
Methods
Software

Interfaces
Computation

Future

DIP and DipPy:
Towards a Decomposition-based MILP Solver

Ted Ralphs

Lehigh University

Matthew Galati

SAS Institute

Jiadong Wang

Lehigh University

INFORMS Annual Meeting, Phoenix, AZ, October 2012

Thanks: Work supported in part by the National Science Foundation

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 1/52

Methods
Software

Interfaces
Computation

Future

Outline

1 Methods
Traditional
Generic

2 Software

3 Generic Interfaces
DipPy
C++
Command Line

4 Computational Experiments
Exploiting Structure
Detecting Structure
Parallelizing

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 2/52

Methods
Software

Interfaces
Computation

Future

The Basic Setting

Integer Linear Program: Minimize/Maximize a linear objective function over a (discrete)
set of solutions satisfying specified linear constraints.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

P = conv{x ∈ Z
n | A′x ≥ b′, A′′x ≥ b′′}

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 3/52

Methods
Software

Interfaces
Computation

Future

What is the Goal of Decomposition?

Basic Idea: Exploit knowledge of the underlying structural components of model to
improve the bound.

Many complex models are built up from multiple underlying substructures.

Subsystems linked by global constraints.

Complex combinatorial structures obtained by combining simple ones.

We want to exploit knowledge of efficient methodology for substructures.

This can be done in two primary ways (with many variants).

Identify independent subsystems.

Identify subsets of constraints that can be dealt with efficiently.

0
0

1
1

2
2

0.6

3
3

4

0.2

5

0.8

6

0.2

7

4

5

8

6

9

0.8

7

10

0.8

8

11

9

12

0.6

13

10

14

11

15

0.4

0.2

12

0.2

0.2

0.2

13
0.4

0.6
0.8

14

0.6

0.2

0.2

15

0.2

0.2

0.2

0.8

0.6

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 4/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

Outline

1 Methods
Traditional
Generic

2 Software

3 Generic Interfaces
DipPy
C++
Command Line

4 Computational Experiments
Exploiting Structure
Detecting Structure
Parallelizing

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 5/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
relaxation, we can improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zD = min
x∈P′

n

c⊤x
˛

˛ A′′x ≥ b′′
o

zIP ≥ zD ≥ zLP

Q′ = {x ∈ R
n | A′x ≥ b′}

Q′′ = {x ∈ R
n | A′′x ≥ b′′}

P′ = conv{x ∈ Z
n | A′x ≥ b′}

P = conv{x ∈ Z
n | A′x ≥ b′, A′′x ≥ b′′}

Assumptions:

OPT(P, c) and SEP(P, x) are “hard”

OPT(P ′, c) and SEP(P ′, x) are “easy”

Q′′ can be represented explicitly (description has polynomial size)

P ′ must be represented implicitly (description has exponential size)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 6/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

Overview of Methods

Cutting Plane Method (CPM)

CPM combines an outer approximation of P ′ with an explicit description of Q′′

Master: zCP = minx∈Rn

˘

c⊤x | Dx ≥ d, A′′x ≥ b′′
¯

Subproblem: SEP(P ′, xCP)

Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = min
λ∈RE

+

˘

c⊤
`P

s∈E
sλs

´ ˛

˛ A′′
`P

s∈E
sλs

´

≥ b′′,
P

s∈E
λs = 1

¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
DW

A′′
´

Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′

to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′

+

˘

mins∈E

˘

c⊤s + u⊤(b′′ − A′′s)
¯¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
LD

A′′
´

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 7/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

Common Threads

The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

The decomposition bound is obtained by optimizing over the intersection
of one explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomp-based bounding methods contain two primary steps

Master Problem: Update the primal/dual solution information

Subproblem: Update the approximation of P′: SEP(P′, x) or OPT(P′, c)

Integrated decomposition methods further improve the bound by
considering two implicitly defined polyhedra whose descriptions are
iteratively refined.

Price-and-Cut (PC)

Relax-and-Cut (RC)

Decompose-and-Cut (DC)

Q′′

Q′ ∩ Q′′

Q
′′

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 8/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

Generic Decomposition-based Branch and Bound

Traditionally, decomposition-based branch-and-bound methods have required extensive
problem-specific customization.

identifying the decomposition (which constraints to relax);

formulating and solving the subproblem (either optimization or separation over P
′);

formulating and solving the master problem; and

performing the branching operation.

