
A Tour of Discrete Optimization
Ray Fulkerson’s Impact: Past, Present, and Future

Karla Hoffman1 and Ted Ralphs2

1Department of Systems Engineering and Operations Research, George Mason University
2COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

Fulkerson@100, Cornell University, 21 September 2024

Hoffman and Ralphs A Tour of Discrete Optimization

Outline

1 Part 1: Past Work

2 Part 2: Present Impact

3 Part 3: Looking to the Future

Hoffman and Ralphs A Tour of Discrete Optimization

Outline

1 Part 1: Past Work

2 Part 2: Present Impact

3 Part 3: Looking to the Future

Hoffman and Ralphs A Tour of Discrete Optimization

Fulkerson and the “Computation” Revolution

It is difficult to appreciate just how revolutionary certain ideas were in
their time.

There is no question that Fulkerson is viewed today as a pioneer.

To fully appreciate his impact on the development of integer
programming, it helps to put his early contributions in historical context.

We focus on the ground-breaking paper of Dantzig, Fulkerson, and
Johnson [1954].

This paper was among a handful that ushered in a new era of
computational optimization that we are essentially still living in.

Hoffman and Ralphs A Tour of Discrete Optimization

Discrete/Combinatorial Optimization in the 40s and 50s

A few key quotes from Pulleyblank [2012]’s illuminating retrospective of the
times paints a vivid picture.

“At this time, people were generally satisfied with algorithms
whose running times could be proven to be finite...”

“...many people in the operations research community consid-
ered a problem to be ’solved’ if it could be formulated as an
integer programming problem...”

“the combinatorics community was not very interested in al-
gorithms...”

“Herb Ryser [noted] that there were two...types of prob-
lems...in combinatorics...: existence problems and enumera-
tion problems.”

Hoffman and Ralphs A Tour of Discrete Optimization

The Golden Age

DFJ’s work took place at RAND, which was the undisputed center of research
in optimization at the time. Work done there in in the ’40s and ’50s included:

Dantzig [1948]: linear programming and the simplex algorithm.
Robinson [1949]: “Hamiltonian games” (apparently coined the term
“traveling salesman problem”).
Bellman [1954]: Markov decision processes and dynamic programming.
Heller [1953] and Kuhn [1955]: foundations of polyhedral theory.
Dantzig, Fulkerson, and Johnson [1954]: foundations of
computational MILP.
Ford and Fulkerson [1956]: the maximum flow problem.
Dantzig, Ford, and Fulkerson [1956]: primal-dual algorithm for LP.
Markowitz and Manne [1957]: early pre-cursor of branch-and-cut
inspired by DFJ (coined the term “cutting plane”).
Ford and Fulkerson [1958]: first column-generation algorithm.
Dantzig and Wolfe [1960]: column-generation for LP.
Hoffman and Ralphs A Tour of Discrete Optimization

The Birth of “Computation”

DFJ (implicitly) introduced the notion of “computation” and “practical
algorithm” as we know it today.

The essence of a “computational” method is that it is dynamically
tailored to solve a specific problem/instance as efficiently as possible.

This was essentially a new concept at the time.

DFJ’s method laid out core elements on which state-of-art algorithms
still depend today.

1 Dynamically generating valid inequalities: cutting-plane method.

2 Sparsifying the graph by fixing variable values: reduced-cost fixing.

3 Use of the LP relaxation (strengthened by the above techniques) to
derive a “certificate” of optimality: the dual proof.

Hoffman and Ralphs A Tour of Discrete Optimization

Enter Duality

All of the crucial elements of DFJ’s method are “dual” in nature.

Many of Fulkerson’s contributions involved some duality-based theory
and this is his legacy in a nutshell.

Although their algorithm was “primal” at its core, they realized that dual
arguments are necessary to construct a formal proof.

Importantly, they proposed constructing a “dual proof” dynamically,
with the implicit goal of making it as small as possible.

