ Rn
+ | AM\{i}x = τ}.

The boundary is essentially a parametric collection of proofs of optimality.
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Example 5

min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = 1/2
y1, y2, y3 ∈ R+
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The Boundary of C and the Dual Problem

The connection to the value function means that inequalities valid for C
correspond to solutions to the LP dual.
Hyperplanes that support C at a given point on the boundary are optimal to the
dual.
Facets of C are the basic optimal solutions (which are precisely the extreme rays
of the dual cone C∗).
This is equivalent to complementary slackness conditions.
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The Boundary of C and Pareto Optimality

Conditions for Pareto optimality of solutions to a closely related multiobjective
LP can also be derived by considering the boundary of a related set.
For this, we interpret some of the rows of A as multiple objectives and define

Pβ
K = {x ∈ Rn

+, βK ∈ RK | AKx − IβK = 0,AK̄x = bK̄}

where K ⊆ {1, . . . ,m} and K̄ = {1, . . . ,m} \ K.
Project out the original variables to obtain CK .

CK = ProjβK
(Pβ

K )

CK is a slice of higher-dimensional cone from the pure feasibility case.
It is shown in Fallah et al. [2023] that the efficient frontier for the multiobjective
LP with objectives being the rows of AK is (contained in) the boundary of CK .
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Example 6

vmin 7x2 + 10x3 + 2x4 + 10x5

10x1 − 8x2 + x3 − 7x4 + 6x5

s.t. 9x1 + 3x2 + 2x3 + 6x4 − 10x5 = 4
x2 + x6 ≤ 5
x5 + x7 ≤ 5

xj ∈ R+ ∀j ∈ {1, . . . , 7},
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Generalizing to the MILP Case

The very same logic extends easily to the MILP case.

S = {x ∈ Zr
+ × Rn−r

+ | Ax = b}
Sβ = {x ∈ Zr

+ × Rn−r
+ , β ∈ Rm | Ax − Iβ = 0}

C = Projβ(Sβ)

Sβ
K = {x ∈ Zr

+ × Rn−r
+ , βK ∈ RK | AKx − IβK = 0,AK̄x = bK̄}

CK = ProjβK
(Sβ

K )

A Generalized Farkas Lemma

S = ∅ ⇔ b ̸∈ C

This is similar to other discrete Farkas lemmas [Bachem and Schrader, 1980,
Blair and Jeroslow, 1982].
Naturally, for this to be useful, we must replace the condition b ̸∈ C with
something that can be verified in practice.
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Example 7

Sβ =


6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = β1

3x1 +
7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6 = β2

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+


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The Boundary of C in the MILP Case

The set C and its boundary have the same interpretation and properties in the
MILP case as in the LP case.
However, since C may be a discrete set, the definition of “boundary” is not the
usual set-theoretic one.
As in the LP case, we say that β is on the boundary of C if either

βi = min
x∈S{i}(βM\{i})

aix

or

βi = max
x∈S{i}(βM\{i})

aix,

where

S{i}(τ) = {x ∈ Zr
+ × Rn−r

+ | AM\{i}x = τ}.
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The Boundary of C and Optimality Conditions in MILP

The set C and its boundary have the same interpretation and properties in the MILP
case as in the LP case.

Proving S = ∅ is equivalent to separating b from C (but not with a hyperplane!).
For i ∈ {1, . . . ,m} and τ ∈ Rm−1, we have that if

z∗ = min
x∈S{i}(τ)

/ max
x∈S{i}(τ)

aix. (MILP)

then (z∗, τ) is on the boundary of C (converse holds under mild conditions).
Thus, the boundary of C can be described by functions

ϕ−
i (τ) = min{z | (z, τ) ∈ C},

ϕ+
i (τ) = max{z | (z, τ) ∈ C},

for i ∈ {1, . . . , n}, which are the value functions of problems (MILP).
Once again, for K ⊆ {1, . . . ,m}, the efficient frontier of the MILP with
objectives being the rows of AK is contained in the boundary of CK .
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Example 8

Sβ =



6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = β1,

3x1 +
7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6 = β2,

x1, x2, x3 ∈ {0, 1},
0 ≤ x4, x5, x6 ≤ 3,


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Separation for C and the Dual Problem

Methods of constructing both the classical value function and the efficient
frontier of a multiobjective MILP involve describing the boundary of C.
Algorithmically, this can be done by iteratively generating “separating
functions,” as in a cutting plane method.

Separating Functions

A separating function F : Rm−1 → R for C is one that satisfies either
F(τ) ≤ ϕ−

i (τ) ∀τ ∈ Rm−1 or
F(τ) ≥ ϕ+

i (τ) ∀τ ∈ Rm−1.

Just as in the LP case, these separating functions are solutions to a dual problem
and are called dual functions in that context.
Finding a separating function for which F(τ) ≈ ϕi(τ) for τ ∈ Qm−1 is the
general dual problem associated with (MILP) [Tind and Wolsey, 1981].

max {F(b) | F(τ) ≤ ϕ−
i (τ), τ ∈ Rm−1,F ∈ Υm−1},

where Υm ⊆ {f | f : Rm−1→R}.
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Discrete Farkas Lemma [Blair and Jeroslow, 1982]

Assuming r = n (pure integer case), exactly one of the following holds:
1 S ≠ ∅
2 ∃ F : Rm → R subadditive such that F(Aj) ≤ 0, j = 1, . . . , n and

F(b) > 0.

Primal-dual pairs of MILPs have the same relationship as in the LP case.
Since the value function of an MILP is subadditive, so there always exists a
dual/separating function that is subadditive.
When F is subadditive, the conditions for F to be a separating function reduce to
the above.
The result then says that S is empty if and only if we can separate b from C with
a separating function.
Alternatively, this is equivalent to F certifying that the dual problem is
unbounded (with primal objective 0).
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Outer Approximating C

Using the machinery described so far, we can outer approximate C with separating
functions.