However, it is possible to replace these components with generic alternatives.

The decomposition can be identified externally by analyzing the matrix or through a
modeling language.

The subproblem can be solved with a generic MILP solver.

The branching can be done in the original compact space.

The remainder of this talk focuses on our recent efforts to develop a completely generic
decomposition-based MILP solver.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 9/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

Working in the Compact Space

The key to the implementation of this unified framework is that we always maintain a
representation of the problem in the compact space.

This allows us to employ most of the usual techniques used in LP-based branch and bound
without modification, even in this more general setting.

There are some challenges related to this approach that we are still working on.

Gomory cuts

Preprocessing

Identical subproblems

Strong branching

Allowing the user to express all methods in the compact space is extremely powerful when
it comes to modeling language support.

It is important to note that DIP currently assumes the existence of a formulation in the
compact space.

We are working on relaxing this assumption, but this means the loss of the fully generic
implementation of some techniques.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 10/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

Block Structure

Many difficult MILPs have a block structure, but this structure is not part of the input
(MPS) or is not exploitable by the solver.

In practice, it is common to have models composed of independent subsystems coupled by
global constraints.

The result may be models that are highly symmetric and difficult to solve using traditional
methods, but would be easy to solve if the structure were known.

0

B

B

B

B

B

@

A′′
1 A′′

2 · · · A′′
κ

A′
1

A′
2

. . .

A′
κ

1

C

C

C

C

C

A

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 11/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

Automatic Structure Detection

For unstructured problems, block structure may be detected automatically.

This is done using hypergraph partitioning methods.

We map each row of the original matrix to a hyperedge and the nonzero elements to nodes
in a hypergraph.

Hypergraph partitioning results in identification of the blocks in a singly-bordered block
diagonal matrix.

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 12/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

Hidden Block Structure

0 500 1000 1500 2000 2500

0

200

400

600

nz = 8937

MIPLIB2003 instance : p2756

Detected block structure for p2756 instance
Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 13/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

Hidden Block Structure

0 500 1000 1500 2000 2500

0

200

400

600

Instance p2756 with 10 blocks partitioning

Detected block structure for p2756 instance
Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 14/52

Methods
Software

Interfaces
Computation

Future

Traditional
Generic

Generic Branching

By default, we branch on variables in the compact space.

In PC, this is done by mapping back to the compact space x̂ =
P

s∈E
sλ̂s.

Variable branching in the compact space is constraint branching in the extended space

This idea makes it possible define generic branching procedures.

(2,1) (2,1)(2,1)

Node 1 Node 2

Node 4

Node 3

xDW = (2.42, 2.25)

{s ∈ E | (λDW)s > 0}

P I

PO

xDW = (3, 3.75)

P I
P I

PO
PO

xDW = (3, 3)

{s ∈ E | (λDW)s > 0} {s ∈ E | (λDW)s > 0}

Node 1: 4λ(4,1) + 5λ(5,5) + 2λ(2,1) + 3λ(3,4) ≤ 2
Node 2: 4λ(4,1) + 5λ(5,5) + 2λ(2,1) + 3λ(3,4) ≥ 3

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 15/52

Methods
Software

Interfaces
Computation

Future

Outline

1 Methods
Traditional
Generic

2 Software

3 Generic Interfaces
DipPy
C++
Command Line

4 Computational Experiments
Exploiting Structure
Detecting Structure
Parallelizing

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 16/52

Methods
Software

Interfaces
Computation

Future

DIP and CHiPPS

The use of decomposition methods in practice is hindered by a
number of serious drawbacks.

Implementation is difficult, usually requiring development of
sophisticated customized codes.

Choosing an algorithmic strategy requires in-depth knowledge of theory
and strategies are difficult to compare empirically.

The powerful techniques modern solvers use to solve integer programs
are difficult to integrate with decomposition-based approaches.

DIP and CHiPPS are two frameworks that together allow for easier
implementation of decomposition approaches.

CHiPPS (COIN High Performance Parallel Search Software) is a
flexible library hierarchy for implementing parallel search algorithms.

DIP (Decomposition for Integer Programs) is a framework for
implementing decomposition-based bounding methods.

DIP with CHiPPS is a full-blown branch-and-cut-and-price framework
in which details of the implementation are hidden from the user.