Hoffman and Ralphs A Tour of Discrete Optimization

The Traveling Salesman Problem

The traveling salesman/salesperson problem (TSP) is now well-known as
perhaps the most well-studied combinatorial optimization problem.
This may be in part due to DFJ’s choice to study it in this paper.
This problem has always tickled the imagination of the general public
and the paper actually made headlines in the press at the time.
Consider the following tour on a five-node example from DFJ.

Is it optimal?
Hoffman and Ralphs A Tour of Discrete Optimization

Dual Prices

To answer, DFJ begin with the following relaxation of the TSP.

min
∑

ij

cijxij∑
i:i<j

xij +
∑
i:i>j

xji = 2 ∀j ∈ 1, . . . 5

xij ≥ 0 ∀i, j ∈ 1, . . . 5

(1)

This is a linear optimization problem (LP) for which the tour is a (basic)
solution.

To prove the tour optimal, DFJ implicitly construct the “dual” of this LP
by associating a “price” (DFJ call it a “potential”) with each constraint.

The “price” can be interpreted in a number of ways, but consider the
economic interpretation as a sort of “toll” for traffic through a node.

Hoffman and Ralphs A Tour of Discrete Optimization

Primal versus Dual

From economics, the law of supply and demand says that the price
should equal the marginal cost of increasing traffic through a node.
Consider increasing the “traffic” through
node 4 to 4 from 2.

The solution to the system of equations be-
comes x12 = x34 = x45 = 2.

This no longer represents a tour, but we can
still consider the change in cost, which is 6.
Thus, the “price” of a unit of traffic through node 4 is
(8 − 5 + 5 − 8 + 6)/2 = 3.
We now have two different notions of “cost.”

Primal: the original cost in terms of the links.
Dual: the cost in terms of the node prices.

Intuitively, these should be at equilibrium.
Hoffman and Ralphs A Tour of Discrete Optimization

Deriving the Prices

Suppose we impose that the direct cost of using a link should equal the
prices associated with its endpoints.
Then we can derive prices for all nodes by solving the system

πi + πj = cij

for (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}.
This yields π1 = 5, π2 = 0, π3 = 5, π4 = 3, π5 = 3.
It is easy to check that this coincides with our earlier notion of price in
terms of supply and demand.
We have that primal and dual costs are equal.

2
∑

i

πi =
∑

ij

cijxij = 32

.
So our two notions of cost indeed coincide.
Hoffman and Ralphs A Tour of Discrete Optimization

Pivoting

The question of whether the tour is optimal can be considered by
comparing the quantity πi + πj to cij for links not in the tour.

If there is an (i, j) for which cij < πi + πj, this represents a link for which
the cost of the link is at a discount with respect to the toll.

The quantity dij = cij − (πi + πj) is the “reduced cost” and represents the
change in cost by “forcing” a link to be used.

In this case, link (1, 3) has a reduced cost of −4.

What happens if we try to include it in the tour?

Hoffman and Ralphs A Tour of Discrete Optimization

“Reduced Costs” and Optimality Conditions

Using modern terminology, we “pivot” x13 into the basis by increasing
its value, adjusting values of other variables to maintain feasibility.

The resulting solution is 28 and satisfies constraints, but it is not a tour.
This is because the relaxation omitted upper bounds on the variables!
We need the constraint x45 ≤ 1.
Adding this constraint to our relaxation, the resulting prices and reduced
costs prove the optimality of the tour.
Hoffman and Ralphs A Tour of Discrete Optimization

Primal Cutting Plane Method

The method DFJ describe by example is to continue pivoting in this way,
backtracking and adding a cut whenever the new solution is not a tour.

This is what is now known as a primal cutting-plane method.

Basic DFJ Algorithm
1 Identify a feasible solution that is basic to some linear relaxation.

