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“It’s All Just Duality”

Quote from the Internet: Duality is a woefully overloaded mathematical term for a
relation that groups elements of a set into “dual” pairs.
Bold claim: Many (most?) duality concepts can be seen as roughly “isomorphic”.

Duality Concepts

@ Sets: Projection/complement, intersection/union

Conic duality: Cones and their duals, convexity/nonconvexity
Farkas duality: Theorems of the alternative, empty/non-empty
Complexity: Languages and their complements (NP vs. co-NP)
Quantifier duality: Existential versus universal quantification

De Morgan duality: Conjunction versus disjunction
Weyl-Minkowski duality: V representation versus H representation
Polarity: Optimization versus separation

Dual problems: Primal and dual problems in optimization

Inverses: Functions and inverses, inverse optimization inverses
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Theorems About Sets

@ Mathematically speaking, we can think of “solving” an optimization problem
with an “exact” solution method as proving a theorem about a given set.

@ The solver produces not only a solution, but also a proof.
o LetS = {xecQ"|P(x)}, where P: Q" — {TRUE, FALSE}.
@ The simplest question we can ask is whether & is non-empty

0. J

@ Given function f and constant K, the related question of

?

S

S(f,K) :={xeS|f(x) <K} =0 J

is the decision version of the optimization problem

minf(x) (OPT)J
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Constructing Proofs

@ What do proofs of theorems about sets look like?
o Certifying S +# () is “easy”: produce a point in the set.
o Certifying S = () is more difficult in general.
@ The difficulty of proving a set is empty is most easily seen by re-stating the
theorems we are trying to prove/disprove, as follows.

S0 Ires
S=0oVecQ'x¢SeVxcQ'xcS J

@ The statement that a set is non-empty is existentially quantified, whereas the
statement that a set is empty is universally quantified.

o Universally quantified statements are intuitively more difficult to prove than
existentially quantified ones.
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De Morgan Duality

@ There is a duality between existential and universal quantifiers that can be seen
as one of a number of generalized forms of De Morgan’s Laws.

DeMorgan’s Laws

o The complement of the union is the intersection of the complements.

o The complement of the intersection is the union of the complements.

@ These laws can be used to equivalently formulate logical statements in different
dual forms to aid in constructing proofs.

P(x)Vx €S & —[Axe S ~P(x)] & - \/ =P(x) & \ P(x)
x€S xES

Ir € S: P(x) & —[re SP)] & - )\ -P(x) & \/ P(x)
XES x€S

@ Note also the duality between conjunction and disjunction.
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Convexity and Nonconvexity

@ Related dualities exist between between conjunction and disjunction, which are
reflected in the way convex and nonconvex sets are described.

@ Convex sets are described by conjunctive logic: the intersection of convex sets is
convex.

@ Nonconvex sets are described using disjunctive logic: the union of convex sets is
nonconvex (in general).

@ Proving that a point is not in a convex set is “easy,” whereas doing the same for a
nonconvex set is difficult in general.
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Short Proofs of Emptiness

@ The essence of the Farkas Lemma is that it allows to obtain a short proof that a
convex set is empty.

@ Consider again the polyhedron

P ={xecR |Ax = b} J

given in standard form with A € Q"*" b € Q™.

P=0<uecR"st.u A<0,u'b>0

@ Equivalently, 7 = () if and only if we can separate » from the convex cone

C={Ax|xeR}}
={BeR"|u'f<0VucCY,

where C* = {u € R" | u" A < 0} (the dual of C).
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Example 1

=

6}‘1 + 7.\'2 + 5}‘3 = 1/2
2}'1 — 7)’2 +y3 = ]/2
Yi,y2,¥3 € Ry

2.0

1.54

1.04

0.5 &
b= (0.5,0.5)

0.0 Y

—=-- separating hyperplane
feasible instances

-0.5 T T T T
=25 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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Another Interpretation

@ We lift the problem into a higher dimensional space by making b a vector of
variables and homogenizing.