DIP can be accessed through a modeling language or by providing
a model with notated structure.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 17/52

Methods
Software

Interfaces
Computation

Future

Related Projects

There have been a number of related efforts to create frameworks supporting the
implementation of decomposition-based branch and bound.

Column Generation Frameworks

ABACUS [Jünger and Thienel(2012)]

SYMPHONY [Ralphs et al.(2012)Ralphs, Ladányi, Güzelsoy, and Mahajan]

COIN/BCP [Ladányi(2012)]

Generic decomposition frameworks

BaPCod [Vanderbeck(2012)]
Dantzig-Wolfe
Automatic reformulation,
Generic cuts and branching

GCG [Gamrath and Lübbecke(2012)]
Dantzig-Wolfe
Automatic hypergraph-based decomposition
Automatic reformulation
Generic cuts and branching

SAS DECOMP [Galati(2012)]

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 18/52

Methods
Software

Interfaces
Computation

Future

DIP Framework: Feature Overview

One interface to all algorithms: CP, DW, LD, PC, RC—change method by switching
parameters.

Automatic reformulation allows users to specify methods in the compact (original) space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

Novel options for cut generation

Can utilize CGL cuts in all algorithms (separate from original space).

Can utilize structured separation (efficient algorithms that apply only to vectors with special
structure (integer) in various ways).

Can separate from P
′ using subproblem solver (DC).

Easy to combine different approaches

Column generation based on multiple algorithms or nested subproblems can be easily defined and
employed.

Bounds based on multiple model/algorithm combinations.

Active LP compression, variable and cut pool management.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 19/52

Methods
Software

Interfaces
Computation

Future

DIP Framework API

The base class DecompApp provides an interface for user to define the application-specific
components of their algorithm

Define the model(s)

setModelObjective(double * c): define c

setModelCore(DecompConstraintSet * model): define Q
′′

setModelRelaxed(DecompConstraintSet * model, int block): define Q
′ [optional]

solveRelaxed(): define a method for OPT(P′, c) [optional, if Q′, CBC is built-in]

generateCuts(): define a method for SEP(P′, x) [optional, CGL is built-in]

isUserFeasible(): is x̂ ∈ P? [optional, if P = conv(P′
∩ Q

′′
∩ Z)]

All methods have appropriate defaults but are virtual and may be overridden.

The base class DecompAlgo provides the shell (init / master / subproblem / update).

Each of the methods described has derived default implementations DecompAlgoX : public
DecompAlgo which are accessible by any application class, allowing full flexibility.

New, hybrid or extended methods can be easily derived by overriding the various subroutines,
which are called from the base class.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 20/52

Methods
Software

Interfaces
Computation

Future

DipPy
C++
Command Line

Outline

1 Methods
Traditional
Generic

2 Software

3 Generic Interfaces
DipPy
C++
Command Line

4 Computational Experiments
Exploiting Structure
Detecting Structure
Parallelizing

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 21/52

Methods
Software

Interfaces
Computation

Future

DipPy
C++
Command Line

DipPy

DipPy provides an interface to DIP through the modeling language PuLP.

PuLP is a modeling language that provides functionality similar to other modeling
languages.

It is built on top of Python so you get the full power of that language for free.

PuLP and DipPy are being developed by Stuart Mitchell and Mike O’Sullivan in Auckland
and are part of COIN.

Through DipPy, a user can

Specify the model and the relaxation, including the block structure.

Implement methods (coded in Python) for solving the relaxation, generating cuts, custom
branching.

With DipPy, it is possible to code a customized column-generation method from scratch in
a few hours.

This would have taken months with previously available tools.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 22/52

Methods
Software

Interfaces
Computation

Future

DipPy
C++
Command Line

Example: Generalized Assignment Problem

The problem is to find a minimum cost assignment of n tasks to m machines such that
each task is assigned to one machine subject to capacity restrictions.

A binary variable xij indicates that machine i is assigned to task j. M = 1,. . . ,m and
N=1,. . . ,n.