2 Perform a simplex pivot.

3 If the new solution is not feasible, add a cut, try again.

The primary class of inequalities utilized
is the so-called subtour elimination
constraints (SECs).

These eliminate solutions with multiple
“subtours.”

Hoffman and Ralphs A Tour of Discrete Optimization

Reduced Cost Fixing

The final piece of the puzzle is reduced cost fixing.
They use reduced costs to obtain a lower bound on the optimal value.
Given any basic solution x̃ with associated reduced costs d̃, we have∑

ij

cijx∗ij −
∑

ij

cijx̃ij =
∑

ij

d̃ijx∗ij ≥
∑

ij

min{d̃ij, 0}.

Then for any (i, j) such that dij > −
∑

ij min{d̃ij, 0}, we must have
x∗ij = 0.
This is a variant of the reduced costs fixing that is an important element
of modern algorithms.

Important Observation
...in the latter stages often so many links are eliminated that

one can list all possible tours...

Hoffman and Ralphs A Tour of Discrete Optimization

The Solution

Hoffman and Ralphs A Tour of Discrete Optimization

The Proof

Hoffman and Ralphs A Tour of Discrete Optimization

Reflecting

There is no clearly described, globally convergent algorithm.

It is clear that we have left unanswered practically any questions that one might
pose of a theoretical nature concerning the traveling salesman problem; how-
ever, we hope that the feasibility of attacking problems involving a moderate
number of points has been successfully demonstrated, and that perhaps some
of the ideas can be used in problems of similar nature.

SECs are not enough for larger instances (even here, there are two
mysterious non-SECs which are attributed to Irving Glicksburg).

DFJ did, however, provide a formal, verifiable pure cutting-plane proof
for the 49-city problem.

This served as a template for what such a proof could/should look like
and paved the way for much computational research that followed.

...we do not try to characterize the tours by the complete set of linear restraints,
but rather impose just enough linear conditions...to assure the minimum...is
assumed by some tour.

Hoffman and Ralphs A Tour of Discrete Optimization

Outline

1 Part 1: Past Work

2 Part 2: Present Impact

3 Part 3: Looking to the Future

Hoffman and Ralphs A Tour of Discrete Optimization

The Path to Modern Solvers

Although DFJ’s proof for the 49-city problem did not involve
enumeration, they suggested that it would be possible.
Their paper was quickly followed by several more influential papers.

Markowitz and Manne [1957] coined the term “cutting plane,” while
suggesting an enumeration based strategy for solving MILPs.
Eastman [1958] suggested an enumeration-based method that can be
viewed as a pre-cursor of branch and bound.
Land and Doig [1960] described the method we now call branch and
bound (though they did not call it this).
Gomory [1958] suggested a “dual” cutting plane method.

Fast forwarding, Crowder and Padberg [1980] was followed by Padberg
and Rinaldi [1991], who introduced branch and cut.

The latter combined all of the above elements into a powerful algorithm
for solving large-scale TSPs.

A decade later, Applegate et al. [2003] took these ideas still further and
showed how to solve TSPs with millions of cities.
Hoffman and Ralphs A Tour of Discrete Optimization

General-Purpose Solvers

Until the late 1990s, it was widely believed that solution of large-scale
combinatorial problems required problem-specific methodology.

Balas, Ceria, and Cornuéjols [1993] and Balas, Ceria, Cornuejols, and
Natraj [1999] questioned this belief and showed it was not well-founded.

General-purpose cutting plane procedures, such as Gomory cuts and
lift-and-project cuts revolutionized the solution of unstructured MILPs.

Off-the-shelf solvers (mainly CPLEX, at the time) became effective tools
for solving generic MILPs.

Despite their generic nature, however, identifying and exploiting
substructure was still a key technique.

Hoffman and Ralphs A Tour of Discrete Optimization

Solvers Today

Solvers today are big bags of (very sophisticated) heuristics, bound
together by equally sophisticated control mechanisms.

