DIP with CHiPPS: Decomposition Methods for Integer Linear Programming

TED RALPHS
LEHIGH UNIVERSITY
MATTHEW GALATI
SAS INSTITUTE

ExxonMobil, 21 October 2011

Thanks: Work supported in part by the National Science Foundation

Outline

- Motivation
- Methods
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details
- Software
- Interfaces
 - DIPPY
 - MILPBlock
- Current and Future Research

Outline

- Motivation
- Method:
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details
- Software
- Interfaces
 - DIPPY
 - MILPBlock
- Current and Future Research

(Very) Brief Introduction to Mathematical Programming

The general form of a mathematical programming model is

where $X \subseteq \mathbb{R}^n$ is an (implicitly defined) set that may be discrete.

- A mathematical programming problem is a problem that can be expressed using a mathematical programming model (called the formulation).
- A single mathematical programming problem can be represented using many different formulations (important!).

Our Basic Setting

Integer Linear Program: Minimize/Maximize a linear objective function over a (discrete) set of solutions satisfying specified *linear constraints*.

$$\begin{split} z_{\text{IP}} &= & \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \geq b', A'' x \geq b'' \right\} \\ z_{\text{LP}} &= & \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \geq b', A'' x \geq b'' \right\} \end{split}$$

Combinatorial Optimization

Combinatorial Optimization Problem

 $CP = (E, \mathcal{F})$ consists of

- A ground set E,
- A set $\mathcal{F} \subseteq 2^E$ of *feasible solutions*, and
- A cost function $c \in \mathbb{Z}^E$ (optional).

The cost of $S \in \mathcal{F}$ is $c(S) = \sum_{e \in S} c_e$ and the problem is to find a least cost member of \mathcal{F} .

Cost 1100

Cost 1105

Cost 1107

Solving Integer Programs

- Implicit enumeration techniques try to enumerate the solution space in an intelligent way.
- The most common algorithm of this type is branch and bound.
- Suppose F is the set of feasible solutions for a given MILP. We wish to solve $\min_{x \in F} c^{\top} x$.

Divide and Conquer

Consider a partition of F into subsets $F_1, \ldots F_k$. Then

$$\min_{x \in F} c^\top x = \min_{1 \leq i \leq k} \{ \min_{x \in F_i} c^\top x \}.$$

We can then solve the resulting *subproblems* recursively.

- Dividing the original problem into subproblems is called branching.
- Taken to the extreme, this scheme is equivalent to complete enumeration.
- We avoid complete enumeration primarily by deriving bounds on the value of an optimal solution to each subproblem.

Branch and Bound

- A relaxation of an ILP is an auxiliary mathematical program for which
 - the feasible region contains the feasible region for the original ILP, and
 - the objective function value of each solution to the original ILP is not increased.
 - Relaxations can be used to efficiently get bounds on the value of the original integer program.
- Types of Relaxations
 - Continuous relaxation
 - Combinatorial relaxation
 - Lagrangian relaxations

Branch and Bound

Initialize the queue with F. While there are subproblems in the queue, do

- Remove a subproblem and solve its relaxation.
- \bigcirc The relaxation is infeasible \Rightarrow subproblem is infeasible and can be pruned.
- Solution is feasible for the MILP ⇒ subproblem solved (update upper bound).
- Solution is not feasible for the MILP ⇒ lower bound.
 - If the lower bound exceeds the global upper bound, we can prune the node.
 - Otherwise, we branch and add the resulting subproblems to the queue.

Branching

Branching involves partitioning the feasible region by imposing a valid disjunction such that:

- All optimal solutions are in one of the members of the partition.
- The solution to the current relaxation is not in any of the members of the partition.

Branch and Bound Tree

What is the Goal of Decomposition?

- Basic Idea: Exploit knowledge of underlying structural components of the model to improve the bound by developing a stronger relaxation.
- Many complex models are built up from multiple underlying substructures.
 - Subsystems linked by global constraints.
 - Complex combinatorial structures obtained by combining simple ones.
- We want to exploit knowledge of efficient, customized methodology for substructures.
- This can be done in two primary ways (with many variants).
 - Identify independent subsystems.
 - Identify subsets of constraints that can be dealt with efficiently.

Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Two relaxations

Find a spanning subgraph with |V| edges ($\mathcal{P}' = 1$ -Tree)

$$\begin{array}{lcl} x(\delta(\{0\})) & = & 2 \\ x(E(V)) & = & |V| \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Two relaxations

Find a spanning subgraph with |V| edges ($\mathcal{P}' = 1$ -Tree)

$$\begin{array}{lcl} x(\delta(\{0\})) & = & 2 \\ x(E(V)) & = & |V| \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Find a 2-matching that satisfies the subtour constraints ($\mathcal{P}' = 2$ -Matching)

$$x(\delta(\{u\})) = 2 \quad \forall u \in V$$

 $x_e \in \{0, 1\} \quad \forall e \in E$

Example: Exposing Block Structure

- A motivation for decomposition is to expose *independent subsystems*.
- The key is to identify *block structure* in the constraint matrix.
- The separability lends itself nicely to parallel implementation.

Example: Exposing Block Structure

- A motivation for decomposition is to expose *independent subsystems*.
- The key is to identify *block structure* in the constraint matrix.
- The separability lends itself nicely to parallel implementation.

$$\begin{pmatrix} A_1'' & A_2'' & \cdots & A_\kappa'' \\ A_1' & & & & \\ & & A_2' & & & \\ & & & \ddots & & \\ & & & & A_\kappa' \end{pmatrix}$$

Example: Exposing Block Structure

- A motivation for decomposition is to expose *independent subsystems*.
- The key is to identify *block structure* in the constraint matrix.
- The separability lends itself nicely to parallel implementation.