The cost of assigning machine i to task j is cij

Generalized Assignment Problem (GAP)

min
X

i∈M

X

j∈N

cijxij

X

j∈N

wijxij ≤ bi ∀i ∈ M

X

i∈M

xij = 1 ∀j ∈ N

xij ∈ {0, 1} ∀i, j ∈ M × N

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 23/52

Methods
Software

Interfaces
Computation

Future

DipPy
C++
Command Line

GAP in DipPy

Creating GAP model in DipPy

prob = dippy .DipProblem ("GAP", LpMinimize)

objective

prob += lpSum (assignVars [m][t] * COSTS [m][t] for m, t in MACHINES_TASKS), "min"

machine capacity (knapsacks , relaxation)

for m in MACHINES :

prob .relaxation [m] +=

lpSum (assignVars [m][t] * RESOURCE_USE [m][t] for t in TASKS) <= CAPACITIES [m]

assignment

for t in TASKS :

prob += lpSum (assignVars [m][t] for m in MACHINES) == 1

prob .relaxed_solver = relaxed_solver

dippy .Solve (prob)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 24/52

Methods
Software

Interfaces
Computation

Future

DipPy
C++
Command Line

GAP in DipPy

Solver for subproblem for GAP in DipPy

def relaxed_solver (prob , machine , redCosts , convexDual):

get tasks which have negative reduced

task_idx = [t for t in TASKS if redCosts [assignVars [machine][t]] < 0]

vars = [assignVars [machine][t] for t in task_idx]

obj = [- redCosts [assignVars [machine][t]] for t in task_idx]

weights = [RESOURCE_USE [machine][t] for t in task_idx]

z, solution = knapsack01 (obj , weights , CAPACITIES [machine])

z = -z

get sum of original costs of variables in solution

orig_cost = sum(prob .objective .get(vars [idx]) for idx in solution)

var_values = [(vars [idx], 1) for idx in solution]

dv = dippy .DecompVar (var_values , z-convexDual , orig_cost)

return , list of DecompVar objects

return [dv]

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 25/52

Methods
Software

Interfaces
Computation

Future

DipPy
C++
Command Line

GAP in DipPy

DipPy Auxiliary Methods

de f s o l v e s ubp rob l em (prob , i ndex , redCosts , convexDual) :
. . .
z , s o l u t i o n = knapsack01 (ob j , we ights , CAPACITY)
. . .
r e t u rn []

p rob . r e l a x e d s o l v e r = so l v e subp rob l em
de f knapsack01 (ob j , we ights , c a p a c i t y) :

. . .
r e t u rn c [n−1][c a p a c i t y] , s o l u t i o n

d e f f i r s t f i t (p rob) :
. . .
r e t u rn bvs

d e f one each (prob) :
. . .
r e t u rn bvs

prob . i n i t v a r s = f i r s t f i t
d e f c hoo s e an t i s ymme t r y b r an ch (prob , s o l) :

. . .
r e t u rn ([] , down branch ub , up b ran ch l b , [])

p rob . b ranch method = choo s e an t i s ymme t r y b r an ch
de f g e n e r a t e w e i g h t c u t s (prob , s o l) :

. . .
r e t u rn new cuts

prob . g e n e r a t e c u t s = g e ne r a t e w e i g h t c u t s
d e f h e u r i s t i c s (prob , xhat , c o s t) :

. . .
r e t u rn s o l s

p rob . h e u r i s t i c s = h e u r i s t i c s
d i pp y . S o l v e (prob , {

’ doPr i ceCut ’ : ’ 1 ’ ,
})

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 26/52

Methods
Software

Interfaces
Computation

Future

DipPy
C++
Command Line

GAP in C++

DIP createModels for GAP example

void GAP_DecompApp :: createModels (){

// get information about this problem instance

int nTasks = m_instance .getNTasks (); //n

int nMachines = m_instance .getNMachines (); //m

const int * profit = m_instance .getProfit ();

int nCols = nTasks * nMachines ;

// construct the objective function

m_objective = new double[nCols];

for(i = 0; i < nCols ; i++) { m_objective [i] = profit[i]; }

setModelObjective (m_objective);

DecompConstraintSet * modelCore = new DecompConstraintSet ();

createModelPartAP (modelCore);

setModelCore (modelCore);

for(i = 0; i < nMachines ; i++){

DecompConstraintSet * modelRelax = new DecompConstraintSet ();

createModelPartKP (modelRelax , i);

setModelRelax (modelRelax , i);

