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Integer Linear Program: Minimize/Maximize a linear objective function over
a (discrete) set of solutions satisfying specified linear constraints.

zip = min {c'z |Abe}
TEL™

—  Convex hull of integer solutions

—  Linear programming relaxation
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What is Decomposition?

@ Many complex models are built up from simpler structures.
o Subsystems linked by system-wide constraints or variables.

o Complex combinatorial structures obtained by combining simpler ones.

@ Decomposition is the process of breaking a model into smaller parts.
@ The goal is either to
o reformulate the model for easier solution;
o reformulate the model to obtain an improved relaxation (bound); or
o separate the model into stages or levels (possibly with separate objectives).
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Block Structure

@ “Classical” decomposition arises from block structure in the constraints.
@ By relaxing/fixing the linking variables/constraints, we get a separable

model.
@ A separable model consists of smaller submodels that are easier to solve.

@ The separability lends itself nicely to parallel implementation.
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The Decomposition Principle (in MIP)

@ Decomposition methods leverage our ability to solve either a relaxation or a
restriction.

@ Methodology is based on the ability to solve a given subproblem repeatedly
with varying inputs.

@ The goal of solving the subproblem repeatedly is to obtain information about
its structure that can be incorporated into a master problem.

Constraint decomposition

o Relax a set of linking constraints to expose structure.

@ Leverages ability to solve either the optimization or separation
problem for a relaxation (with varying objectives and/or points to be
separated).

v

Variable decomposition

o Fix the values of linking variables to expose the structure.

o Leverages ability to solve a restriction (with varying right-hand sides).

’
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Example: Facility Location Problem

@ We have n locations and m customers to be served from those locations.
@ There is a fixed cost ¢; and a capacity W; associated with facility j.
@ There is a cost d;; and demand w;; for serving customer ¢ from facility j.
@ We have two sets of binary variables.

e y; is 1 if facility j is opened, 0 otherwise.

o x;; is 1 if customer i is served by facility j, O otherwise.

Capacitated Facility Location Problem
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DIP/DipPy: Decomposition-based Modeling and Solution

DIP (w/ M. Galati and J. Wang)

DIP is a software framework and stand-alone solver for implementation and
use of a variety of decomposition-based algorithms.

@ Decomposition-based algorithms have traditionally been difficult to
implement and compare.
@ DIP abstracts the common, generic elements of these methods.
o Key: APl is in terms of the compact formulation.

o The framework takes care of reformulation and implementation.
o DIP is now a fully generic decomposition-based parallel MILP solver.

DipPy (w/ M. O'Sullivan)

@ Python-based modeling language.

@ User can express decompositions in a
“natural” way.

A Reference for
the Rest of Us!

@ Allows access to multiple
decomposition methods.
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CHIPPS (w/ Y. Xu)

@ CHiPPS is the COIN-OR High Performance Parallel Search.

@ CHIiPPS is a set of C++ class libraries for implementing tree search
algorithms for both sequential and parallel environments.

CHiPPS Components (Current)

ALPS (Abstract Library for Parallel Search)

o is the search-handling layer (parallel and sequential).

@ provides various search strategies based on node priorities.
BiCePS (Branch, Constrain, and Price Software)

@ is the data-handling layer for relaxation-based optimization.
@ adds notion of variables and constraints.
@ assumes iterative bounding process.

BLIS (BiCePS Linear Integer Solver)

@ is a concretization of BiCePS.
@ specific to models with linear constraints and objective function.
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DIP: Overview of Methods

CPM combines an outer approximation of P’ with an explicit description of Q"
® Master: zcp = minger» {¢'z | Dz >d, A"z >V}

@ Subproblem: SEP(P’, zcp)

Dantzig-Wolfe Method (DW)

DW combines an inner approximation of " with an explicit description of Q"
© Master: zpw = min,cge {c" (Ticeshs) [A" (Zacesrs) 2V Xoee Xo =1}
@ Subproblem: OPT (P,c" — ufwA”)

Lagrangian Method (LD)

LD iteratively produces single extreme points of P’ and uses their violation of constraints
of Q" to converge to the same optimal face of P’ as CPM and DW.

@ Master: zip = Max, pm {minsee {c"s+u' (0" —A"s)}}

o Subproblem: OPT (P',c" —u/pA")
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DIP: Common Threads

@ The LP bound is obtained by optimizing over the intersection

of two explicitly defined polyhedra.
zip = min{c'z |z € Q' NQ"} : o :

':UGRW .....

@ The decomposition bound is obtained by optimizing over the \OF
intersection of two polyhedra. e

ch:zDW:zLD:zD:m]iRn{ch|x€73’ﬂQ”}Zsz SRR

@ Decomposition-based bounding methods have two main steps : .

o Master Problem: Update the primal/dual solution
information

o Subproblem: Update the approximation of P’: SEP(P’, x) or O
OPT(P,c) SRR

@ Integrated decomposition methods further improve the bound. . . . ..
e Price-and-Cut (PC) . i> )

e Relax-and-Cut (RC) : -

e Decompose-and-Cut (DC) P -
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Generic Decomposition-based Branch and Bound

@ Traditionally, decomposition-based branch-and-bound methods have required
extensive problem-specific customization.