Generalized Assignment Problem (GAP)

- The problem is to assign m tasks to n machines subject to capacity constraints.
- An IP formulation of this problem is

$$\begin{array}{llll} \min & \sum\limits_{i \in M} \sum\limits_{j \in N} c_{ij} x_{ij} & & & \\ & \sum\limits_{j \in N} w_{ij} x_{ij} & \leq & b_i & \forall i \in M \\ & \sum\limits_{i \in M} x_{ij} & = & 1 & \forall j \in N \\ & x_{ij} & \in & \{0,1\} & \forall i,j \in M \times N \end{array}$$

- The variable x_{ij} is one if task i is assigned to machine j.
- The "profit" associated with assigning task i to machine j is c_{ij} .

Example: Eliminating Symmetry

- In some cases, the identified blocks are identical.
- In such cases, the original formulation will often be highly symmetric.
- The decomposition eliminates the symmetry by collapsing the identical blocks.

Vehicle Routing Problem (VRP)

$$\begin{array}{lll} \min & \sum_{k \in M} \sum_{(i,j) \in A} c_{ij} x_{ijk} \\ & \sum_{k \in M} \sum_{j \in N} x_{ijk} & = & 1 & \forall i \in V \\ & \sum_{i \in V} \sum_{j \in N} d_i x_{ijk} & \leq & C & \forall k \in M \\ & \sum_{i \in V} x_{0jk} & = & 1 & \forall k \in M \\ & \sum_{i \in N} x_{ihk} - \sum_{j \in N} x_{hjk} & = & 0 & \forall h \in V, k \in M \\ & \sum_{i \in N} x_{i,n+1,k} & = & 1 & \forall k \in M \\ & x_{ijk} \in \{0,1\} & \forall (i,j) \in A, k \in M \end{array}$$

Outline

- Motivation
- Methods
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details
- Software
- Interfaces
 - DIPPY
 - MILPBlock
- Current and Future Research

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{\text{IP}} = \min_{x \in \mathbb{Z}^n} \left\{ c^{\top} x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\mathrm{LP}} = \min_{x \in \mathbb{R}^n} \left\{ c^{\top} x \mid A' x \geq b', A'' x \geq b'' \right\}$$

$$z_{\mathrm{D}} = \min \left\{ c^{\top} x \mid A'' x \geq b'' \right\}$$

$$z_{
m IP} \geq z_{
m D} \geq z_{
m LP}$$

$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b''\}$$

Assumptions

$$ullet$$
 OPT (\mathcal{P},c) and SEP (\mathcal{P},x) are "hard"

$$ullet$$
 OPT (\mathcal{P}',c) and SEP (\mathcal{P}',x) are "easy

$$ullet$$
 \mathcal{Q}'' can be represented explicitly (description has polynomial size)

$$\bullet$$
 \mathcal{P}' must be represented implicitly (description has exponential size)

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$\begin{split} z_{\text{IP}} &= & \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \geq b', A'' x \geq b'' \right\} \\ z_{\text{LP}} &= & \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \geq b', A'' x \geq b'' \right\} \end{split}$$

$$z_{\mathrm{D}} \;\; = \;\; \min_{x \in \mathcal{P}'} \left\{ c^+ x \mid A'' x \geq b'' \,
ight\}$$

 $z_{
m IP} \geq z_{
m D} \geq z_{
m LP}$

Assumption

$$ullet$$
 OPT(\mathcal{P},c) and SEP(\mathcal{P},x) are "hard"

- ullet \mathcal{Q}'' can be represented explicitly (description has polyn
- ullet \mathcal{P}' must be represented implicitly (description has exponential size)

 $\mathcal{Q}' = \{x \in \mathbb{R}^n \mid A'x \ge b'\}$ $\mathcal{Q}'' = \{x \in \mathbb{R}^n \mid A''x \ge b''\}$

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$\begin{split} z_{\mathrm{IP}} &= & \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \geq b', A'' x \geq b'' \right\} \\ z_{\mathrm{LP}} &= & \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \geq b', A'' x \geq b'' \right\} \\ z_{\mathrm{D}} &= & \min_{x \in \mathcal{P}'} \left\{ c^\top x \mid A'' x \geq b'' \right\} \end{split}$$

Assumptions

$$ullet$$
 OPT(\mathcal{P},c) and SEP(\mathcal{P},x) are "hard"

$$ullet$$
 OPT(\mathcal{P}',c) and SEP(\mathcal{P}',x) are "easy

$$ullet$$
 \mathcal{Q}'' can be represented explicitly (description has polynomial size

$$ullet$$
 must be represented implicitly (description has exponential size)

$$\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b'\}$$

$$Q'' = \{x \in \mathbb{R}^n \mid A''x \ge b''\}$$

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$\begin{aligned} z_{\mathrm{IP}} &= & \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \geq b', A'' x \geq b'' \right\} \\ z_{\mathrm{LP}} &= & \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \geq b', A'' x \geq b'' \right\} \\ z_{\mathrm{D}} &= & \min_{x \in \mathcal{P}'} \left\{ c^\top x \mid A'' x \geq b'' \right\} \\ &= & z_{\mathrm{IP}} \geq z_{\mathrm{D}} \geq z_{\mathrm{LP}} \end{aligned}$$

$$ullet$$
 OPT (\mathcal{P},c) and SEP (\mathcal{P},x) are "hard"

$$ullet$$
 OPT(\mathcal{P}',c) and SEP(\mathcal{P}',x) are "easy

$$ullet$$
 OPT (\mathcal{P}',c) and SEP (\mathcal{P}',x) are "easy"

