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The Basic Setting

Integer Linear Program: Minimize/Maximize a linear objective function over a (discrete)
set of solutions satisfying specified linear constraints.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

P = conv{x ∈ Z
n | A′x ≥ b′, A′′x ≥ b′′}
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What is the Goal of Decomposition?

Basic Idea: Exploit knowledge of the underlying structural components of model to
improve the bound.

Many complex models are built up from multiple underlying substructures.

Subsystems linked by global constraints.

Complex combinatorial structures obtained by combining simple ones.

We want to exploit knowledge of efficient methodology for substructures.

This can be done in two primary ways (with many variants).

Identify independent subsystems.

Identify subsets of constraints that can be dealt with efficiently.
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The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
relaxation, we can improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zD = min
x∈P′

n

c⊤x
˛

˛ A′′x ≥ b′′
o

zIP ≥ zD ≥ zLP

Q′ = {x ∈ R
n | A′x ≥ b′}

Q′′ = {x ∈ R
n | A′′x ≥ b′′}

P′ = conv{x ∈ Z
n | A′x ≥ b′}

P = conv{x ∈ Z
n | A′x ≥ b′, A′′x ≥ b′′}

Assumptions:

OPT(P, c) and SEP(P, x) are “hard”

OPT(P ′, c) and SEP(P ′, x) are “easy”

Q′′ can be represented explicitly (description has polynomial size)

P ′ must be represented implicitly (description has exponential size)
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Overview of Methods

Cutting Plane Method (CPM)

CPM combines an outer approximation of P ′ with an explicit description of Q′′

Master: zCP = minx∈Rn

˘

c⊤x | Dx ≥ d, A′′x ≥ b′′
¯

Subproblem: SEP(P ′, xCP)

Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = min
λ∈RE

+

˘

c⊤
`P

s∈E
sλs

´ ˛

˛ A′′
`P

s∈E
sλs

´

≥ b′′,
P

s∈E
λs = 1

¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
DW

A′′
´

Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′

to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′

+

˘

mins∈E

˘

c⊤s + u⊤(b′′ − A′′s)
¯¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
LD

A′′
´
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Common Threads

The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

The decomposition bound is obtained by optimizing over the intersection
of one explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomp-based bounding methods contain two primary steps

Master Problem: Update the primal/dual solution information

Subproblem: Update the approximation of P′: SEP(P′, x) or OPT(P′, c)

Integrated decomposition methods further improve the bound by
considering two implicitly defined polyhedra whose descriptions are
iteratively refined.

Price-and-Cut (PC)

Relax-and-Cut (RC)

Decompose-and-Cut (DC)

Q′′

Q′ ∩ Q′′

Q
′′
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Generic Decomposition-based Branch and Bound

Traditionally, decomposition-based branch-and-bound methods have required extensive
problem-specific customization.

identifying the decomposition (which constraints to relax);

formulating and solving the subproblem (either optimization or separation over P
′);

formulating and solving the master problem; and

performing the branching operation.

However, it is possible to replace these components with generic alternatives.

The decomposition can be identified externally by analyzing the matrix or through a
modeling language.

The subproblem can be solved with a generic MILP solver.

The branching can be done in the original compact space.

The remainder of this talk focuses on our recent efforts to develop a completely generic
decomposition-based MILP solver.
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Working in the Compact Space

The key to the implementation of this unified framework is that we always maintain a
representation of the problem in the compact space.

This allows us to employ most of the usual techniques used in LP-based branch and bound
without modification, even in this more general setting.

There are some challenges related to this approach that we are still working on.

Gomory cuts

Preprocessing

Identical subproblems

Strong branching

Allowing the user to express all methods in the compact space is extremely powerful when
it comes to modeling language support.

It is important to note that DIP currently assumes the existence of a formulation in the
compact space.

We are working on relaxing this assumption, but this means the loss of the fully generic
implementation of some techniques.
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Block Structure

Many difficult MILPs have a block structure, but this structure is not part of the input
(MPS) or is not exploitable by the solver.

In practice, it is common to have models composed of independent subsystems coupled by
global constraints.

The result may be models that are highly symmetric and difficult to solve using traditional
methods, but would be easy to solve if the structure were known.
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Automatic Structure Detection

For unstructured problems, block structure may be detected automatically.

This is done using hypergraph partitioning methods.