PP ={xecR:,BeR" |Ax— 1B =0} J

@ Then project out the original variables to obtain C.

C = PI‘Ojﬁ (’PB) J

@ In other words, C is just the set of values of /3 for which the linear system Ax = /3
has a solution.

@ Alternatively, C consists of the feasible members of a parametric family of linear
optimization problems (LPs).

@ Therefore, if we can separate b from C, we prove that P = () (corresponding
instance is infeasible).
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Example 2

PP =

2y1 = Ty2 +y3 = i

6y, + 7y, + 5y = B>

V1,Y2,¥3 S R+

C =

B1+B2>0
—-38; + “82 >0
S € R?

2.0
1.54
1.0 1
<
0.5
0.0
—=-- separating hyperplane ,’
C (feasible instances) !
-0.5 T T T T L T T
=25 -2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15
O
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Connection to Complexity Theory

@ On one hand, this is a “trick” for recasting a question about an empty set as one
about a non-empty convex set (universal — existential), but there’s a bigger
picture.

@ We are embedding a single theorem into a parametric class containing both
TRUE and FALSE theorems.

@ The questions we are asking is being re-cast as a question of where this theorem
lies relative to the set of all TRUE theorems (in the class).

@ To prove the theorem is FALSE, we separate it from the set of theorems that are
TRUE—this is a “dual” proof based on a separation argument.

@ In the terminology of complexity theory, the set of true theorems is called a
language.
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Proofs of Optimality

@ The problem (OPT) is not a decision problem as stated.

@ We can nevertheless build a proof that the optimal solution value is K using
proofs for two related theorems.

Q xeS:f(x) =K
QO hcS:fx)<K&eVreS: f(x) >K J

o The fact that one of these statements is universally quantified is the reason why
short proofs of optimality cannot be expected in general.
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Farkas Proof of Optimality

@ We now consider the case of an LP, constructed as follows.

o Convert a' (the first row of A) from a constraint to the objective function.
o LetM = {1,...,m}and by () € R~ be all but the first element of b.
o The resulting LP is min,cp, {a'x | Ay (13x = ban 13 }-
@ The problem of finding the optimal value can then be recast as
Z" = min{z | (z.,bM\{l}) € C}.
e To prove optimality, we need to show that (z*, b/ 1) is not only a member of
C, but on its boundary.
e The LP optimality conditions imply Juy (1} € R" " s.t. upp 1y App g1y < @',
w1y by =25
e This is equivalent to Ju € R s.t. u' A < 0, u' (2", biq1y) = 0, u; = —1,
implying
o (2%, bynq1y) is on the boundary of C and
o the boundary is one that is in the “right direction” (u; < 0).

@ The vector u is a solution to the usual LP dual problem.
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Example 3

7" = min 6y, + 7y> + 5y3
st.2y1 =Ty, +y3 =1/2
Y1,Y2,)3 S R+

—— boundary
C (feasible instances)

=25 —2|.0 —1|.5 —lI.O —(.:0.5 0.0 0.5 1.0 15
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Example 4

@ Note that our choice of objective was arbitrary and the same set C can yield
proofs for other objectives.
@ The figure shows that 1’“11%6[&3} {291 —=Tya+y3 | 631 + T2 +5Sy3 =1} = —1

2.0

1.5

1.04

0.5 1

0.0

—— boundary
C (feasible instances)

-0.5 T T T T T
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

z
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The Boundary of C and Optimality Conditions

@ Under mild conditions, a point 5 € R" is on the boundary of C if and only if
Bi = min /max {z € R | (z, Bm\{i}) € C}

= Xlglglﬂl /max {a'x | Ay (i3x = B iy }

forsome i € {1,...,m}.

@ The boundary is comprised of the graphs of the following value functions of LPs
associated with the rows of A over their finite domain.