$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b''\}$$

$$\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b'\}$$

$$\mathcal{Q}' = \{x \in \mathbb{R}^n \mid A''x \ge b''\}$$

$$\mathcal{Q}'' = \{x \in \mathbb{R}^n \mid A''x \ge b''\}$$

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{\text{IP}} = \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{D}} = \min_{x \in \mathcal{P}'} \left\{ c^\top x \mid A'' x \ge b'' \right\}$$

$$z_{\text{IP}} \ge z_{\text{D}} \ge z_{\text{LP}}$$

 $O'' = \{x \in \mathbb{R}^n \mid A''x > b''\}$

Assumptions:

$$ullet$$
 OPT(\mathcal{P},c) and SEP(\mathcal{P},x) are "hard"

$$\bullet$$
 OPT(\mathcal{P}', c) and SEP(\mathcal{P}', x) are "easy"

$$\circ$$
 \mathcal{Q}'' can be represented explicitly (description has polynomial size)

$$ullet$$
 \mathcal{P}' must be represented implicitly (description has exponential size)

$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b''\}$$

$$\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b'\}$$

$$\mathcal{Q}' = \{x \in \mathbb{R}^n \mid A'x > b'\}$$

CPM combines an *outer* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{CP}} = \mathsf{min}_{x \in \mathbb{R}^n} \left\{ c^\top x \ | \ Dx \geq d, A'' x \geq b'' \, \right\}$
- Subproblem: $SEP(\mathcal{P}', x_{CP})$

$$\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \}$$

CPM combines an *outer* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{CP}} = \mathsf{min}_{x \in \mathbb{R}^n} \left\{ c^\top x \ | \ Dx \geq d, A'' x \geq b'' \, \right\}$
- Subproblem: $SEP(\mathcal{P}', x_{CP})$

$$\mathcal{P}' = \{x \in \mathbb{R}^n \mid Dx \ge d\}$$

CPM combines an *outer* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{CP}} = \mathsf{min}_{x \in \mathbb{R}^n} \left\{ c^\top x \ | \ Dx \geq d, A'' x \geq b'' \, \right\}$
- Subproblem: $SEP(\mathcal{P}', x_{CP})$

$$\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \}$$

CPM combines an *outer* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{CP}} = \mathsf{min}_{x \in \mathbb{R}^n} \left\{ c^\top x \mid Dx \geq d, A^{\prime\prime} x \geq b^{\prime\prime} \right\}$
- Subproblem: $SEP(\mathcal{P}', x_{CP})$

$$\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \}$$

DW combines an *inner* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

$$\bullet \ \, \mathsf{Master} \colon z_{\mathrm{DW}} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}} \left\{ c^\top \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ A'' \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ge b'', \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$$

• Subproblem: OPT $(\mathcal{P}', c^{\top} - u_{\mathrm{DW}}^{\top} A'')$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge 0 \ \forall s \in \mathcal{E} \right\}$$

DW combines an *inner* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

$$\bullet \ \, \mathsf{Master} \colon z_{\mathrm{DW}} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}} \left\{ c^\top \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ A'' \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ge b'', \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$$

• Subproblem: OPT $(\mathcal{P}', c^{\top} - u_{\mathrm{DW}}^{\top} A'')$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \ \middle| \ x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge 0 \ \forall s \in \mathcal{E} \right\}$$

DW combines an *inner* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{DW}} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}} \left\{ c^\top \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ A'' \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ge b'', \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT $(\mathcal{P}', c^{\top} u_{\mathrm{DW}}^{\top} A'')$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge 0 \ \forall s \in \mathcal{E} \right\}$$

DW combines an *inner* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

$$\bullet \ \, \mathsf{Master} \colon z_{\mathrm{DW}} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}} \left\{ c^{\top} \left(\sum_{s \in \mathcal{E}} s \lambda_{s} \right) \ \middle| \ A'' \left(\sum_{s \in \mathcal{E}} s \lambda_{s} \right) \geq b'', \sum_{s \in \mathcal{E}} \lambda_{s} = 1 \right\}$$

• Subproblem: OPT $(\mathcal{P}', c^{\top} - u_{\mathrm{DW}}^{\top} A'')$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge 0 \ \forall s \in \mathcal{E} \right\}$$

LD iteratively produces single extreme points of \mathcal{P}' and uses their violation of constraints of \mathcal{Q}'' to converge to the same optimal face of \mathcal{P}' as CPM and DW.

- $\bullet \ \, \mathsf{Master:} \ \, z_{\mathrm{LD}} = \mathsf{max}_{u \in \mathbb{R}_{+}^{m''}} \left\{ \mathsf{min}_{s \in \mathcal{E}} \left\{ c^{\top} s + u^{\top} (b'' A'' s) \right\} \right\}$
- Subproblem: OPT $(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top} A'')$

$$z_{\mathrm{LD}} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_{+}^{m^{\prime\prime}}} \left\{ \alpha + b^{\prime\prime \top} u \ \left| \ \left(c^{\top} - u^{\top} A^{\prime\prime} \right) s - \alpha \geq \mathbf{0} \ \forall s \in \mathcal{E} \right. \right\} = z_{\mathrm{DW}}$$

LD iteratively produces single extreme points of \mathcal{P}' and uses their violation of constraints of \mathcal{Q}'' to converge to the same optimal face of \mathcal{P}' as CPM and DW.

$$\bullet \ \, \mathsf{Master:} \ \, z_{\mathrm{LD}} = \mathsf{max}_{u \in \mathbb{R}_{+}^{m''}} \left\{ \mathsf{min}_{s \in \mathcal{E}} \left\{ c^{\top} s + u^{\top} (b'' - A'' s) \right\} \right\}$$

• Subproblem: OPT $(\mathcal{P}', c^{\top} - u_{\text{LD}}^{\top} A'')$

$$z_{\mathrm{LD}} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_{+}^{m''}} \left\{ \alpha + b''^{\top} u \ \left| \ \left(c^{\top} - u^{\top} A'' \right) s - \alpha \geq \mathbf{0} \ \forall s \in \mathcal{E} \right. \right\} = z_{\mathrm{DW}}$$