By carefully balancing these heuristics and paying close attention to
numerical issues, great strides have been made.

It is now reasonable to expect to be able to solve unstructured
“large-scale” instances.

Still, when you peel back the layers of the onion, modern solvers use an
extremely well-tuned version of the early algorithms, including DFJ.

Flow structure is perhaps the most important underlying substructure that
is routinely identified and exploited.

Hoffman and Ralphs A Tour of Discrete Optimization

Going Beyond Traditional Mathematical Optimization

Today, traditional solvers for single instances are powerful and mature.
There are a wide variety of commercial and open source solvers for all
classes of deterministic mathematical optimization problems.

Linear optimization problems.
Nonlinear optimization problems.
Mixed integer linear/quadratic optimization problems.
Mixed integer linear/quadratic optimization problems.
Mixed integer nonlinear, convex and nonconvex.

This opens opportunities to tackle "high-level" problem classes like

Multiobjective optimization.
Optimization under uncertainty.
Multistage stochastic optimization.
Robust optimization.
Multilevel optimization/Computational game theory.
Optimization problems with constraints derived from ML models.
Decomposition-based algorithms with unstructured subproblems.

Hoffman and Ralphs A Tour of Discrete Optimization

Fulkerson’s Continuing Impact

It is easy to see the impact of Fulkerson’s work on many aspects of
modern computational methods.

Almost every existing practical method of solving MILPs has
components originally envisioned by Fulkerson.

How can we continue to build on this legacy?

What will the impact look like in another hundred years?

Hoffman and Ralphs A Tour of Discrete Optimization

Outline

1 Part 1: Past Work

2 Part 2: Present Impact

3 Part 3: Looking to the Future

Hoffman and Ralphs A Tour of Discrete Optimization

New Frontiers

The frontiers of research have shifted.

Use of solvers as black boxes inside larger algorithmic frameworks.

Use of mathematical optimization for “real time” applications rather than
in just a planning mode.

Focus on solving sequences of related instances efficiently rather than
single instances (warm-starting, learning).

Many new approaches to dealing with uncertainty and evolution over
multiple time stages.

Integration of mathematical optimization solvers with/into AI/ML
algorithms.

New wrappers and front ends that allow model development in a more
“natural” and human-centered way.

Hoffman and Ralphs A Tour of Discrete Optimization

New Interfaces

Historically, the input to solvers has been in a flat file, such as .mps or
.nl format.
The user interface is typically through a modeling language or other
front end that outputs a flat file.
This has many implications, including that solvers only understand flat
files in which knowledge of the problem structure has been stripped out.
The most popular modeling languages have remained staunchly
“algebraic,” though this is slowly beginning to change.
Constraint programming languages have long provided an alternative.
Why has there not been more widespread adoption of these languages as
front ends for our most powerful solvers?
With the advent of LLMs, there are indications of change happening.

AMPL is beginning to support some constraints long standard in CP.
Alibaba demonstrated an LLM capable of formulating optimization
models from a human language description.

Hoffman and Ralphs A Tour of Discrete Optimization

Looking to the future

● More sophisticated algorithms for more realistic modeling.
○ It has long been realized that deterministic, single-stage optimization models are

not realistic in many applications (Dantzig himself said this).

○ A result of the maturing of traditional solvers is the shift in focus to developing

approaches for producing flexible/agile/robust solutions, not just a single

“optimum” to an imperfect model.

● The integration of machine learning methods with optimization
○ incorporation of learning into optimization algorithms

○ Incorporation of machine learning into modeling (Gurobi Machine

Learning and PySCIPOpt-ML)

○ the development of more “data-driven” methodologies.

○ The use of optimization to drive machine learning algorithms

● Use of new double-precision GPUs for solving MIPs and LPs

(cheap, massive parallelism).

● More “human-centered” interfaces.

● Support for “real-time” optimization.
Hoffman and Ralphs A Tour of Discrete Optimization

What might the future of combinatorial/integer optimization be?