We map each row of the original matrix to a hyperedge and the nonzero elements to nodes
in a hypergraph.

Hypergraph partitioning results in identification of the blocks in a singly-bordered block
diagonal matrix.
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Hidden Block Structure
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MIPLIB2003 instance : p2756

Detected block structure for p2756 instance
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Hidden Block Structure
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Generic Branching

By default, we branch on variables in the compact space.

In PC, this is done by mapping back to the compact space x̂ =
P

s∈E
sλ̂s.

Variable branching in the compact space is constraint branching in the extended space

This idea makes it possible define generic branching procedures.

(2,1) (2,1)(2,1)

Node 1 Node 2

Node 4

Node 3

xDW = (2.42, 2.25)

{s ∈ E | (λDW)s > 0}

P I

PO

xDW = (3, 3.75)

P I
P I

PO
PO

xDW = (3, 3)

{s ∈ E | (λDW)s > 0} {s ∈ E | (λDW)s > 0}

Node 1: 4λ(4,1) + 5λ(5,5) + 2λ(2,1) + 3λ(3,4) ≤ 2
Node 2: 4λ(4,1) + 5λ(5,5) + 2λ(2,1) + 3λ(3,4) ≥ 3
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DIP and CHiPPS

The use of decomposition methods in practice is hindered by a
number of serious drawbacks.

Implementation is difficult, usually requiring development of
sophisticated customized codes.

Choosing an algorithmic strategy requires in-depth knowledge of theory
and strategies are difficult to compare empirically.

The powerful techniques modern solvers use to solve integer programs
are difficult to integrate with decomposition-based approaches.

DIP and CHiPPS are two frameworks that together allow for easier
implementation of decomposition approaches.

CHiPPS (COIN High Performance Parallel Search Software) is a
flexible library hierarchy for implementing parallel search algorithms.

DIP (Decomposition for Integer Programs) is a framework for
implementing decomposition-based bounding methods.

DIP with CHiPPS is a full-blown branch-and-cut-and-price framework
in which details of the implementation are hidden from the user.

DIP can be accessed through a modeling language or by providing
a model with notated structure.
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Related Projects

There have been a number of related efforts to create frameworks supporting the
implementation of decomposition-based branch and bound.

Column Generation Frameworks

ABACUS [Jünger and Thienel(2012)]

SYMPHONY [Ralphs et al.(2012)Ralphs, Ladányi, Güzelsoy, and Mahajan]

COIN/BCP [Ladányi(2012)]

Generic decomposition frameworks

BaPCod [Vanderbeck(2012)]
Dantzig-Wolfe
Automatic reformulation,
Generic cuts and branching

GCG [Gamrath and Lübbecke(2012)]
Dantzig-Wolfe
Automatic hypergraph-based decomposition
Automatic reformulation
Generic cuts and branching

SAS DECOMP [Galati(2012)]
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DIP Framework: Feature Overview

One interface to all algorithms: CP, DW, LD, PC, RC—change method by switching
parameters.

Automatic reformulation allows users to specify methods in the compact (original) space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

Novel options for cut generation

Can utilize CGL cuts in all algorithms (separate from original space).

Can utilize structured separation (efficient algorithms that apply only to vectors with special
structure (integer) in various ways).

Can separate from P
′ using subproblem solver (DC).

Easy to combine different approaches

Column generation based on multiple algorithms or nested subproblems can be easily defined and
employed.

Bounds based on multiple model/algorithm combinations.

Active LP compression, variable and cut pool management.
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DIP Framework API

The base class DecompApp provides an interface for user to define the application-specific
components of their algorithm

Define the model(s)

setModelObjective(double * c): define c

setModelCore(DecompConstraintSet * model): define Q
′′

setModelRelaxed(DecompConstraintSet * model, int block): define Q
′ [optional]

solveRelaxed(): define a method for OPT(P′, c) [optional, if Q′, CBC is built-in]

generateCuts(): define a method for SEP(P′, x) [optional, CGL is built-in]

isUserFeasible(): is x̂ ∈ P? [optional, if P = conv(P′
∩ Q

′′
∩ Z) ]

All methods have appropriate defaults but are virtual and may be overridden.

The base class DecompAlgo provides the shell (init / master / subproblem / update).

Each of the methods described has derived default implementations DecompAlgoX : public
DecompAlgo which are accessible by any application class, allowing full flexibility.