(/Sjr(T) = max aix VT € Rmfl
x€Py (1)
0)17 (T) = min aix VT € Rl7z—l7
x€P iy (1)
where
Py (1) = {x €R% | Ay pyx = 7} |

@ The boundary is essentially a parametric collection of proofs of optimality.
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Example 5

min 6y, + 7y, + 5y3
St.2y; —Tya +y3 = ]/2
yi,y2,y3 € Ry

—— value function ¢
epi(¢)

-0.5 T T T T
=25 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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The Boundary of C and the Dual Problem

@ The connection to the value function means that inequalities valid for C
correspond to solutions to the LP dual.

@ Hyperplanes that support C at a given point on the boundary are optimal to the
dual.

@ Facets of C are the basic optimal solutions (which are precisely the extreme rays
of the dual cone C*).

o This is equivalent to complementary slackness conditions.
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The Boundary of C and Pareto Optimality

@ Conditions for Pareto optimality of solutions to a closely related multiobjective
LP can also be derived by considering the boundary of a related set.

@ For this, we interpret some of the rows of A as multiple objectives and define

PE = {x e R, Bx € RX | Agx — Ik = 0,Agx = bg} J

where K C {1,..., m}and K = {1,...,m} \ K.

@ Project out the original variables to obtain Cy.

Cx = Projg, (P,L:) J

@ (Cy is aslice of higher-dimensional cone from the pure feasibility case.

@ It is shown in Fallah et al. [2023] that the efficient frontier for the multiobjective
LP with objectives being the rows of Ax is (contained in) the boundary of Cy.

Ralphs (COR@L Lab) A Generalized Farkas Lemma



Example 6

vimin Txy + 10x3 + 2x4 + 10x5
10x; — 8xy + x3 — 7x4 + 6x5
S.t. 9x; +3x 4+ 2x3 + 6x4 — 10x5 =4
X2+ x5 <5
xs+x7 <5

— Efficient Frontier
Ck

=715
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Generalizing to the MILP Case

@ The very same logic extends easily to the MILP case.

S = {xe€Z xRy |Ax=b}
S = {xeZ, xRy",BeR"|Ax— I3 =0}

¢ = Pr()jﬁ(S‘g)
S8 = {xeZi xRy, B € R¥ | Agx — I8¢ = 0,Agx = by}
Cx = Projs, (S)

A Generalized Farkas Lemma

S=0ebdC

v

@ This is similar to other discrete Farkas lemmas [Bachem and Schrader, 1980,
Blair and Jeroslow, 1982].

o Naturally, for this to be useful, we must replace the condition » ¢ C with
something that can be verified in practice.
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Example 7

6)(1 + SXQ - 4X3 + 2)(4 - 7X5 + Xg
7
SP = 3x1 + E.X’_) + 3x3 + 6x4 + Tx5 + Sx6 = o

X1,X2,X3 € Ziy, Xa,X5,X6 € Ry

30

feasible instances

10

—20 ~10 0 10 20 30 10
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The Boundary of C in the MILP Case

@ The set C and its boundary have the same interpretation and properties in the
MILP case as in the LP case.

@ However, since C may be a discrete set, the definition of “boundary” is not the
usual set-theoretic one.

@ As in the LP case, we say that /3 is on the boundary of C if either

B; = min a'x
X€S iy (Bu\ {i})
or
Bi = max a'x,
€S iy (B (iy)
where

S{I}(T) = {X & Zg_ X ]R’_z,'__r ‘ AM\{I-}X = T}. J
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The Boundary of C and Optimality Conditions in MILP

The set C and its boundary have the same interpretation and properties in the MILP
case as in the LP case.

@ Proving S = () is equivalent to separating b from C (but not with a hyperplane!).

e Forie {l,...,m}and T € R""! we have that if
= min / max d'x (MILP)
,\"ES{,}(T) XGS{,}(T) J

then (z*, 7) is on the boundary of C (converse holds under mild conditions).

@ Thus, the boundary of C can be described by functions

¢; (1) =min{z| (z,7) € C},
¢ (1) = max{z | (z,7) € C},

forie {I,..., n}, which are the value functions of problems (MILP).