● There is a need to put input into language of the user (not the

modeler!)
○ How can we make it “easy” for a manager to provide the problem and allow

problem instances to change with little change to the format?

● People expect fast answers… need solution in seconds from

conceptualization to answer.
○ How do we make an optimization problem an app?

● Need to structure input as a manager would think about the

problem and let software translate into:
○ the appropriate model formulation useful to the solver

○ the formulation may differ based on both the structure and the software to be

used

○ the results need to be provided back to the user in the language of the user

Hoffman and Ralphs A Tour of Discrete Optimization

Improving Optimization Technology

● Algorithms need to know the underlying structure without

having to “find” it.

● Need APIs for important problem structures and then let the

user choose the pieces that are needed.

● Create processes so that the entire effort is easy to transport

from small test problems, to large examples, to cloud. From

testing to production.

Hoffman and Ralphs A Tour of Discrete Optimization

Maximize. cTx
subject to Ax ≤b
 x ≥ 0,x 𝛜 Zn

● Translate business rules to linear inequality

systems.

● Hand off to a solver.

●

● Translate solutions back to business rules.

The way we were
taught to build
an optimization
model

Hoffman and Ralphs A Tour of Discrete Optimization

Since the 1940s computers have been

really good at linear algebra.

So it made sense to use matrices as

the vehicle for optimization.

Downside: as modelers, we keep

trying to force a linear-integer

structure on logic constraints.

RESULT: We add big-M’s and other

structures that move the lp-bound far

from the integer solution!

Equally important: the algorithms do

not understand the mathematical

structure of the original problem!

Thinking about problems in this manner results in the following structure:

Hoffman and Ralphs A Tour of Discrete Optimization

• Input:
•Workers (name, days and times avail, type of work
that x can do, restrictions on work assignments)
• Jobs (jobname, time required, people who can
work on given task, time windows)
• Goals (worker preferences, completion times,
fairness)
• Precedences
• Shift rules (e.g. min rest hours between shifts)
• Added constraints

• Output = Solution(s)
• Solution as shifts and assignments
• Statistics

• Background testing

• Real-time solution monitoring

• Re-optimization evaluation

Many of these ideas are based on work done my NextMv.io (Ryan O’Neil and Carolyn Mooney)
Hoffman and Ralphs A Tour of Discrete Optimization

• Input:
• Stops (pickup name, location of pickup, delivery name,
location of delivery)
• Vehicles (vehicle name, vehicle capacity, vehicle
preferences)
• Orders (quantity, time windows, backlogs)
• Precedences
• Penalties
• Goals (worker preferences, completion times, fairness)
• Shift rules
• Unique constraints

• Output = Solution(s)
• Solution in terms of orders delivered, quality of deliver,
happiness of drivers, safety issues (food and driving)
• Statistics over multiple problem instances clustered by
characteristics of the data.

• Background testing
• Real-time solution monitoring
• Evaluation of solutions over time

Many of these ideas are based on work done by NextMv.io (Ryan O’Neil (CTO) and Carolyn Mooney(CEO)).

Hoffman and Ralphs A Tour of Discrete Optimization

Decisions
should be …

Composable
- Small building blocks that are easy to understand
- Able to combine in many unique ways

Repeatable
- Input / output is production data
- Decisions are easy to re-create and debug

Testable
- Models look like other code
- State and transitions are easy to unit test

Scalable
- Models are binary artifacts
- Multiple deployment constraints

WHAT SOLVER? Gurobi, Highs, FICO, CP, ORTools, Pyomy, Heuristics, AMPL,
etc.

HOW TO STORE AND UNDERSTAND OUTPUT:
Want understandable output, showing results by time of day and over time,
under different conditions (goals, solvers, processors,etc).