New, hybrid or extended methods can be easily derived by overriding the various subroutines,
which are called from the base class.
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DipPy

DipPy provides an interface to DIP through the modeling language PuLP.

PuLP is a modeling language that provides functionality similar to other modeling
languages.

It is built on top of Python so you get the full power of that language for free.

PuLP and DipPy are being developed by Stuart Mitchell and Mike O’Sullivan in Auckland
and are part of COIN.

Through DipPy, a user can

Specify the model and the relaxation, including the block structure.

Implement methods (coded in Python) for solving the relaxation, generating cuts, custom
branching.

With DipPy, it is possible to code a customized column-generation method from scratch in
a few hours.

This would have taken months with previously available tools.
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Example: Generalized Assignment Problem

The problem is to find a minimum cost assignment of n tasks to m machines such that
each task is assigned to one machine subject to capacity restrictions.

A binary variable xij indicates that machine i is assigned to task j. M = 1,. . . ,m and
N=1,. . . ,n.

The cost of assigning machine i to task j is cij

Generalized Assignment Problem (GAP)

min
X

i∈M

X

j∈N

cijxij

X

j∈N

wijxij ≤ bi ∀i ∈ M

X

i∈M

xij = 1 ∀j ∈ N

xij ∈ {0, 1} ∀i, j ∈ M × N
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GAP in DipPy

Creating GAP model in DipPy

prob = dippy .DipProblem ("GAP", LpMinimize )

# objective

prob += lpSum (assignVars [m][t] * COSTS [m][t] for m, t in MACHINES_TASKS ), "min"

# machine capacity (knapsacks , relaxation )

for m in MACHINES :

prob .relaxation [m] +=

lpSum (assignVars [m][t] * RESOURCE_USE [m][t] for t in TASKS ) <= CAPACITIES [m]

# assignment

for t in TASKS :

prob += lpSum (assignVars [m][t] for m in MACHINES ) == 1

prob .relaxed_solver = relaxed_solver

dippy .Solve (prob )

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 24/52
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GAP in DipPy

Solver for subproblem for GAP in DipPy

def relaxed_solver (prob , machine , redCosts , convexDual ):

# get tasks which have negative reduced

task_idx = [t for t in TASKS if redCosts [assignVars [machine ][t]] < 0]

vars = [assignVars [machine ][t] for t in task_idx ]

obj = [- redCosts [assignVars [machine ][t]] for t in task_idx ]

weights = [RESOURCE_USE [machine ][t] for t in task_idx ]

z, solution = knapsack01 (obj , weights , CAPACITIES [machine ])

z = -z

# get sum of original costs of variables in solution

orig_cost = sum(prob .objective .get(vars [idx]) for idx in solution )

var_values = [(vars [idx], 1) for idx in solution ]

dv = dippy .DecompVar (var_values , z-convexDual , orig_cost )

# return , list of DecompVar objects

return [dv]
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GAP in DipPy

DipPy Auxiliary Methods

de f s o l v e s ubp rob l em ( prob , i ndex , redCosts , convexDual ) :
. . .
z , s o l u t i o n = knapsack01 ( ob j , we ights , CAPACITY)
. . .
r e t u rn [ ]

p rob . r e l a x e d s o l v e r = so l v e subp rob l em
de f knapsack01 ( ob j , we ights , c a p a c i t y ) :

. . .
r e t u rn c [ n−1][ c a p a c i t y ] , s o l u t i o n

d e f f i r s t f i t ( p rob ) :
. . .
r e t u rn bvs

d e f one each ( prob ) :
. . .
r e t u rn bvs

prob . i n i t v a r s = f i r s t f i t
d e f c hoo s e an t i s ymme t r y b r an ch ( prob , s o l ) :

. . .
r e t u rn ( [ ] , down branch ub , up b ran ch l b , [ ] )

p rob . b ranch method = choo s e an t i s ymme t r y b r an ch
de f g e n e r a t e w e i g h t c u t s ( prob , s o l ) :

. . .
r e t u rn new cuts

prob . g e n e r a t e c u t s = g e ne r a t e w e i g h t c u t s
d e f h e u r i s t i c s ( prob , xhat , c o s t ) :

. . .
r e t u rn s o l s

p rob . h e u r i s t i c s = h e u r i s t i c s
d i pp y . S o l v e ( prob , {