LD iteratively produces single extreme points of \mathcal{P}' and uses their violation of constraints of \mathcal{Q}'' to converge to the same optimal face of \mathcal{P}' as CPM and DW.

$$\bullet \ \, \mathsf{Master:} \ \, z_{\mathrm{LD}} = \mathsf{max}_{u \in \mathbb{R}_{+}^{m''}} \left\{ \mathsf{min}_{s \in \mathcal{E}} \left\{ c^{\top} s + u^{\top} (b'' - A'' s) \right\} \right\}$$

• Subproblem: OPT $\left(\mathcal{P}', c^{\top} - u_{\mathrm{LD}}^{\top} A''\right)$

$$z_{\mathrm{LD}} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_{+}^{m''}} \left\{ \alpha + b''^{\top} u \ \left| \ \left(c^{\top} - u^{\top} A'' \right) s - \alpha \geq \mathbf{0} \ \forall s \in \mathcal{E} \right. \right\} = z_{\mathrm{DW}}$$

LD iteratively produces single extreme points of \mathcal{P}' and uses their violation of constraints of \mathcal{Q}'' to converge to the same optimal face of \mathcal{P}' as CPM and DW.

$$\bullet \ \, \mathsf{Master:} \ \, z_{\mathrm{LD}} = \mathsf{max}_{u \in \mathbb{R}^{m''}} \left\{ \mathsf{min}_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (b'' - A''s) \right\} \right\}$$

• Subproblem: OPT $(\mathcal{P}', c^{\top} - u_{\text{LD}}^{\top} A'')$

$$z_{\mathrm{LD}} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_+^{m^{\prime\prime}}} \left\{ \alpha + b^{\prime\prime \top} u \ \left| \ \left(c^\top - u^\top A^{\prime\prime} \right) s - \alpha \geq \mathbf{0} \ \forall s \in \mathcal{E} \right. \right\} = z_{\mathrm{DW}}$$

Common Threads

 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \{ c^{\top} x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron

$$z_{ ext{CP}} = z_{ ext{DW}} = z_{ ext{LD}} = z_{ ext{D}} = \min_{x \in \mathbb{R}^n} \{c^+x \mid x \in \mathcal{P}' \cap \mathcal{Q}''\} \geq z_{ ext{LP}}$$

- Master Problem: Update the primal/dual solution information
- Subproblem: Update the approximation of \mathcal{P}' : SEP (\mathcal{P}',x) or OPT (\mathcal{P}',c)

- Relax-and-Cut (RC
- Decompose-and-Cut (DC)

Common Threads

 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

$$z_{\text{CP}} = z_{\text{DW}} = z_{\text{LD}} = z_{\text{D}} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{\text{LP}}$$

- Master Problem: Update the primal/dual solution information
- Subproblem: Update the approximation of \mathcal{P}' : $\operatorname{SEP}(\mathcal{P}',x)$ or $\operatorname{OPT}(\mathcal{P}',c)$

- Relax-and-Cut (RC)
- Decompose-and-Cut (DC)

Common Threads

 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{\mathrm{LP}} = \min_{x \in \mathbb{R}^n} \{ c^{\top} x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

$$z_{\text{CP}} = z_{\text{DW}} = z_{\text{LD}} = z_{\text{D}} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{\text{LP}}$$

- Traditional decomp-based bounding methods contain two primary steps
 - Master Problem: Update the primal/dual solution information
 - Subproblem: Update the approximation of \mathcal{P}' : $\operatorname{SEP}(\mathcal{P}',x)$ or $\operatorname{OPT}(\mathcal{P}',c)$
- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.
 - Price-and-Cut (PC)
 - Relax-and-Cut (RC)
 - Decompose-and-Cut (DC)

Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}'

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \ \left| \ \sum_{s \in \mathcal{E}} s \lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right. \right\}$$

Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}'

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \ \left| \ \sum_{s \in \mathcal{E}} s \lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right. \right\}$$

- If \hat{x}_{CP} lies outside \mathcal{P}' the decomposition will fail
- By the Farkas Lemma the proof of infeasibility provides a valid and violated inequality

Decomposition Cuts

$$\begin{array}{lcl} u_{\mathrm{DC}}^t s + \alpha_{\mathrm{DC}}^t & \leq & \mathbf{0} \; \forall s \in \mathcal{P}' \quad \text{and} \\ u_{\mathrm{DC}}^t \hat{x}_{\mathrm{CP}} + \alpha_{\mathrm{DC}}^t & > & \mathbf{0} \end{array}$$

Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}' .

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \ \left| \ \sum_{s \in \mathcal{E}} s \lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right. \right\}$$

- Originally proposed as a method to solve the VRP with TSP as relaxation.
- Essentially, we are transforming an optimization algorithm into a separation algorithm.
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because it's a feasibility problem and
 - $\hat{x}_i = 0 \Rightarrow s_i = 0$, can remove constraints not in support, and
 - $oldsymbol{\hat{x}}_i = 1 \ \mathrm{and} \ s_i \in \{0,1\} \Rightarrow$ constraint is redundant with convexity constraint
 - Often gets lucky and produces incumbent solutions to original IP

Branching

- By default, we branch on variables in the compact space.
- In PC, this is done by mapping back to the compact space $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$.
- Variable branching in the compact space is constraint branching in the extended space
- This idea makes it possible define generic branching procedures.

Branching

- By default, we branch on variables in the compact space.
- In PC, this is done by mapping back to the compact space $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$.
- Variable branching in the compact space is constraint branching in the extended space
- This idea makes it possible define generic branching procedures.

Branching

- By default, we branch on variables in the compact space.
- In PC, this is done by mapping back to the compact space $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$.
- Variable branching in the compact space is constraint branching in the extended space
- This idea makes it possible define generic branching procedures.