}

}

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 27/52

Methods
Software

Interfaces
Computation

Future

DipPy
C++
Command Line

GAP in C++

DIP solveRelaxed for GAP example

DecompSolverStatus GAP_DecompApp :: solveRelaxed (const int whichBlock ,

const double * costCoeff ,

DecompVarList & newVars){

DecompSolverStatus status = DecompSolStatNoSolution ;

if(! m_appParam .UsePisinger) { return status; }

vector <int > solInd;

vector <double > solEls;

double varCost = 0.0;

const double * costCoeffB = costCoeff + getOffsetI (whichBlock);

status = m_knap[whichBlock]-> solve (whichBlock , costCoeffB ,

solInd , solEls , varCost);

DecompVar * var = new DecompVar (solInd , solEls , varCost , whichBlock);

newVars .push_back (var);

return status;

}

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 28/52

Methods
Software

Interfaces
Computation

Future

DipPy
C++
Command Line

GAP in C++

DIP main for GAP

int main (int argc , char ** argv){

// create the utility class for parsing parameters

UtilParameters utilParam (argc , argv);

bool doCut = utilParam .GetSetting ("doCut ", true);

bool doPriceCut = utilParam .GetSetting ("doPriceCut ", false);

bool doRelaxCut = utilParam .GetSetting ("doRelaxCut ", false);

// create the user application (a DecompApp)

GAP_DecompApp gapApp(utilParam);

// create the CPM /PC/RC algorithm objects (a DecompAlgo)

DecompAlgo * algo = NULL ;

if(doCut) algo = new DecompAlgoC (&gapApp , &utilParam);

if(doPriceCut) algo = new DecompAlgoPC (&gapApp , &utilParam);

if(doRelaxCut) algo = new DecompAlgoRC (&gapApp , &utilParam);

// create the driver AlpsDecomp model

AlpsDecompModel gap(utilParam , algo);

// solve

gap.solve ();

}

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 29/52

Methods
Software

Interfaces
Computation

Future

DipPy
C++
Command Line

Command Line Interface

A third way of getting a model into the generic solver module is to read it from a file as
usual.

The decomposition can be identified either by

specifying the block structure explicitly by also reading a block file; or

using the automatic block detection algorithm to identify the blocks.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 30/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Outline

1 Methods
Traditional
Generic

2 Software

3 Generic Interfaces
DipPy
C++
Command Line

4 Computational Experiments
Exploiting Structure
Detecting Structure
Parallelizing

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 31/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Experiments

Instances: ATM cash management, Wedding planner problem, MIPLIB

Computational environment: single nodes of a cluster, each of which has two 8 core
processors, each running at 2 GHz and with 512 KB cache, 32 GB of shared memory,

Experiments

DIP vs. CPLEX: Can decomposition be better than branch and cut?

Automatic structure detection

Can we effectively use hypergraph partitioning to find structure?

How good is the bound?

How can we measure the goodness of a decomposition a priori?

How many blocks?

Which hypergraph partitioner is most effective?

Can we exploit the bock structure to parallelize the subproblem solve?

We use bound at the root node as our primary measure for comparison in most of the
following experiments.

Caveat: these results are preliminary and their purpose is more to raise questions than
answer them!

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 32/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Wedding Planner Problem: CPLEX vs DIP

16 18 19 20 21 22 23 24 25 26
0

100

200

300

400

500

600

Number of Guests

C
lo

c
k
 t

im
e

 (
s
)

Cplex12.2

DIP

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 33/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Comparing Hypergraph Partitioners

We use heuristics to find a K-way hypergraph partition that minimizes the size of the
resulting cut.

For midsize MIPLIB instances, it takes at most a few seconds.

Solvers

hMETIS, Karypis, University of Minnesota

PaTOH, Çatalyürek, Ohio State University

Comparisons: PaToH tends to be faster, but hMETIS produces better decompositions.

tie better worse
0

2

4

6

8

10

12

N
u

m
b

e
r

o
f

in
s
ta

n
c
e

s

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 34/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Quality Measures for Decomposition

The goal of the partitioning is to have a “good decomposition.”

Generally, we judge goodness in terms of bound and computation time.

There is a potential tradeoff involving the number of blocks, the number of linking rows,
and the distribution of integer variables.

We would like to be able to identify a good decomposition based on easily identified
features.

Potential Features

The fraction of nonzero elements in the matrix appearing in the coupling rows (α),

The fraction of nonzeros appearing in the coupling rows that are in integer columns (β),

The fraction of the nonzeros in integer columns in the matrix that appear in coupling rows
(γ),

The average fraction of the nonzeros in each block that are in integer columns (η),

The standard deviation of the fraction of integer elements elements in the blocks (θ).