’ doPr i ceCut ’ : ’ 1 ’ ,
})
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GAP in C++

DIP createModels for GAP example

void GAP_DecompApp :: createModels (){

// get information about this problem instance

int nTasks = m_instance .getNTasks (); //n

int nMachines = m_instance .getNMachines (); //m

const int * profit = m_instance .getProfit ();

int nCols = nTasks * nMachines ;

// construct the objective function

m_objective = new double[nCols ];

for(i = 0; i < nCols ; i++) { m_objective [i] = profit[i]; }

setModelObjective (m_objective );

DecompConstraintSet * modelCore = new DecompConstraintSet ();

createModelPartAP (modelCore );

setModelCore (modelCore );

for(i = 0; i < nMachines ; i++){

DecompConstraintSet * modelRelax = new DecompConstraintSet ();

createModelPartKP (modelRelax , i);

setModelRelax (modelRelax , i);

}

}
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GAP in C++

DIP solveRelaxed for GAP example

DecompSolverStatus GAP_DecompApp :: solveRelaxed (const int whichBlock ,

const double * costCoeff ,

DecompVarList & newVars ){

DecompSolverStatus status = DecompSolStatNoSolution ;

if(! m_appParam .UsePisinger ) { return status; }

vector <int > solInd;

vector <double > solEls;

double varCost = 0.0;

const double * costCoeffB = costCoeff + getOffsetI (whichBlock );

status = m_knap[whichBlock ]-> solve (whichBlock , costCoeffB ,

solInd , solEls , varCost );

DecompVar * var = new DecompVar (solInd , solEls , varCost , whichBlock );

newVars .push_back (var );

return status;

}
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GAP in C++

DIP main for GAP

int main (int argc , char ** argv ){

// create the utility class for parsing parameters

UtilParameters utilParam (argc , argv );

bool doCut = utilParam .GetSetting ("doCut ", true );

bool doPriceCut = utilParam .GetSetting ("doPriceCut ", false );

bool doRelaxCut = utilParam .GetSetting ("doRelaxCut ", false );

// create the user application (a DecompApp )

GAP_DecompApp gapApp(utilParam );

// create the CPM /PC/RC algorithm objects (a DecompAlgo )

DecompAlgo * algo = NULL ;

if(doCut ) algo = new DecompAlgoC (&gapApp , &utilParam );

if(doPriceCut ) algo = new DecompAlgoPC (&gapApp , &utilParam );

if(doRelaxCut ) algo = new DecompAlgoRC (&gapApp , &utilParam );

// create the driver AlpsDecomp model

AlpsDecompModel gap(utilParam , algo );

// solve

gap.solve ();

}
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Command Line Interface

A third way of getting a model into the generic solver module is to read it from a file as
usual.

The decomposition can be identified either by

specifying the block structure explicitly by also reading a block file; or

using the automatic block detection algorithm to identify the blocks.
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Experiments

Instances: ATM cash management, Wedding planner problem, MIPLIB

Computational environment: single nodes of a cluster, each of which has two 8 core
processors, each running at 2 GHz and with 512 KB cache, 32 GB of shared memory,

Experiments

DIP vs. CPLEX: Can decomposition be better than branch and cut?

Automatic structure detection

Can we effectively use hypergraph partitioning to find structure?

How good is the bound?

How can we measure the goodness of a decomposition a priori?

How many blocks?

Which hypergraph partitioner is most effective?

Can we exploit the bock structure to parallelize the subproblem solve?

We use bound at the root node as our primary measure for comparison in most of the
following experiments.

Caveat: these results are preliminary and their purpose is more to raise questions than
answer them!
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Wedding Planner Problem: CPLEX vs DIP
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Comparing Hypergraph Partitioners

We use heuristics to find a K-way hypergraph partition that minimizes the size of the
resulting cut.

For midsize MIPLIB instances, it takes at most a few seconds.

Solvers

hMETIS, Karypis, University of Minnesota

PaTOH, Çatalyürek, Ohio State University

Comparisons: PaToH tends to be faster, but hMETIS produces better decompositions.
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Quality Measures for Decomposition

The goal of the partitioning is to have a “good decomposition.”

Generally, we judge goodness in terms of bound and computation time.

There is a potential tradeoff involving the number of blocks, the number of linking rows,
and the distribution of integer variables.

We would like to be able to identify a good decomposition based on easily identified
features.

