DIP and DipPy: A Decomposition-based Modeling System and Solver

TED RALPHS AND JIADONG WANG
LEHIGH UNIVERSITY
MATTHEW GALATI MiIKE O’SULLIVAN
SAS INSTITUTE UNIVERSITY OF AUCKLAND

RESEARCH AT LEHIGH

l g l? Industrial and
[N < Systems Engineering

IFORS, Barcelona, Spain, 17 July, 2014

Thanks: Work supported in part by the National Science Foundation

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Integer Linear Program: Minimize/Maximize a linear objective function over
a (discrete) set of solutions satisfying specified linear constraints.

zip = min {c'z |Abe}
TEL™

— Convex hull of integer solutions

— Linear programming relaxation

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

What is Decomposition?

@ Many complex models are built up from simpler structures.
o Subsystems linked by system-wide constraints or variables.

o Complex combinatorial structures obtained by combining simpler ones.

@ Decomposition is the process of breaking a model into smaller parts.
@ The goal is either to
o reformulate the model for easier solution;
o reformulate the model to obtain an improved relaxation (bound); or
o separate the model into stages or levels (possibly with separate objectives).

P Q

0

N

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Block Structure

@ “Classical” decomposition arises from block structure in the constraints.
@ By relaxing/fixing the linking variables/constraints, we get a separable

model.
@ A separable model consists of smaller submodels that are easier to solve.

@ The separability lends itself nicely to parallel implementation.

Aot Aoz -+ Aok A An
= Az Az
Ay
Am@ A'y() Anh

Ao Aor Aoz - Aok
A A
Az Az
A'yO ANH

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

The Decomposition Principle (in MIP)

@ Decomposition methods leverage our ability to solve either a relaxation or a
restriction.

@ Methodology is based on the ability to solve a given subproblem repeatedly
with varying inputs.

@ The goal of solving the subproblem repeatedly is to obtain information about
its structure that can be incorporated into a master problem.

Constraint decomposition

o Relax a set of linking constraints to expose structure.

@ Leverages ability to solve either the optimization or separation
problem for a relaxation (with varying objectives and/or points to be
separated).

v

Variable decomposition

o Fix the values of linking variables to expose the structure.

o Leverages ability to solve a restriction (with varying right-hand sides).

’

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Example: Facility Location Problem

@ We have n locations and m customers to be served from those locations.
@ There is a fixed cost ¢; and a capacity W; associated with facility j.
@ There is a cost d;; and demand w;; for serving customer ¢ from facility j.
@ We have two sets of binary variables.

e y; is 1 if facility j is opened, 0 otherwise.

o x;; is 1 if customer i is served by facility j, O otherwise.

Capacitated Facility Location Problem

S S 3
=1l g=l1l

s.t. ZIZ‘J‘ =1 Vi
j=1
m
Zwijxij < W;y; vj
=1l
Tij,Yj S {0, 1} V’L,]

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

DIP/DipPy: Decomposition-based Modeling and Solution

DIP (w/ M. Galati and J. Wang)

DIP is a software framework and stand-alone solver for implementation and
use of a variety of decomposition-based algorithms.

@ Decomposition-based algorithms have traditionally been difficult to
implement and compare.
@ DIP abstracts the common, generic elements of these methods.
o Key: APl is in terms of the compact formulation.

o The framework takes care of reformulation and implementation.
o DIP is now a fully generic decomposition-based parallel MILP solver.

DipPy (w/ M. O'Sullivan)

@ Python-based modeling language.

@ User can express decompositions in a
“natural” way.

A Reference for
the Rest of Us!

@ Allows access to multiple
decomposition methods.

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

CHIPPS (w/ Y. Xu)

@ CHiPPS is the COIN-OR High Performance Parallel Search.

@ CHIiPPS is a set of C++ class libraries for implementing tree search
algorithms for both sequential and parallel environments.

CHiPPS Components (Current)

ALPS (Abstract Library for Parallel Search)

o is the search-handling layer (parallel and sequential).

@ provides various search strategies based on node priorities.
BiCePS (Branch, Constrain, and Price Software)

@ is the data-handling layer for relaxation-based optimization.
@ adds notion of variables and constraints.
@ assumes iterative bounding process.

BLIS (BiCePS Linear Integer Solver)

@ is a concretization of BiCePS.
@ specific to models with linear constraints and objective function.

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

DIP: Overview of Methods

CPM combines an outer approximation of P’ with an explicit description of Q"
® Master: zcp = minger» {¢'z | Dz >d, A"z >V}

@ Subproblem: SEP(P’, zcp)

Dantzig-Wolfe Method (DW)

DW combines an inner approximation of " with an explicit description of Q"
© Master: zpw = min,cge {c" (Ticeshs) [A" (Zacesrs) 2V Xoee Xo =1}
@ Subproblem: OPT (P,c" — ufwA”)

Lagrangian Method (LD)

LD iteratively produces single extreme points of P’ and uses their violation of constraints
of Q" to converge to the same optimal face of P’ as CPM and DW.