MAKE IT EASY TO LEARN WHAT WORKS WHEN: Are there problem types that
require different solvers, different parameters? (More on this in AI part of talk)

Many of these ideas are based on work done my NextMv.io (Ryan O’Neil and Carolyn Mooney)

Hoffman and Ralphs A Tour of Discrete Optimization

Some search tree ideas taken from Constraint Programming (CP),
Decision Diagrams and Machine Learning

● We want a search tree that:
○ Allows input to be in the natural language of user

○ Treats the logic constraints directly (constraint programming)

○ Exploits the linear optimization bounding and cutting plane tools already built into

our most successful MIP solvers

○ Determines the nodes most likely to produce good feasible solutions possibly

through learning models.

● Decision Diagrams uses a concept that is imbedded in ML (and

possibly in sophisticated MIP codes?):
○ Allows restricted branching (next slides);

○ Tightens constraints as well as domain states (similar to preprocessing in

optimization and constraint programming)

○ Allows users to control branching rules

○ Has natural bounding concepts

○ Has logic-based branching (similar to constraint-programming)

Hoffman and Ralphs A Tour of Discrete Optimization

Exact and Restricted (Restricted) Diagrams

Exact and Restricted (Restricted) Diagrams

Diagrams are
constructed layer by
layer in a top-down
manner.

Exact diagrams
fully explore the state
space, which can
grow very large.

Restricted diagrams act
as a primal heuristic by
dropping the worst states
at each layer.

Dropped states can be
reconsidered when time
permits or feasibility
requires search of other
branches

L1

L2

L3

L7

L
4
L5

L6

Hoffman and Ralphs A Tour of Discrete Optimization

What classic optimization models have properties exploitable using
 logic constructs and partial tree search?

● Vehicle Routing Problems

● Scheduling Problems

● Packing Problems

● Clustering Problems

● Budget Allocation Problems

● Matching Problems

ONE CAN MIX AND MATCH THESE APIs :

EXAMPLE: Constrained VRP is a packing problem mashed with
assignment and routing components: “I want to pack as much as I
can on a vehicle and end up with a sensible route.”

Hoffman and Ralphs A Tour of Discrete Optimization

Another issue: How to fix problems when things go wrong?

● If one understands the structure and data, then one can quickly

determine the appropriate “neighborhood” of the problem.

(e.g. What data has changed and what constraints/goals are

impacted?)

● Given a well-specified “neighborhood”, search can be restricted

to that neighborhood.

● Object: return to feasibility quickly and with the least disruption

of the overall system.

● The user specifies the time allotted for the solution process;

user can then evaluate results relative to time allocated to

solving.

Hoffman and Ralphs A Tour of Discrete Optimization

Another issue: How to fix problems when things go wrong?

● But, one needs to know an appropriate ”neighborhood”.

● Thus, the data should allow the algorithms to know where the

change in the problem has occurred.

● Think about the VRP: what locations are impacted, what types

of restaurants, what vehicles, etc.

● When a problem is translated into a MIP, this information is

often lost, thereby making it difficult to have a more informed

neighborhood search!

Hoffman and Ralphs A Tour of Discrete Optimization

What might these concepts do for the solution and use of combinatorial
optimization nmodeling?

● Modelers will be able to spend less time putting problems into
integer-linear framework and more time in getting the model
correct, analyzing the data, and providing intuitive output.

● Software should use the client’s data directly and transform the
data to produce different inputs for different solvers; similarly,
software returns results to client’s files.
○ APIs are built for specific problem structures (such as VRP, scheduling, clustering,

assignment, etc.). Modelers work across decision domains. (COMPOSABILITY)
○ APIs use known methods to get bounds and handle logical restrictions common to

the problem

● Modelers want to test different algorithms across the test set:
○ Which is best given a specific environment? Decision Diagrams, Constraint

Programming, MIP, column generation, user heuristics
○ Choice is likely to be different if real-time versus planning… but planning makes

real-time solving possible.