@ Once again, for K C {1,...,m}, the efficient frontier of the MILP with
objectives being the rows of Ak is contained in the boundary of Cg.
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Example 8

6)(1 + 5)(2 - 4)(3 + 2.)(4 — 7X5 —+ X = ;‘31,

7 )
Sﬂ - 3x; + EXZ + 3x3 4+ 6x4 + 7x5 + Sx6 = 32,
X1, x2,%3 € {0, 1},

0 S X4,X5, X6 S 3,
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Separation for C and the Dual Problem

@ Methods of constructing both the classical value function and the efficient
frontier of a multiobjective MILP involve describing the boundary of C.

@ Algorithmically, this can be done by iteratively generating “separating
functions,” as in a cutting plane method.

Separating Functions

A separating function F : R"~" — R for C is one that satisfies either
F(r) < ¢7(r) VreR" or
F(r) > ¢f(r) VreR"™

@ Just as in the LP case, these separating functions are solutions to a dual problem
and are called dual functions in that context.

e Finding a separating function for which F(7) ~ ¢;(7) for 7 € Q" ! is the
general dual problem associated with (MILP) [Tind and Wolsey, 1981].

max {F(b) | F(T) < ¢; (1), T € R" Fe Y"1}, J

where T C {f | f : R" 1R},
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Discrete Farkas Lemma [Blair and Jeroslow, 1982]

Assuming r = n (pure integer case), exactly one of the following holds:
Q@ S#0
@ 1/ :R™ — IR subadditive such that F(A/) < 0,j = 1,...,nand
F(b) > 0.

@ Primal-dual pairs of MILPs have the same relationship as in the LP case.

@ Since the value function of an MILP is subadditive, so there always exists a
dual/separating function that is subadditive.

@ When F is subadditive, the conditions for " to be a separating function reduce to
the above.

@ The result then says that S is empty if and only if we can separate b from C with
a separating function.

@ Alternatively, this is equivalent to F* certifying that the dual problem is
unbounded (with primal objective 0).
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Outer Approximating C

Using the machinery described so far, we can outer approximate C with separating
functions.

30 —20 —10 0 10 20

When C is bounded, we can describe it with a finite number of piecewise affine
functions.

Ralphs (COR@L Lab) A Generalized Farkas Lemma



Multiobjective MILP in a Single Branch-and-Bound Tree

@ For the remainder of the talk, we focus on an algorithm for generating the
efficient frontier for a general multiobjective MILP.

@ Surprisingly, this can be done within a single branch-and-bound by exploiting
the ideas discussed so far.

@ As earlier, let K be the index set of the rows of A that we interpret as multiple
objectives.

@ We arbitrarily choose one of these objectives as primary and treat the others as
constraints.
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Disjunctive Approximation of the Efficient Frontier

Let T be the set of terminating nodes of a branch-and-bound tree. The LP relaxation

atnode 1 € T is:

#'(7) = min a'x

S.t. AK\{]}X <,

s (BB.VF)
F<x<u,x>0
By LP duality, we then have that:
&' (1) = max vr + whg + wl' + 7u'
SLVAgR\ 1y +WAg + T+ 7 < a' (BB.LP.D)

m>0,v,T<0

Given a collection D of solutions feasible to (BB.LP.D), we obtain the following dual
function, which approximates the value function and the efficient frontier from below.

F(t) =min max ur +vb+xl +7u, V¢ ed, M
t€T (v,w,m,7™)ED
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Example: Constructing the Separating/Dual Function

¢(B) = min 6x1 + 4xs + 3x3 + 4xy + S5x5 + Tx6
S.t. 2x1 4+ 5xp — 2x3 — 2x4 + Sx5 + Sx¢ =
X1,X2,X3 € Ly, X4,X5,%6 € Ry

, 88 lode 0
— Node 1
~ Node 2
n<l w22 2 —
Node 1 MILP
10|

Node 0
Node 1 Node 2
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Example: Continuing with a Different Right-hand Side

Node 0
P 085
97, =0388

Node | Node 2
|
) £3

8
Node 0
&, =088

; PP
Oy =—1.58+115

Node 1
Node 3

Node 4

Node 1 Node 2 -
3 ~155+ 115

Node 4
¢ =—158+23

Node 2




Convergence of the Algorithm

@ We execute the branch-and-bound for a sequence of right-hand sides.
o Instead of re-starting each time, we continue in the same tree.
@ We collect the dual solutions generated by solving the LP relaxations.