@ Master: zip = Max, pm {minsee {c"s+u' (0" —A"s)}}

o Subproblem: OPT (P',c" —u/pA")

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

DIP: Common Threads

@ The LP bound is obtained by optimizing over the intersection

of two explicitly defined polyhedra.
zip = min{c'z |z € Q' NQ"} : o :

':UGRW

@ The decomposition bound is obtained by optimizing over the \OF
intersection of two polyhedra. e

ch:zDW:zLD:zD:m]iRn{ch|x€73’ﬂQ”}Zsz SRR

@ Decomposition-based bounding methods have two main steps : .

o Master Problem: Update the primal/dual solution
information

o Subproblem: Update the approximation of P’: SEP(P’, x) or O
OPT(P,c) SRR

@ Integrated decomposition methods further improve the bound.
e Price-and-Cut (PC) . i>)

e Relax-and-Cut (RC) : -

e Decompose-and-Cut (DC) P -

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Generic Decomposition-based Branch and Bound

@ Traditionally, decomposition-based branch-and-bound methods have required
extensive problem-specific customization.

@ |dentifying the decomposition (which constraints to relax).
@ Formulating and solving the subproblem.
@ Formulating and solving the master problem.

@ Performing the branching operation.

@ However, it is possible to replace these components with generic alternatives.

@ The decomposition can be identified automatically by analyzing the
matrix or through a modeling language.

@ The subproblem can be solved with a generic MILP solver.

@ The branching can be done in the original compact formulation.

@ The remainder of the talk focuses on the crucial first step.

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Automatic Structure Detection

@ For problems in which the structure is not given, it may be detected
automatically.

@ Hypergraph partitioning methods can be used to identify the structure.

@ We map each row of the original matrix to a hyperedge and the nonzero
elements to nodes in a hypergraph.

@ We use a partitioning model/algorithm (hMetis) that identifies a
singly-bordered block diagonal matrix with a given number of blocks.

* % *

* * %
* * ok

* *

* % * %
* % *

* % ok
*

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Hidden Block Structure

MIPLIB2003 instance : p2756

0 =

00f ==

400 _ B

600*_._“__- L - :
0 - 500 1 083 51'“500

nz = 8937

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Hidden Block Structure

Instance p2756 with 10 blocks partitioning

=
200 F _ iy
400 == .
600 -
EFE
0 500 1000 1500 2000 2500

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Choosing the Block Number

Instance atcts1 with 2 blocks parttioning Instance ate1s1 with 6 biocks partiioning

! N \
50
100 oo/
150 S0
200 200
o 50 00 150 200 0 50 100 150 200
Instance afcs1 with 6 blocks partitoning Instance afc1s1 with 8 blocks partoring
0
50 50
100 1000
150 50 N
W
Ve
20 N 20
AW
NN N NNTIN NN
50 100 150 200

Ralphs, Galati, O'Sullivan, War Generic Decomposition

Quality Measures for Decomposition

@ The goal of the partitioning is to have a “good decomposition.”
o Generally, we judge goodness in terms of bound and computation time.

Potential Features

@ The fraction of nonzero elements in the matrix appearing in the
coupling rows (),

@ The fraction of nonzero elements appearing in the coupling rows that
are in integer columns (),

@ The fraction of the nonzero elements in integer columns in the matrix
that appear in coupling rows (7),

@ The average fraction of the nonzeros in each block that are in integer
columns (n),

@ The standard deviation of the fraction of integer elements elements in
the blocks (0).

IT = (1 — min(e,7))) x 100%,

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Finding the Structure

@ In many cases, there is a “natural” block structure arising from the original
model.

@ Problems for which decomposition is the “killer approach” often have
identical blocks, since this leads to symmetry in the compact formulation.

@ We would like to be able to identify this structure automatically.

@ One simple strategy is to make a frequency table.

of Nonzeros 2 11 12 13 24 40 100
of Rows 2220 20 20 2 1998 100 20

Table: Histogram for atm20-100

of Nonzeros 2 3 5 6 7 8 9 10 11 13
of Rows 9 130 221 4 8 8 7 6 2 1

Table: Histogram for glass4

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Specifying Blocks with DipPy: Facility Location Example

from products import REQUIREMENT, PRODUCTS
from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY

prob = dippy.DipProblem("Facility_Location")
ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]

assign_vars = LpVariable.dicts("x", ASSIGNMENTS, O, 1, LpBinary)
use_vars = LpVariable.dicts("y", LOCATIONS, O, 1, LpBinary)

prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)

for j in PRODUCTS:
prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) ==

for i in LOCATIONS:
prob.relaxation[i] += lpSum(assign_vars[(i, j)] * REQUIREMENT [j]
for j in PRODUCTS) <= CAPACITY * use_vars[i]

dippy.Solve(prob, {doPriceCut:1})