Branching,

- By default, we branch on variables in the compact space.
- In PC, this is done by mapping back to the compact space $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$.
- Variable branching in the compact space is constraint branching in the extended space
- This idea makes it possible define generic branching procedures.

Node 1:
$$4\lambda_{(4,1)} + 5\lambda_{(5,5)} + 2\lambda_{(2,1)} + 3\lambda_{(3,4)} \le 2$$

Node 2: $4\lambda_{(4,1)} + 5\lambda_{(5,5)} + 2\lambda_{(2,1)} + 3\lambda_{(3,4)} \ge 3$

Branching for Lagrangian Method

- ullet In general, Lagrangian methods do *not* provide a primal solution λ
- ullet Let ${\cal B}$ define the extreme points found in solving subproblems for $z_{
 m LD}$
- Build an inner approximation using this set, then proceed as in PC

$$\mathcal{P}_I = \left\{ x \in \mathbb{R}^n \; \middle| \; x = \sum_{s \in \mathcal{B}} s \lambda_s, \sum_{s \in \mathcal{B}} \lambda_s = 1, \lambda_s \ge 0 \; \forall s \in \mathcal{B} \; \right\}$$

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{B}}} \left\{ c^\top \left(\sum_{s \in \mathcal{B}} s \lambda_s \right) \; \middle| \; A'' \left(\sum_{s \in \mathcal{B}} s \lambda_s \right) \ge b'', \sum_{s \in \mathcal{B}} \lambda_s = 1 \; \right\}$$

Closely related to volume algorithm and bundle methods

Branching for Lagrangian Method

- ullet In general, Lagrangian methods do not provide a primal solution λ
- ullet Let ${\cal B}$ define the extreme points found in solving subproblems for $z_{
 m LD}$
- Build an inner approximation using this set, then proceed as in PC

$$\mathcal{P}_I = \left\{ x \in \mathbb{R}^n \ \middle| \ x = \sum_{s \in \mathcal{B}} s \lambda_s, \sum_{s \in \mathcal{B}} \lambda_s = 1, \lambda_s \ge 0 \ \forall s \in \mathcal{B} \right\}$$

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{B}}} \left\{ c^\top \left(\sum_{s \in \mathcal{B}} s \lambda_s \right) \ \middle| \ A'' \left(\sum_{s \in \mathcal{B}} s \lambda_s \right) \ge b'', \sum_{s \in \mathcal{B}} \lambda_s = 1 \right\}$$

Closely related to volume algorithm and bundle methods

Branching for Lagrangian Method

- ullet In general, Lagrangian methods do *not* provide a primal solution λ
- ullet Let ${\cal B}$ define the extreme points found in solving subproblems for $z_{
 m LD}$
- Build an inner approximation using this set, then proceed as in PC

$$\mathcal{P}_I = \left\{ x \in \mathbb{R}^n \; \middle| \; x = \sum_{s \in \mathcal{B}} s \lambda_s, \sum_{s \in \mathcal{B}} \lambda_s = 1, \lambda_s \ge 0 \; \forall s \in \mathcal{B} \right\}$$

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{B}}} \left\{ c^\top \left(\sum_{s \in \mathcal{B}} s \lambda_s \right) \; \middle| \; A^{\prime \prime} \left(\sum_{s \in \mathcal{B}} s \lambda_s \right) \geq b^{\prime \prime}, \sum_{s \in \mathcal{B}} \lambda_s = 1 \right\}$$

Closely related to volume algorithm and bundle methods

- Separable subproblems (Important!)
 - Identical subproblems (symmetry)
 - Parallel solution of subproblems
 - Automatic detection
- Use of generic MILP solution technology
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \lambda_s$ we can use generic MILP generation in RC/PC context
 - Use generic MILP solver to solve subproblems
 - With automatic block decomposition can allow solution of generic MILPs with no customization
- Initial columns
 - Solve $OPT(\mathcal{P}', c+r)$ for random perturbations
 - Solve $OPT(\mathcal{P}_N)$ heuristically
 - Run several iterations of LD or DC collecting extreme points
- Price-and-branch heuristic
 - ullet For block-angular case, at end of each node, solve with $\lambda \in \mathbb{Z}$
 - Used in root node by Barahona and Jensen ('98), we extend to tree

- Separable subproblems (Important!)
 - Identical subproblems (symmetry)
 - Parallel solution of subproblems
 - Automatic detection
- Use of generic MILP solution technology
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ we can use generic MILP generation in RC/PC context
 - Use generic MILP solver to solve subproblems.
 - With automatic block decomposition can allow solution of generic MILPs with no customization!
- Initial columns
 - Solve $OPT(\mathcal{P}', c+r)$ for random perturbations
 - Solve $OPT(\mathcal{P}_N)$ heuristically
 - Run several iterations of LD or DC collecting extreme points
- Price-and-branch heuristic
 - For block-angular case, at end of each node, solve with $\lambda \in \mathbb{Z}$
 - Used in root node by Barahona and Jensen ('98), we extend to tree

- Separable subproblems (Important!)
 - Identical subproblems (symmetry)
 - Parallel solution of subproblems
 - Automatic detection
- Use of generic MILP solution technology
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ we can use generic MILP generation in RC/PC context
 - Use generic MILP solver to solve subproblems.
 - With automatic block decomposition can allow solution of generic MILPs with no customization!
- Initial columns
 - Solve $\mathrm{OPT}(\mathcal{P}',c+r)$ for random perturbations
 - Solve OPT(P_N) heuristically
 - Run several iterations of LD or DC collecting extreme points
- Price-and-branch heuristic
 - ullet For block-angular case, at end of each node, solve with $\lambda \in \mathbb{Z}$
 - Used in root node by Barahona and Jensen ('98), we extend to tree

- Separable subproblems (Important!)
 - Identical subproblems (symmetry)
 - Parallel solution of subproblems
 - Automatic detection
- Use of generic MILP solution technology
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ we can use generic MILP generation in RC/PC context
 - Use generic MILP solver to solve subproblems.
 - With automatic block decomposition can allow solution of generic MILPs with no customization!
- Initial columns
 - Solve $OPT(\mathcal{P}', c+r)$ for random perturbations
 - Solve $OPT(\mathcal{P}_N)$ heuristically
 - Run several iterations of LD or DC collecting extreme points
- Price-and-branch heuristic
 - For block-angular case, at end of each node, solve with $\lambda \in \mathbb{Z}$
 - Used in root node by Barahona and Jensen ('98), we extend to tree

Algorithmic Details and Extensions (cont.)