Hoffman and Ralphs A Tour of Discrete Optimization

Importance of these concept to combinatorial optimization:

● Technology allows easy use of multiprocessing to allow lots of

testing (Why not treat optimization problems as the deep-

learning community does?)

● We need to collect MASSIVE data sets of problems and learn

what works
○ Allows modeler to consider black swan events and then determine strategies to

avoid them

○ Can shadow the solution technique and see how the decisions would change with

alternative parameter choices

● Real-time problems need flexibility and contingency planning

● Algorithms can still be improved: e.g. need better bounds; need

to think carefully about prioritizing alternative sub models

● We should always care about optimality! If using heuristics,

evaluate solutions obtained against optimality criteria.

Hoffman and Ralphs A Tour of Discrete Optimization

AI and OR technologies can complement each other.

● AI to help solve large, important MIP problems:
○ AI can help to determine “good” algorithms and parameters for optimization

○ AI might help direct the tree search

○ AI might be able to determine good feasible solutions

○ But… If one is using AI to learn how our algorithms should function and, possibly,

provide “warm starts” for optimization, then one needs to be sure that the

learning set is broad enough to not bias the algorithms

● Optimization to help deep learning:
○ Better optimization (Are there better nonlinear optimization techniques that can

improve the tree search within deep learning?)

○ What have we learned from our long history of solving clustering problems,

function determination, etc.

○ Can one train a NN using combinatorial optimization?

Hoffman and Ralphs A Tour of Discrete Optimization

ML and OR Are Complementary

It may seem as though machine learning and OR are in competition.
Machine learning = function approximation and this has been in the OR
toolbox since the beginning.
Machine learning provides a very general methodology, techniques in
OR are based on specific knowledge of structure.
Many algorithms for optimization (including branch-and-bound) can be
viewed as constructing a “dual function.”
Thus. optimization can be viewed as a specific form of machine learning
in which we approximate a function of known form at a single point.
Solving sequences of instances is a generalization which is closer to
general machine learning in which we need agreement at multiple points.
The development of general-purpose solvers obviated the need for
customized solver development.
Machine learning may serve a similar purpose—to fill in capability gaps.
Machine learning is not a replacement for OR, but neither will OR
methodology ever be as general as machine learning.
Hoffman and Ralphs A Tour of Discrete Optimization

ML Can Augment Optimization Methodology

We said earlier that a solver is a collection of heuristics.

Many of these heuristics are ultimately trying to make predictions based
on data gathered during the solution process.

Machine learning may ultimately prove better at making these
predictions than our current heurstics.

Despite the massive amount of effort devoted to improving the
performance of solvers, there are still aspects that are not well-studied.

ML can help fill in the gaps.

In some cases, ML may point the way towards development of improved
algorithms (e.g., reinforcement learning).

Hoffman and Ralphs A Tour of Discrete Optimization

Optimization Can Augment ML Methodology

Ultimately, ML is optimization.

Currently, methodology for nonlinear optimization dominates ML.
However, many ML algorithms are solving what are actually discrete
optimization problems.

The problem of constructing an optimal decision tree is fundamentally
discrete.
RelU activation function enable approximation of step functions, etc.

Does it make sense to tackle these problems directly using discrete
optimization?

There is some work in this direction already, but only time will tell.

Hoffman and Ralphs A Tour of Discrete Optimization

Exciting time for OR tool developers, modelers and software developers

● Major problem areas that we have an advantage: supply chain
optimization, real-time delivery, real-time scheduling, real-time
re-pricing and re-distribution

● The field of integer nonlinear optimization has great potential,
but we need modeling languages that make using our tools
“easy”.

● And… our software development needs to go past formulation
to complete systems… from user input to explainable output in
the user’s language and with graphical presentations of results

● Next generation is being trained to expect answers in “zero
time”. To compete, we need much more experimentation. That
means we need massive data sets!
○ How do we collect and distribute the data we need to develop the next

generation of optimization software?