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

DipPy Callbacks

def solve_subproblem(prob, index, redCosts, convexDual):

return knapsackO1(obj, weights, CAPACITY)
def knapsack01l(obj, weights, capacity):

return solution
def first_fit(prob):

return bvs
prob.init_vars = first_fit

def choose_branch(prob, sol):

return ([], down_branch_ub, up_branch_1b, [])
def generate_cuts(prob, sol):

return new_cuts

def heuristics(prob, xhat, cost):
return sols

dippy.Solve(prob, {’doPriceCut’: ’1’})

DipPy with Solver Studio

A8 [CDl el FlGA[1[2x] LM N[O[P]alRlS T]ulv w|x]|¥]2]aAlAsAC AL AC]aF]AclAH] AT A AK| ALIAVIAN AP AQ
Choose Algorithm: sranch anacue
Choose Trea Dislay Mode:
Varitles
123 a5 6 78 510111213 10151617 181920 21 22 23 2025 26 27 28 29 30 31 32 33 34 35 36 37 38 39 &0
ow [Eesiesimiieseiissi i nees s s s s ey s
s T o T e 5 ™)
2| em s 3 1w a3 s
sfo e g ol 3]
) s 3 . 0 3 o 1
s s 2 2 i
. . as |
7 . 52 o|
s s 7 s
A 63 ‘ s
) 0 6 s
B s 14 7 4
§ 1 4 s 2 s
= s 2 s
10 s B o
15 3 . o
16 7 o s
| 2 B . s
1 E 3 s
s 7w 3 s i s
0 P i 0 4
moos 11T 1111111111122 322222333333333 55555332
s [i ol ol o T T T § ol]

=

sLocks

T Sohverstudio ©Andrew Mazon

- x
Fie Edit Language Python

{Hcons = -

for i in CONSTRAINTS

1 CBLOCHS(1
CONS . append ("C"+stx (CBLOCKS [1]) +"_"+stx (1
nunCons = len(CONS
7131%var(j] for j in var]), "Obje

blocks

1 CBLOCHS(1

Model Output
Wlcometo the Aot Lorary for P Search (ALFS)
Copyright 2000-2013 Lehigh Universty and
Al Rugts Reseved
Distibuted underthe Ecipse Pubc License 1.0
e rstable)

ApsC250! Satingsemch
30240 Pocs 0. Pt 1, G 0. Bet . 61297 Bt 16075
Aeea40l P S o 1 Cond 1 o N s Best 5:.75
Aes0aiD roc 10, ot 1 Cand: 2 Bt 1765, Beat 5
ips0208I Search complet
il oner i sty 76 and et deh 9
Aps1262 N 17
ApS0267 e ofrodes b 8
30268 N s prned bfore processing: 0
AD<02701 N ofnde 0
Aps01272 Tree depth: 6
Aps0274| Search CPU time: 0.02 seconds
‘Aps0278 Search wal-<look time: 0.02

LI\ Total Decomp 002 10001
Total Salve Felax 000 000
Total Solve RefmxcApp = 000 000 0 0.00
Total Solution Update = 001 6667 22 000

Using DipPy with SolverStudio

Ralphs, Galati, O’Sul

Generic Decomposition

Brief Computational Results

0.9

0.8 : [DIP 1
I ~— GPLEX 12,5

0.4

0.2

0 . . | . ! I I
0 10 20 30 40 50 60 70 80

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Exploiting Concurrency

Automatic Decompasition
Branch-and-Cut Method with block number 1

Automatic Decomposition Automatic Decompasition
with block number 2 with block number 3

Concurrency can be exploited in multiple ways.

@ Solving the subproblems
@ Exploring the tree

@ Determining the decomposition (or whether to use decomposition)

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Brief Computational Results

1k ,
0.8+ LT~ .
0 U= —
= ¥ T
) % —
S 0.6 =
2 X
o
= 3
& 04} |
0.2F 1
pl— ‘ : : :
1 2 3 4 5 6 7 8

Number of cores

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Where do | start??

We have only scratched the surface of what is needed to make a true generic
decomposition-based solver.

The implementation needs many improvements in basic components.
We need a better decision logic for when to use which algorithm.
We need better support for identical blocks.

To exploit parallelism, we need the ability to dynamically allocate cores after
the initial phase.

We need more testing on hybrid distributed/shared parallelism.

Methods that hybridize CP and MIP through the decomposition would be
interesting.

Want to help :)?

Ralphs, Galati, O'Sullivan, Wang Generic Decomposition

Get DIP and DipPy

Www.coin-or.org/DIP |

easy_ilnstall coinor.dippy]

Questions? |

Ralphs, Galati, O'Sullivan, Wang

www.coin-or.org/DIP