- Choice of master LP solver
 - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
 - Primal simplex after adding columns (warm-start primal feasible)
 - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
 - Reduce size of master LP, improve efficiency of subproblem processing
- Nested pricing
 - Can solve more constrained versions of subproblem neuristically to get high quality columns

Algorithmic Details and Extensions (cont.)

- Choice of master LP solver
 - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
 - Primal simplex after adding columns (warm-start primal feasible)
 - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
 - Reduce size of master LP, improve efficiency of subproblem processing
- Nested pricing
 - Can solve more constrained versions of subproblem heuristically to get high quality columns

Algorithmic Details and Extensions (cont.)

- Choice of master LP solver
 - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
 - Primal simplex after adding columns (warm-start primal feasible)
 - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
 - Reduce size of master LP, improve efficiency of subproblem processing
- Nested pricing
 - Can solve more constrained versions of subproblem heuristically to get high quality columns.

Outline

- Motivation
- Method
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details
- Software
- Interfaces
 - DIPPY
 - MILPBlock
- Current and Future Research

DIP and CHiPPS

- The application of decomposition methods in practice is hindered by a number of serious drawbacks.
 - Implementation is difficult, usually requiring development of sophisticated customized codes.
 - Choosing an algorithmic strategy requires in-depth knowledge of theory and strategies are difficult to compare empirically.
 - The powerful techniques modern solvers use to solve integer programs are difficult to integrate with decomposition-based approaches.
- DIP and CHiPPS are two frameworks that together allow for easier implementation of decomposition approaches.
 - CHiPPS (COIN High Performance Parallel Search Software) is a flexible library hierarchy for implementing parallel search algorithms.
 - DIP (Decomposition for Integer Programs) is a framework for implementing decomposition-based bounding methods.
 - DIP with CHiPPS is a full-blown branch-and-cut-and-price framework in which details of the implementation are hidden from the user.
- DIP can be accessed through a modeling language or by providing a model with notated structure

DIP Framework

DIP Framework

DIP (Decomposition for Integer Programming) is an open-source software framework that provides an implementation of various decomposition methods with minimal user responsibility

- Allows direct comparison CPM/DW/LD/PC/RC/DC in one framework
- DIP abstracts the common, generic elements of these methods
- Key: The user defines application-specific components in the space of the compact formulation greatly simplifying the API
 - Define [A'', b''] and/or [A', b']
 - Provide methods for $OPT(\mathcal{P}', c)$ and/or $SEP(\mathcal{P}', x)$
- Framework handles all of the algorithm-specific reformulation

DIP Framework: Implementation

COmputational INfrastructure for Operations Research Have some DIP with your CHiPPS?

- DIP was built around data structures and interfaces provided by COIN-OR
- The DIP framework, written in C++, is accessed through two user interfaces:
 - Applications Interface: DecompApp
 - Algorithms Interface: DecompAlgo
- DIP provides the bounding method for branch and bound
- ALPS (Abstract Library for Parallel Search) provides the framework for tree search
 - AlpsDecompModel : public AlpsModel
 - a wrapper class that calls (data access) methods from DecompApp
 - AlpsDecompTreeNode : public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DecompAlgo

DIP Framework: Creating an Application (C++ API)

- The base class DecompApp provides an interface for user to define the application-specific components of their algorithm
- Define the model(s)

```
• setModelObjective(double * c): define c
```

- setModelCore(DecompConstraintSet * model): define Q''
- setModelRelaxed(DecompConstraintSet * model, int block): define Q' [optional]
- solveRelaxed(): define a method for $OPT(\mathcal{P}',c)$ [optional, if \mathcal{Q}' , CBC is built-in]
- generateCuts(): define a method for $SEP(\mathcal{P}',x)$ [optional, CGL is built-in]
- isUserFeasible(): is $\hat{x} \in \mathcal{P}$? [optional, if $\mathcal{P} = \text{conv}(\mathcal{P}' \cap \mathcal{Q}'' \cap \mathbb{Z})$]
- All other methods have appropriate defaults but are virtual and may be overridden

DIP Framework: Algorithms

- The base class DecompAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described has derived default implementations DecompAlgoX : public DecompAlgo which are accessible by any application class, allowing full flexibility.
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,
 - Alternative methods for solving the master LP in DW, such as interior point methods
 - Add stabilization to the dual updates in LD (stability centers)
 - For LD, replace subgradient with volume providing an approximate primal solution
 - Hybrid init methods like using LD or DC to initialize the columns of the DW master
 - During PC, adding cuts to either master and/or subproblem.
 - o ..