When C is bounded, we can describe it with a finite number of piecewise affine
functions.
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Multiobjective MILP in a Single Branch-and-Bound Tree

For the remainder of the talk, we focus on an algorithm for generating the
efficient frontier for a general multiobjective MILP.
Surprisingly, this can be done within a single branch-and-bound by exploiting
the ideas discussed so far.
As earlier, let K be the index set of the rows of A that we interpret as multiple
objectives.
We arbitrarily choose one of these objectives as primary and treat the others as
constraints.
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Disjunctive Approximation of the Efficient Frontier

Let T be the set of terminating nodes of a branch-and-bound tree. The LP relaxation
at node t ∈ T is:

ϕt(τ) = min a1x

s.t. AK\{1}x ≤ τ,

AK̄x = bK̄ ,

lt ≤ x ≤ ut, x ≥ 0

(BB.VF)

By LP duality, we then have that:

ϕt(τ) = max vτ + wbK̄ + πlt + π̄ut

s.t. vAK\{1} + wAK̄ + π + π̄ ≤ a1

π ≥ 0, v, π̄ ≤ 0

(BB.LP.D)

Given a collection D of solutions feasible to (BB.LP.D), we obtain the following dual
function, which approximates the value function and the efficient frontier from below.

F(τ) = min
t∈T

max
(v,w,π,π)∈D

uτ + vb + πlt + πut, ∀ζ ∈ C, (1)
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Example: Constructing the Separating/Dual Function

ϕ(β) = min 6x1 + 4x2 + 3x3 + 4x4 + 5x5 + 7x6

s.t. 2x1 + 5x2 − 2x3 − 2x4 + 5x5 + 5x6 = β

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+.
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Example: Continuing with a Different Right-hand Side
Node 0

ϕ0
LP

= 0.8β

Node 2
ϕ2

LP
= −1.5β + 11.5

Node 1
ϕ1

LP
= β

x2 = 0 x2 ≥ 1

Node 0
ϕ0

LP
= 0.8β

Node 2
ϕ2

LP
= −1.5β + 11.5

Node 4
ϕ4

LP
= −1.5β + 23

Node 3
ϕ3

LP
= β − 1

x2 = 1 x2 ≥ 2

Node 1
ϕ1

LP
= β

x2 = 0 x2 ≥ 1
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Convergence of the Algorithm

We execute the branch-and-bound for a sequence of right-hand sides.
Instead of re-starting each time, we continue in the same tree.
We collect the dual solutions generated by solving the LP relaxations.
There is a sequence of right-hand sides for which the algorithm converges
finitely to the exact frontier.
The key is finding the right set of right-hand sides.
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Tree Representation of the Value Function

Node 0

Node 8

Node 10

Node 12

Node 14

Node 16

Node 18
β + 30

Node 17
max{β + 25,−2β − 5}

y3 = 5 y3 ≥ 6

Node 15
max{β + 20,−2β − 4}

y3 = 4 y3 ≥ 5

Node 13
max{β + 15,−2β − 3}

y3 = 3 y3 ≥ 4

Node 11
max{β + 10, g9 = −2β − 2}

y3 = 2 y3 ≥ 3

Node 9
max{β + 5, g7 = −2β − 1}

y3 = 1 y3 ≥ 2

Node 1

Node 3

Node 5

Node 7
−2β + 42

Node 6
max{2β + 28, β − 2}

y2 = 2 y2 ≥ 3

Node 4
max{−2β + 14, β − 1}

y2 = 1 y2 ≥ 2

Node 2
max{−2β, β}

y2 = 0 y2 ≥ 1

y3 = 0 y3 ≥ 1
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Correspondence of Nodes and Local Stability Regions
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Another Example

vmin 2x1 + 5x2 + 7x4 + 10x5 + 2x6 + 10x7

−x1 − 10x2 + 10x3 − 8x4 + x5 − 7x6 + 6x7

s.t. −x1 + 4x2 + 9x3 + 3x4 + 2x5 + 6x6 − 10x7 = 4
x4 + 5x2 ≤ 5
x7 + 5x2 ≤ 5

xj ∈ {0, 1} ∀j ∈ {1, 2},
xj ∈ R+ ∀j ∈ {3, . . . , 7},
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Evolution of Approximation
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Evolution of Approximation
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SYMPHONY

SYMPHONY is an open source MILP solver framework with unique
capabilities.

Can output formal proofs of optimality in the form of dual functions.
Can warm-start solution of a modified instance in the same tree.
Can be used to construct the value function or efficient frontier.

The algorithm for constructing the efficient frontier was implemented in only a
few dozen lines of code.
SYMPHONY is also the subsolver for the bilevel solver MibS an can be used to
warm-start the feasibility check, among other things.
A generalized Benders algorithm for two-stage stochastic mixed integer linear
optimization with recourse is also being revived.
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Implications and Applications

Optimality conditions and value functions [Bolusani et al., 2020]

Yields optimality conditions for the follower’s problem in bilevel optimization,
which can be exploited to generate valid inequalities.

Construction of the efficient frontier [Fallah et al., 2023]
We derive a class of algorithms that generates the efficient frontier of a multiob-
jective mixed integer optimization problem in a single branch-and-bound tree.

Generalized Benders [Hassanzadeh and Ralphs, 2014]

Benders for two-stage stochastic optimization and bilevel optimization.

Lagrangian relaxation and Dantzig-Wolfe decomposition [Bodur et al., 2016]

Alternative methods for computing bounds in decomposition methods.

Warm-starting solution of MILPs [Ralphs and Güzelsoy, 2005]

Improved efficiency when solving sequences of related MILPs.
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