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 35/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Relationship between Features

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage (%)

D
W

D
 o

pt
im

al
ity

 g
ap

 c
lo

se
d

(%
)

α
β
γ
η
θ

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 36/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

A Measure for Decomposition Quality

Π = (1 − min(α, γ))) × 100%,

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Percentage (%)

O
pt

im
al

ity
 g

ap
 c

lo
se

d
(%

)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 37/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Tuning the Hypergraph Partitioning

We have now seen the features that are considered “important” in identifying a good
decomposition.

How do we encourage the partitioner to give us such a decomposition?

With respect to the underlying graph, the partitioner has two goals.

The weight of the cut should be minimized.

The partition should be “balanced.”

The first goal essentially corresponds to minimizing the number of coupling rows.

The second goal corresponds to balancing the size of the blocks.

We can affect the behavior of the algorithm by assigning weights to the nodes and
hyperedges.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 38/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Choices, Choices...

0 50 100 150 200

0

50

100

150

200

Instance a1c1s1 with 2 blocks partitioning

0 50 100 150 200

0

50

100

150

200

Instance a1c1s1 with 6 blocks partitioning

0 50 100 150 200

0

50

100

150

200

Instance a1c1s1 with 6 blocks partitioning

0 50 100 150 200

0

50

100

150

200

Instance a1c1s1 with 8 blocks partitioning

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 39/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Effect of Number of Blocks

3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

Number of blocks

O
pt

im
al

ity
 g

ap
 c

lo
se

d
(%

)

newdaon

tanglegram2

swath

go19

pg5_34

opt1217

Figure: Relationship between number of blocks and optimality gap closed

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 40/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Number of Blocks, DW Bound, and Computation Time

2 3 4 5 6 7 8
−8688

−8687

−8686

−8685

−8684

−8683

−8682

−8681

−8680

 D
an

tz
ig

−
W

ol
fe

 b
ou

nd

MIPLIB instance pg

Number of blocks
2 3 4 5 6 7 8

300

400

500

600

700

800

900

1000

1100

C
om

pu
ta

tio
na

l t
im

e
(s

)

2 3 4 5 6 7 8
360

370

380

 D
an

tz
ig

−
W

ol
fe

 b
ou

nd

MIPLIB instance machrophage

Number of blocks
2 3 4 5 6 7 8

0

5000

10000

C
om

pu
ta

tio
na

l t
im

e
(s

)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 41/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Weighting the Hyperedges and Nodes

Unit weight as input of hypergraph partitioner already gives nice results, but can we do
better?

We have already seen that it is advantageous for the rows involving more integer variables
to be in the blocks.

We assign higher weight to nodes that correspond to integer variables and to hyperedges
which correspond to rows containing integer elements.

tie worsen improve
0

2

4

6

8

10

12

N
u

m
b

e
r

o
f

in
s
ta

n
c
e

s

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 42/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Bound at the Root Node

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Optimality gap with LP bound

O
p
ti
m

a
lit

y
 g

a
p
 w

it
h
 D

W
 b

o
u
n
d

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 43/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Optimality Gap Closed

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

O
p
ti
m

a
lit

y
 g

a
p
 c

lo
s
e
d
 b

y
 D

a
n
tz

ig
−

W
o
lf
e
 d

e
c
o
m

p
o
s
it
io

n

Optimality gap closed by cutting−plane methods

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 44/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Parallelizing DIP

Multi-core architecture are pervasive.

DW decomposition of problems with block structure is naturally tailored to parallel
computation.

Here, we investigate the extent to which computation times can be improved by solving the
subproblems in parallel.

We measure time to process the root node.

Our performance measure is:

E =
T1

Tp × p
,

where Tp is defined as the wallclock time using p threads.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 45/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

ATM Problem: Efficiency vs Cores

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Number of threads

P
a

ra
lle

l
e

ff
ic

ie
n

c
y

5_50

10_50

20_10

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 46/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Wedding Planner Problem: Efficiency vs Cores

1 2 4 8
0

0.2

0.4

0.6

0.8

1

Number of threads

P
a

ra
lle

l
e

ff
ic

ie
n

c
y

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 47/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Parallel Efficiency for Structured Problems

We observe that utilizing multiple cores does reduce computational time.