@ |dentifying the decomposition (which constraints to relax).
@ Formulating and solving the subproblem.
@ Formulating and solving the master problem.

@ Performing the branching operation.

@ However, it is possible to replace these components with generic alternatives.

@ The decomposition can be identified automatically by analyzing the
matrix or through a modeling language.

@ The subproblem can be solved with a generic MILP solver.

@ The branching can be done in the original compact formulation.

@ The remainder of the talk focuses on the crucial first step.
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Automatic Structure Detection

@ For problems in which the structure is not given, it may be detected
automatically.

@ Hypergraph partitioning methods can be used to identify the structure.

@ We map each row of the original matrix to a hyperedge and the nonzero
elements to nodes in a hypergraph.

@ We use a partitioning model/algorithm (hMetis) that identifies a
singly-bordered block diagonal matrix with a given number of blocks.
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Hidden Block Structure

MIPLIB2003 instance : p2756
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Hidden Block Structure

Instance p2756 with 10 blocks partitioning
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Choosing the Block Number

Instance atcts1 with 2 blocks parttioning Instance ate1s1 with 6 biocks partiioning
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Quality Measures for Decomposition

@ The goal of the partitioning is to have a “good decomposition.”
o Generally, we judge goodness in terms of bound and computation time.

Potential Features

@ The fraction of nonzero elements in the matrix appearing in the
coupling rows (),

@ The fraction of nonzero elements appearing in the coupling rows that
are in integer columns (),

@ The fraction of the nonzero elements in integer columns in the matrix
that appear in coupling rows (7),

@ The average fraction of the nonzeros in each block that are in integer
columns (n),

@ The standard deviation of the fraction of integer elements elements in
the blocks (0).

IT = (1 — min(e,7))) x 100%,
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Finding the Structure

@ In many cases, there is a “natural” block structure arising from the original
model.

@ Problems for which decomposition is the “killer approach” often have
identical blocks, since this leads to symmetry in the compact formulation.

@ We would like to be able to identify this structure automatically.

@ One simple strategy is to make a frequency table.

# of Nonzeros 2 11 12 13 24 40 100
# of Rows 2220 20 20 2 1998 100 20

Table: Histogram for atm20-100

## of Nonzeros 2 3 5 6 7 8 9 10 11 13
# of Rows 9 130 221 4 8 8 7 6 2 1

Table: Histogram for glass4
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Specifying Blocks with DipPy: Facility Location Example

from products import REQUIREMENT, PRODUCTS
from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY

prob = dippy.DipProblem("Facility_Location")
ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]

assign_vars = LpVariable.dicts("x", ASSIGNMENTS, O, 1, LpBinary)
use_vars = LpVariable.dicts("y", LOCATIONS, O, 1, LpBinary)

prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)

for j in PRODUCTS:
prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) ==

for i in LOCATIONS:
prob.relaxation[i] += lpSum(assign_vars[(i, j)] * REQUIREMENT [j]
for j in PRODUCTS) <= CAPACITY * use_vars[i]

dippy.Solve(prob, {doPriceCut:1})
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DipPy Callbacks

def solve_subproblem(prob, index, redCosts, convexDual):

return knapsackO1(obj, weights, CAPACITY)
def knapsack01l(obj, weights, capacity):

return solution
def first_fit(prob):

return bvs
prob.init_vars = first_fit

def choose_branch(prob, sol):

return ([], down_branch_ub, up_branch_1b, [])
def generate_cuts(prob, sol):

return new_cuts

def heuristics(prob, xhat, cost):
return sols

dippy.Solve(prob, {’doPriceCut’: ’1’})



DipPy with Solver Studio
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Using DipPy with SolverStudio
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Brief Computational Results
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Exploiting Concurrency

Automatic Decompasition
Branch-and-Cut Method with block number 1

Automatic Decomposition Automatic Decompasition
with block number 2 with block number 3

Concurrency can be exploited in multiple ways.

@ Solving the subproblems
@ Exploring the tree

@ Determining the decomposition (or whether to use decomposition)
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Brief Computational Results
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Where do | start??

We have only scratched the surface of what is needed to make a true generic
decomposition-based solver.

The implementation needs many improvements in basic components.
We need a better decision logic for when to use which algorithm.
We need better support for identical blocks.

To exploit parallelism, we need the ability to dynamically allocate cores after
the initial phase.

We need more testing on hybrid distributed/shared parallelism.

Methods that hybridize CP and MIP through the decomposition would be
interesting.

Want to help :)?
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Get DIP and DipPy

Www.coin-or.org/DIP |

easy_ilnstall coinor.dippy ]

Questions? |
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