@ There is a sequence of right-hand sides for which the algorithm converges
finitely to the exact frontier.

@ The key is finding the right set of right-hand sides.
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Tree Representation of the Value Function

Node 0

Node 1 Node 8

Node 2
max{~28, 5}

Node 3

Node 9
max{B +5.¢7 = 26— 1} Node 10

Node 11
max{8 + 10, g9 = 23 — 2}

Node 5

Node 4
max{~26 + 14,6 - 1} Node 12

Node 6 Node 7 Node 13
max{2§ + 28,6 -2} ~26+42 max({§ + 15,25 - 3}

Node 14

Node
max{§ +20,-25 4}

Node 16

Node 17 Node I8
max{§+25,-25 -5} f+30




Correspondence of Nodes and Local Stability Regions

PyplB)

-8 -6 -4

i
|
I
|
I
|
|
|
|
|
I
|
|
|
|
I
|
I

-10!

|

|

I
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|

I
|
|
|
1
|
|
|
|
|
|
Node 17| Node 15, Node 13| Node 11 !

Node 2 Node 4 Node 6
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Another Example

vmin 2x1 4 5x + Tx4 4+ 10x5 + 2x¢ + 1017
—X1 — 10)(2 + 10)(2 - SX4 “+ X5 — 7X(, —+ 6)(7
S.t. —Xx1 + 4)C2 —+ 9)63 —+ 3)(4 —+ 2)65 —+ 6)(6 — lOX7 =4

X4+ 5x <5
X7+ 5% <5
x5 e{0,1} Vje{1,2},
xyeRy Vjied{3,...,7},
0~ »‘:‘¥
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Evolution of Approximation

100 v 001 RV
RVELB, . RvELE,
80 80 N
60 60
w0 W
20 20
o — o —
50 -a0 -3  -20 -lo o 50 -a0 -3 -20 -lo 3
100 v 100 RVF
RVELE, RvrLB,
80 80
0 60
w0 a0
20 20
o - o —
S0 -4 -30 -2 10 3
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Evolution of Approximation
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SYMPHON

o SYMPHONY is an open source MILP solver framework with unique
capabilities.
e Can output formal proofs of optimality in the form of dual functions.
e Can warm-start solution of a modified instance in the same tree.
e Can be used to construct the value function or efficient frontier.
@ The algorithm for constructing the efficient frontier was implemented in only a
few dozen lines of code.

o SYMPHONY is also the subsolver for the bilevel solver MibS an can be used to
warm-start the feasibility check, among other things.

@ A generalized Benders algorithm for two-stage stochastic mixed integer linear
optimization with recourse is also being revived.
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Implications and Applications

Optimality conditions and value functions [Bolusani et al., 2020]

Yields optimality conditions for the follower’s problem in bilevel optimization,
which can be exploited to generate valid inequalities.

Construction of the efficient frontier [Fallah et al., 2023]

We derive a class of algorithms that generates the efficient frontier of a multiob-
jective mixed integer optimization problem in a single branch-and-bound tree.

Generalized Benders [Hassanzadeh and Ralphs, 2014]

Benders for two-stage stochastic optimization and bilevel optimization.

Lagrangian relaxation and Dantzig-Wolfe decomposition [Bodur et al., 2016]

Alternative methods for computing bounds in decomposition methods.

Warm-starting solution of MILPs [Ralphs and Giizelsoy, 2005]

Improved efficiency when solving sequences of related MILPs.
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