● Is this “doable”? Can we have an input process that maintains
structure?

Hoffman and Ralphs A Tour of Discrete Optimization

Questions and Comments

Hoffman and Ralphs A Tour of Discrete Optimization

Characteristics of Decision Diagrams/Constraint Programming

• Constraints can be nonlinear, discontinuous, non-differentiable:

• Easy to handle time windows

• Easy to state precedence constraints (in natural language)

• Can provide priorities (goals) without specifying a specific penalty function

• Has statements similar to constraint programming

• All-different;

• If A not B; If A, not (B or C)

• if/then;

• Sequencing constraints

Hoffman and Ralphs A Tour of Discrete Optimization

References I

D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Implementing the
Dantzig-Fulkerson-Johnson algorithm for large traveling salesman
problems. Mathematical Programming, 97:91–153, 2003.

E. Balas, S. Ceria, G. Cornuejols, and N.R. Natraj. Gomory cuts revisited.
Operations Research Letters, 19:1–9, 1999.

Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project
cutting plane algorithm for mixed 0–1 programs. Mathematical
programming, 58(1-3):295–324, 1993.

Richard Bellman. The theory of dynamic programming. Bulletin of the
American Mathematical Society, 60(6):503–515, 1954.

H. Crowder and M.W. Padberg. Solving large-scale symmetric travelling
salesman problems to optimality. Management Science, 26(5):495–509,
1980.

Hoffman and Ralphs A Tour of Discrete Optimization

References II

G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large scale
traveling salesman problem. Operations Research, 2:393–410, 1954.

G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs.
Operations research, 8(1):101–111, 1960.

G.B. Dantzig, L.R. Ford, and D.R. Fulkerson. A primal-dual algorithm for
linear programs. Linear inequalities and related systems, 38:171–182,
1956.

George B Dantzig. Programming in a linear structure. In Bulletin of the
American Mathematical Society, volume 54, pages 1074–1074. AMER
MATHEMATICAL SOC 201 CHARLES ST, PROVIDENCE, RI
02940-2213, 1948.

Willard Lawrence Eastman. Linear programming with pattern constraints: a
thesis. PhD thesis, Harvard University, 1958.

Hoffman and Ralphs A Tour of Discrete Optimization

References III

L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian
journal of Mathematics, 8:399–404, 1956.

L.R. Ford and D.R. Fulkerson. A suggested computation for maximal
multi-commodity network flows. Management Science, 5(1):97–101, 1958.

R. E. Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Monthly, 64:275–278,
1958.

Isidor Heller. On the problem of shortest path between points. 1. In Bulletin
of the American Mathematical Society, volume 59, pages 551–551. AMER
MATHEMATICAL SOC 201 CHARLES ST, PROVIDENCE, RI
02940-2213, 1953.

Harold W Kuhn. On certain convex polyhedra. Bulletin of the American
Mathematical Society, 61(557-558):8, 1955.

Hoffman and Ralphs A Tour of Discrete Optimization

References IV

A. H. Land and A. G. Doig. An automatic method for solving discrete
programming problems. Econometrica, 28:497–520, 1960.

Harry M Markowitz and Alan S Manne. On the solution of discrete
programming problems. Econometrica: journal of the Econometric
Society, pages 84–110, 1957.

M. W. Padberg and G. Rinaldi. A branch and cut algorithm for the solution of
large scale traveling salesman problems. SIAM Review, 33:60–100, 1991.

William R. Pulleyblank. Edmonds, matching and the birth of polyhedral
combinatorics. Documenta Mathematica, Extra Volume ISMP:181–197,
2012.

Julia Robinson. On the Hamiltonian game (a traveling salesman problem).
Rand Corporation, 1949.

Hoffman and Ralphs A Tour of Discrete Optimization

	Part 1: Past Work
	Part 2: Present Impact
	Part 3: Looking to the Future
	References