Potential Features

The fraction of nonzero elements in the matrix appearing in the coupling rows (α),

The fraction of nonzeros appearing in the coupling rows that are in integer columns (β),

The fraction of the nonzeros in integer columns in the matrix that appear in coupling rows
(γ),

The average fraction of the nonzeros in each block that are in integer columns (η),

The standard deviation of the fraction of integer elements elements in the blocks (θ).
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Relationship between Features
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A Measure for Decomposition Quality

Π = (1 − min(α, γ))) × 100%,
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Tuning the Hypergraph Partitioning

We have now seen the features that are considered “important” in identifying a good
decomposition.

How do we encourage the partitioner to give us such a decomposition?

With respect to the underlying graph, the partitioner has two goals.

The weight of the cut should be minimized.

The partition should be “balanced.”

The first goal essentially corresponds to minimizing the number of coupling rows.

The second goal corresponds to balancing the size of the blocks.

We can affect the behavior of the algorithm by assigning weights to the nodes and
hyperedges.
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Choices, Choices...
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Effect of Number of Blocks
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Figure: Relationship between number of blocks and optimality gap closed
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Number of Blocks, DW Bound, and Computation Time
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Weighting the Hyperedges and Nodes

Unit weight as input of hypergraph partitioner already gives nice results, but can we do
better?

We have already seen that it is advantageous for the rows involving more integer variables
to be in the blocks.

We assign higher weight to nodes that correspond to integer variables and to hyperedges
which correspond to rows containing integer elements.
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Bound at the Root Node
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Optimality Gap Closed
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Parallelizing DIP

Multi-core architecture are pervasive.

DW decomposition of problems with block structure is naturally tailored to parallel
computation.

Here, we investigate the extent to which computation times can be improved by solving the
subproblems in parallel.

We measure time to process the root node.

Our performance measure is:

E =
T1

Tp × p
,

where Tp is defined as the wallclock time using p threads.
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ATM Problem: Efficiency vs Cores
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Wedding Planner Problem: Efficiency vs Cores
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Parallel Efficiency for Structured Problems

We observe that utilizing multiple cores does reduce computational time.

As usual, there is a loss of parallel efficiency as we increase the number of threads.

Solution of the master problem is sequential

Idle time coming from differences in variability of solution time for different blocks.

We use the normalized standard deviation (NS) of subproblem computational time at the
first iteration to assess the variability of subproblem solution times.

For ATM and Wedding planner problems, the computational time is mainly allocated to solving
subproblems.

The NS (average around 0.9) is higher for ATM problems than that (average around 0.2 ) for
Wedding problem, which is why the parallel efficiency for Wedding problem is higher than that for
ATM problems.
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Multi-threaded automatic Dantzig-Wolfe Decomposition

Using automatic hypergraph partitioning, we experimented with using DIP to solve generic
(unstructured) MILPs in parallel

instance LP% DW% ns T1 P1 E4 P4 E8 P8 E16 P16
protfold 35 16 6.6 133 0.28 0.36 0.12 0.23 0.42 0.1 0.74

pp08aCUTS 25 7 0.59 1.28 0.91 0.52 0.84 0.28 0.79 0.07 0.77
pp08a 62 9 0.28 0.65 0.93 0.4 0.87 0.28 0.83 0.14 0.87
pg5 34 16 0 0.63 79 0.92 0.58 0.79 0.33 0.77 0.21 0.79

machrophage 100 2 4.0 488 0.99 0.62 0.99 0.38 0.98 0.24 0.98
manna81 1 0 0.37 38 0.79 0.4 0.67 0.17 0.49 0.15 0.49

mkc 9 4 1.3 62 0.9 0.52 0.84 0.19 0.84 0.16 0.8
modglob 1 1 0.49 4.96 0.94 0.59 0.78 0.74 0.72 0.17 0.73
10teams 1 1 3.36 103 0.6 0.15 0.45 0.1 0.54 0.03 0.31
cap6000 0 0 0.68 1.43 0.67 0.52 0.44 0.29 0.36 0.19 0.28
disctom 0 0 3.3 173 0.23 0.27 0.14 0.12 0.16 0.08 0.13
fixnet6 70 20 1.31 0.73 0.88 0.35 0.78 0.26 0.72 0.15 0.68

Variability of the subproblem solve times is larger than with the structured problems and
we see an efficiency loss.
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Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut
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