As usual, there is a loss of parallel efficiency as we increase the number of threads.

Solution of the master problem is sequential

Idle time coming from differences in variability of solution time for different blocks.

We use the normalized standard deviation (NS) of subproblem computational time at the
first iteration to assess the variability of subproblem solution times.

For ATM and Wedding planner problems, the computational time is mainly allocated to solving
subproblems.

The NS (average around 0.9) is higher for ATM problems than that (average around 0.2) for
Wedding problem, which is why the parallel efficiency for Wedding problem is higher than that for
ATM problems.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 48/52

Methods
Software

Interfaces
Computation

Future

Exploiting Structure
Detecting Structure
Parallelizing

Multi-threaded automatic Dantzig-Wolfe Decomposition

Using automatic hypergraph partitioning, we experimented with using DIP to solve generic
(unstructured) MILPs in parallel

instance LP% DW% ns T1 P1 E4 P4 E8 P8 E16 P16
protfold 35 16 6.6 133 0.28 0.36 0.12 0.23 0.42 0.1 0.74

pp08aCUTS 25 7 0.59 1.28 0.91 0.52 0.84 0.28 0.79 0.07 0.77
pp08a 62 9 0.28 0.65 0.93 0.4 0.87 0.28 0.83 0.14 0.87
pg5 34 16 0 0.63 79 0.92 0.58 0.79 0.33 0.77 0.21 0.79

machrophage 100 2 4.0 488 0.99 0.62 0.99 0.38 0.98 0.24 0.98
manna81 1 0 0.37 38 0.79 0.4 0.67 0.17 0.49 0.15 0.49

mkc 9 4 1.3 62 0.9 0.52 0.84 0.19 0.84 0.16 0.8
modglob 1 1 0.49 4.96 0.94 0.59 0.78 0.74 0.72 0.17 0.73
10teams 1 1 3.36 103 0.6 0.15 0.45 0.1 0.54 0.03 0.31
cap6000 0 0 0.68 1.43 0.67 0.52 0.44 0.29 0.36 0.19 0.28
disctom 0 0 3.3 173 0.23 0.27 0.14 0.12 0.16 0.08 0.13
fixnet6 70 20 1.31 0.73 0.88 0.35 0.78 0.26 0.72 0.15 0.68

Variability of the subproblem solve times is larger than with the structured problems and
we see an efficiency loss.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 49/52

Methods
Software

Interfaces
Computation

Future

Outline

1 Methods
Traditional
Generic

2 Software

3 Generic Interfaces
DipPy
C++
Command Line

4 Computational Experiments
Exploiting Structure
Detecting Structure
Parallelizing

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 50/52

Methods
Software

Interfaces
Computation

Future

Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 51/52

Methods
Software

Interfaces
Computation

Future

Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 51/52

Methods
Software

Interfaces
Computation

Future

Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 51/52

Methods
Software

Interfaces
Computation

Future

Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 51/52

Methods
Software

Interfaces
Computation

Future

Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 51/52

Methods
Software

Interfaces
Computation

Future

References I

Galati, M. 2012.
SAS DECOMP.

Gamrath, G. and M. Lübbecke 2012.
GCG.
Available from http://scip.zib.de.

Jünger, M. and S. Thienel 2012.
SYMPHONY.
Available from http://www.coin-or.org/projects/ABACUS.xml .

Ladányi, L. 2012.
BCP.
Available from http://www.coin-or.org/projects/Bcp.xml .

Ralphs, T., L. Ladányi, M. Güzelsoy, and A. Mahajan 2012.
SYMPHONY.
Available from http://www.coin-or.org/projects/SYMPHONY.xml .

Vanderbeck, F. 2012.
BapCod: A generic branch-and-price code.
Available from http://ralyx.inria.fr/2007/Raweb/realopt/uid31.html .

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 52/52

http://scip.zib.de
http://www.coin-or.org/projects/ABACUS.xml
http://www.coin-or.org/projects/Bcp.xml
http://www.coin-or.org/projects/SYMPHONY.xml
http://ralyx.inria.fr/2007/Raweb/realopt/uid31.html

	Methods
	Traditional
	Generic

	Software
	Generic Interfaces
	DipPy
	C++
	Command Line

	Computational Experiments
	Exploiting Structure
	Detecting Structure
	Parallelizing

	Current and Future Research