DIP Framework: Example Applications

Application	Description	\mathcal{P}'	$\mathbf{OPT}(c)$	SEP(x)	Input
AP3	3-index assignment	AP	Jonker	user	user
ATM	cash management (SAS COE)	MILP(s)	CBC	CGL	user
GAP	generalized assignment	KP(s)	Pisinger	CGL	user
MAD	matrix decomposition	MaxClique	Cliquer	CGL	user
MILP	random partition into A', A''	MILP	CBC	CGL	mps
MILPBlock	user-defined blocks for A'	MILP(s)	CBC	CGL	mps, block
MMKP	multi-dim/choice knapsack	MCKP	Pisinger	CGL	user
		MDKP	CBC	CGL	user
SILP	intro example, tiny IP	MILP	CBC	CGL	user
TSP	traveling salesman problem	1-Tree	Boost	Concorde	user
		2-Match	CBC	Concorde	user
VRP	vehicle routing problem	k-TSP	Concorde	CVRPSEP	user
		b-Match	CBC	CVRPSEP	user

Outline

- Motivation
- Method:
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details
- Software
- Interfaces
 - DIPPY
 - MILPBlock
- Current and Future Research

DIPPY

- DIPPY provides an interface to DIP through the modeling language PuLP.
- PuLP is a modeling language that provides functionality similar to other modeling languages.
- It is built on top of Python so you get the full power of that language for free.
- PuLP and DIPPY are being developed by Stuart Mitchell and Mike O'Sullivan in Auckland and are part of COIN.
- Through DIPPY, a user can
 - Specify the model and the relaxation, including the block structure.
 - Implement methods (coded in Python) for solving the relaxation, generating cuts, custom branching, etc.
- With DIP and DIPPY, it is possible to code a customized column-generation method from scratch in a few hours.
- This would have taken months with previously available tools.

Example: Facility Location Problem

- ullet We are given n facility locations and m customers to be serviced from those locations.
- There is a fixed cost c_j and a capacity W_j associated with facility j.
- ullet There is a cost d_{ij} and demand w_{ij} associated with serving customer i from facility j.
- We have two sets of binary variables.
 - y_i is 1 if facility j is opened, 0 otherwise.
 - x_{ij} is 1 if customer i is served by facility j, 0 otherwise.

Capacitated Facility Location Problem

$$\begin{aligned} & \min & & \sum_{j=1}^n c_j y_j + \sum_{i=1}^m \sum_{j=1}^n d_{ij} x_{ij} \\ & \text{s.t.} & & \sum_{j=1}^n x_{ij} = 1 & \forall i \\ & & & \sum_{i=1}^m w_{ij} x_{ij} \leq W_j & \forall j \\ & & & x_{ij} \leq y_j & \forall i, j \\ & & & x_{ij}, y_j \in \{0, 1\} & \forall i, j \end{aligned}$$

DIPPY Code for Facility Location

DIPPY

```
from facility_data import REQUIREMENT, PRODUCTS, LOCATIONS, CAPACITY
prob = dippy.DipProblem("Facility_Location")
assign = LpVariable.dicts("Assignment", [(i, j) for i in LOCATIONS for
                          j in PRODUCTS], 0, 1, LpBinary)
       = LpVariable dicts ("FixedCharge", LOCATIONS, 0, 1, LpBinary)
# objective: minimise waste
prob += lpSum(excess[i] for i in LOCATIONS), "min"
# assignment constraints
for i in PRODUCTS:
    prob += lpSum(assign[(i, j)] for i in LOCATIONS) == 1
# Aggregate capacity constraints
for i in LOCATIONS:
    prob.relaxation[i] += lpSum(assign[(i, j)]*REQUIREMENT[j] for j in
                                PRODUCTS) + excess[i] = CAPACITY * open[i]
# Disaggregated capacity constraints
for i in LOCATIONS:
    for i in PRODUCTS:
        prob.relaxation[i] += assign[(i, j)] <= open[i]</pre>
# Ordering constraints
for index, location in enumerate(LOCATIONS):
    if index > 0:
        prob += use[LOCATIONS[index -1]] >= open[location]
```

DIPPY Auxiliary Methods for Facility Location

```
DIPPY
def solve_subproblem(prob, index, redCosts, convexDual):
   z, solution = knapsack01(obj, weights, CAPACITY)
   return []
prob.relaxed_solver = solve_subproblem
def knapsackO1(obj, weights, capacity):
    return c[n-1][capacity], solution
def first_fit (prob):
    return bys
def one_each(prob):
   return bys
prob.init_vars = first_fit
dippy.Solve(prob, {
    'TolZero': '%s' % tol.
    'doPriceCut': '1'.
    'generateInitVars': '1', })
```

MILPBlock: Decomposition-based MILP Solver

- Many difficult MILPs have a block structure, but this structure is not part of the input (MPS) or is not exploitable by the solver.
- In practice, it is common to have models composed of independent subsystems coupled by global constraints.
- The result may be models that are highly symmetric and difficult to solve using traditional methods, but would be easy to solve if the structure were known.

$$\begin{pmatrix} A_1'' & A_2'' & \cdots & A_\kappa'' \\ A_1' & & & & \\ & & A_2' & & & \\ & & & \ddots & & \\ & & & & A_\kappa' \end{pmatrix}$$

- MILPBlock provides a black-box solver for applying integrated methods to generic MILP
- Input is an MPS/LP and a *block file* specifying structure.
- Optionally, the block file can be automatically generated using the hypergraph partitioning algorithm of HMetis.
- This is the engine underlying DIPPY.

Identifying Block Structure

- The problem of identifying the block structure of a matrix is difficult.
- At the moment, we identify block structure heuristically using a package for hypergraph partitioning called HMetis.
 - The columns of the matrix are identified with nodes in a hypergraph.
 - The edges of the hypergraph are the sets of columns corresponding to nonzeros in each row.
 - We partition the nodes in order to minimize the number of hyperedges in the resulting cut.
 - The hyperedges represent the linking rows.
- So far, this seems pretty effective, but this research is in its infancy.

Hidden Block Structure

Detected block structure for 10teams instance

¹Picture from "Generic Dantzig-Wolfe Reformulation of Mixed Integer Programs", M. Bergner et.al., in *Proceeding of the* 15th International Conference on Integer Programming and Combinatorial Optimization, pp. 39–51.

Hidden Block Structure

Detected block structure for aflow30a and set1ch instances

²Picture from "Generic Dantzig-Wolfe Reformulation of Mixed Integer Programs", M. Bergner et.al., in *Proceeding of the* 15th International Conference on Integer Programming and Combinatorial Optimization, pp. 39–51.

Hidden Block Structure

Structure with different numbers of blocks for fiber instance

³Picture from "Generic Dantzig-Wolfe Reformulation of Mixed Integer Programs", M. Bergner et.al., in *Proceeding of the* 15th International Conference on Integer Programming and Combinatorial Optimization, pp. 39–51.

Exploiting Block Structure

Bound Improvement

insta cols rows opt k bound ro	oot
mote cois forts opt // Bound	JUL
10teams 2025 230 924 3 918.1 9	17
noswot 128 182 563.8 3 -41.2 -	43
<i>p2756</i> 2756 755 3124 3 3115.5 26	88.7
timtab1 397 171 764772 3 350885 28	694
timtab2 675 294 1096560 3 431963 83	592
vpm2 378 234 13.7 3 12.2	9.8
pg5_34 2600 125 -14339.4 3 -15179.2 -16	646.5
pg 2700 125 -8674.34 3 -15179.2 -16	646.5
<i>k16x240</i> 480 256 10674 3 3303.6 27	69.8

Application - Block-Angular MILP (applied to Retail Optimization)

SAS Retail Optimization Solution

- Multi-tiered supply chain distribution problem where each block represents a store
- Prototype model developed in SAS/OR's OPTMODEL (algebraic modeling language)

	CPX11			DIP-PC		
Instance	Time	Gap	Nodes	Time	Gap	Nodes
retail27	Т	2.30%	2674921	3.18	OPT	1
retail31	Т	0.49%	1434931	767.36	OPT	41
retail3	529.77	OPT	2632157	0.54	OPT	1
retail4	Т	1.61%	1606911	116.55	OPT	1
retail6	1.12	OPT	803	264.59	OPT	303

Outline

- Motivation
- Method
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details
- Software
- Interfaces
 - DIPPY
 - MILPBlock
- Current and Future Research

MILPBlock: Recently Added Features

Interfaces for Pricing Algorithms (for IBM Project)

- User can provide an initial dual vector
- User can manipulate duals used at each pass (and specify per block)
- User can select which block to process next (alternative to all or round-robin)

New Options

- Branching can be auto enforced in subproblem or master (when oracle is MILP)
- Ability to stop subproblem calculation on gap/time and calculate LB (can branch early
- For oracles that provide it, allow multiple columns for each subproblem call
- Management of compression of columns once master gap is tight

Performance

- Detection and removal of columns that are close to paralle
 - Added basic dual stabilization (Wentges smoothing)
- Redesign (and simplification) of treatment of master-only variables

MILPBlock: Recently Added Features

Interfaces for Pricing Algorithms (for IBM Project)

- User can provide an initial dual vector
- User can manipulate duals used at each pass (and specify per block)
- User can select which block to process next (alternative to all or round-robin)

New Options

- Branching can be auto enforced in subproblem or master (when oracle is MILP)
- Ability to stop subproblem calculation on gap/time and calculate LB (can branch early)
- For oracles that provide it, allow multiple columns for each subproblem call
- Management of compression of columns once master gap is tight

Performance

- Detection and removal of columns that are close to parallel
- Added basic dual stabilization (Wentges smoothing)
- Redesign (and simplification) of treatment of master-only variables

MILPBlock: Recently Added Features

Interfaces for Pricing Algorithms (for IBM Project)

- User can provide an initial dual vector
- User can manipulate duals used at each pass (and specify per block)
- User can select which block to process next (alternative to all or round-robin)

New Options

- Branching can be auto enforced in subproblem or master (when oracle is MILP)
- Ability to stop subproblem calculation on gap/time and calculate LB (can branch early)
- For oracles that provide it, allow multiple columns for each subproblem call
- Management of compression of columns once master gap is tight

Performance

- Detection and removal of columns that are close to parallel
- Added basic dual stabilization (Wentges smoothing)
- Redesign (and simplification) of treatment of master-only variables.

Related Projects Currently using DIP

- OSDip Optimization Services (OS) wraps DIP (in CoinBazaar)
 - University of Chicago Kipp Martin
- Dippy Python interface for DIP through PuLP
 - University of Auckland Michael O'Sullivan
- SAS surface MILPBlock-like solver for PROC OPTMODEL
 - SAS Institute Matthew Galati
- National Workforce Management, Cross-Training and Scheduling Project
 - IBM Business Process Re-engineering Alper Uygur
- Transmission Switching Problem for Electricity Networks
 - University of Denmark Jonas Villumsem
 - University of Auckland Andy Philipott

DIP@SAS in PROC OPTMODEL

- Prototype PC algorithm embedded in PROC OPTMODEL (based on MILPBlock)
- Minor API change one new suffix on rows or cols (.block)

Preliminary Results (Recent Clients):

Client Problem	IP-GAP		Real-Time	
	DIP@SAS	CPX12.1	DIP@SAS	CPX12.1
ATM Cash Management and Predictive Model (India)	OPT	∞	103	2000 (T)
ATM Cash Management (Singapore)	OPT	OPT	86	831
	OPT	OPT	90	783
Retail Inventory Optimization (UK)	1.6%	9%	1200	1200 (T)
	4.7%	19%	1200	1200 (T)
	2.6%	∞	1200	1200 (T)

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from â to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiCII
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress)
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneousl
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cut

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from â to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiCII
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress)
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneousl
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cut

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut?
 - ullet Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cut

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut?
 - ullet Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress);
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cut

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut?
 - ullet Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut?
 - ullet Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts