
Motivation
Methods
Software

Interfaces
Future

DIP with CHiPPS:
Decomposition Methods for Integer Linear Programming

Ted Ralphs

Lehigh University

Matthew Galati

SAS Institute

Jiadong Wang

Lehigh University

CSIRO, Melbourne, Australia, 19 December, 2011

Thanks: Work supported in part by the National Science Foundation

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 1/48

Motivation
Methods
Software

Interfaces
Future

Outline

1 Motivation

2 Methods
Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

3 Software
Implementation and API
Algorithmic Details

4 Interfaces
DIPPY
MILPBlock

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 2/48

Motivation
Methods
Software

Interfaces
Future

Outline

1 Motivation

2 Methods
Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

3 Software
Implementation and API
Algorithmic Details

4 Interfaces
DIPPY
MILPBlock

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 3/48

Motivation
Methods
Software

Interfaces
Future

The Basic Setting

Integer Linear Program: Minimize/Maximize a linear objective function over a (discrete)
set of solutions satisfying specified linear constraints.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 4/48

Motivation
Methods
Software

Interfaces
Future

Branch and Bound

A relaxation of an ILP is an auxiliary mathematical program for which

the feasible region contains the feasible region for the original ILP, and

the objective function value of each solution to the original ILP is not increased.

Relaxations can be used to efficiently get bounds on the value of the original integer program.

Types of Relaxations

Continuous relaxation

Combinatorial relaxations

Lagrangian relaxations

Branch and Bound

Initialize the queue with the root subproblem. While there are subproblems in the queue,
do

1 Remove a subproblem and solve its relaxation.

2 The relaxation is infeasible ⇒ subproblem is infeasible and can be pruned.

3 Solution is feasible for the MILP ⇒ subproblem solved (update upper bound).

4 Solution is not feasible for the MILP ⇒ lower bound.

If the lower bound exceeds the global upper bound, we can prune the node.

Otherwise, we branch and add the resulting subproblems to the queue.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 5/48

Motivation
Methods
Software

Interfaces
Future

What is the Goal of Decomposition?

Basic Idea: Exploit knowledge of the underlying structural components of model to
improve the bound.

Many complex models are built up from multiple underlying substructures.

Subsystems linked by global constraints.

Complex combinatorial structures obtained by combining simple ones.

We want to exploit knowledge of efficient, customized methodology for substructures.

This can be done in two primary ways (with many variants).

Identify independent subsystems.

Identify subsets of constraints that can be dealt with efficiently.

0
0

1
1

2
2

0.6

3
3

4

0.2

5

0.8

6

0.2

7

4

5

8

6

9

0.8

7

10

0.8

8

11

9

12

0.6

13

10

14

11

15

0.4

0.2

12

0.2

0.2

0.2

13
0.4

0.6
0.8

14

0.6

0.2

0.2

15

0.2

0.2

0.2

0.8

0.6

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 6/48

Motivation
Methods
Software

Interfaces
Future

Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

x(δ({u})) = 2 ∀u ∈ V

x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 7/48

Motivation
Methods
Software

Interfaces
Future

Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

x(δ({u})) = 2 ∀u ∈ V

x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Two relaxations

Find a spanning subgraph with |V | edges (P ′ = 1-Tree)

x(δ({0})) = 2
x(E(V)) = |V |
x(E(S)) ≤ |S| − 1 ∀S ⊂ V \ {0}, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 7/48

Motivation
Methods
Software

Interfaces
Future

Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

x(δ({u})) = 2 ∀u ∈ V

x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Two relaxations

Find a spanning subgraph with |V | edges (P ′ = 1-Tree)

x(δ({0})) = 2
x(E(V)) = |V |
x(E(S)) ≤ |S| − 1 ∀S ⊂ V \ {0}, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Find a 2-matching that satisfies the subtour constraints (P ′ = 2-Matching)

x(δ({u})) = 2 ∀u ∈ V

xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 7/48

Motivation
Methods
Software

Interfaces
Future

Example: Exposing Block Structure

One motivation for decomposition is to expose independent subsystems.

The key is to identify block structure in the constraint matrix.

The separability lends itself nicely to parallel implementation.

0

B

B

B

B

B

@

A′′
1 A′′

2 · · · A′′
κ

A′
1

A′
2

. . .

A′
κ

1

C

C

C

C

C

A

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 8/48

Motivation
Methods
Software

Interfaces
Future

Example: Exposing Block Structure

One motivation for decomposition is to expose independent subsystems.

The key is to identify block structure in the constraint matrix.

The separability lends itself nicely to parallel implementation.

0

B

B

B

B

B

@

A′′
1 A′′

2 · · · A′′
κ

A′
1

A′
2

. . .

A′
κ

1

C

C

C

C

C

A

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 8/48

Motivation
Methods
Software

Interfaces
Future

Example: Exposing Block Structure

One motivation for decomposition is to expose independent subsystems.

The key is to identify block structure in the constraint matrix.

The separability lends itself nicely to parallel implementation.

Generalized Assignment Problem (GAP)

The problem is to assign m tasks to n machines subject to capacity constraints.

An IP formulation of this problem is

min
X

i∈M

X

j∈N

cijxij

X

j∈N

wijxij ≤ bi ∀i ∈ M

X

i∈M

xij = 1 ∀j ∈ N

xij ∈ {0, 1} ∀i, j ∈ M × N

The variable xij is one if task i is assigned to machine j.

The “profit” associated with assigning task i to machine j is cij .

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 9/48

Motivation
Methods
Software

Interfaces
Future

Example: Eliminating Symmetry

In some cases, the identified blocks are identical.

In such cases, the original formulation will often be highly symmetric.

The decomposition eliminates the symmetry by collapsing the identical blocks.

Vehicle Routing Problem (VRP)

min
X

k∈M

X

(i,j)∈A

cijxijk

X

k∈M

X

j∈N

xijk = 1 ∀i ∈ V

X

i∈V

X

j∈N

dixijk ≤ C ∀k ∈ M

X

j∈N

x0jk = 1 ∀k ∈ M

X

i∈N

xihk −
X

j∈N

xhjk = 0 ∀h ∈ V, k ∈ M

X

i∈N

xi,n+1,k = 1 ∀k ∈ M

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ M

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 10/48

Motivation
Methods
Software

Interfaces
Future

DIP and CHiPPS

The use of decomposition methods in practice is hindered by a
number of serious drawbacks.

Implementation is difficult, usually requiring development of
sophisticated customized codes.

Choosing an algorithmic strategy requires in-depth knowledge of theory
and strategies are difficult to compare empirically.

The powerful techniques modern solvers use to solve integer programs
are difficult to integrate with decomposition-based approaches.

DIP and CHiPPS are two frameworks that together allow for easier
implementation of decomposition approaches.

CHiPPS (COIN High Performance Parallel Search Software) is a
flexible library hierarchy for implementing parallel search algorithms.

DIP (Decomposition for Integer Programs) is a framework for
implementing decomposition-based bounding methods.

DIP with CHiPPS is a full-blown branch-and-cut-and-price framework
in which details of the implementation are hidden from the user.

DIP can be accessed through a modeling language or by providing
a model with notated structure.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 11/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Outline

1 Motivation

2 Methods
Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

3 Software
Implementation and API
Algorithmic Details

4 Interfaces
DIPPY
MILPBlock

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 12/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
(combinatorial) relaxation, we can improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zD = min
x∈P′

n

c⊤x
˛

˛ A′′x ≥ b′′
o

zIP ≥ zD ≥ zLP

P = conv{x ∈ Z
n | A′x ≥ b′, A′′x ≥ b′′}

Assumptions:

OPT(P, c) and SEP(P, x) are “hard”

OPT(P ′, c) and SEP(P ′, x) are “easy”

Q′′ can be represented explicitly (description has polynomial size)

P ′ must be represented implicitly (description has exponential size)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 13/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
(combinatorial) relaxation, we can improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zD = min
x∈P′

n

c⊤x
˛

˛ A′′x ≥ b′′
o

zIP ≥ zD ≥ zLP

Q′′ = {x ∈ R
n | A′′x ≥ b′′}

Q′ = {x ∈ R
n | A′x ≥ b′}

Assumptions:

OPT(P, c) and SEP(P, x) are “hard”

OPT(P ′, c) and SEP(P ′, x) are “easy”

Q′′ can be represented explicitly (description has polynomial size)

P ′ must be represented implicitly (description has exponential size)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 13/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
(combinatorial) relaxation, we can improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zD = min
x∈P′

n

c⊤x
˛

˛ A′′x ≥ b′′
o

zIP ≥ zD ≥ zLP

P′ = conv{x ∈ Z
n | A′x ≥ b′}

Q′′ = {x ∈ R
n | A′′x ≥ b′′}

Assumptions:

OPT(P, c) and SEP(P, x) are “hard”

OPT(P ′, c) and SEP(P ′, x) are “easy”

Q′′ can be represented explicitly (description has polynomial size)

P ′ must be represented implicitly (description has exponential size)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 13/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
(combinatorial) relaxation, we can improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zD = min
x∈P′

n

c⊤x
˛

˛ A′′x ≥ b′′
o

zIP ≥ zD ≥ zLP

Q′ = {x ∈ R
n | A′x ≥ b′}

Q′′ = {x ∈ R
n | A′′x ≥ b′′}

P′ = conv{x ∈ Z
n | A′x ≥ b′}

P = conv{x ∈ Z
n | A′x ≥ b′, A′′x ≥ b′′}

Assumptions:

OPT(P, c) and SEP(P, x) are “hard”

OPT(P ′, c) and SEP(P ′, x) are “easy”

Q′′ can be represented explicitly (description has polynomial size)

P ′ must be represented implicitly (description has exponential size)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 13/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
(combinatorial) relaxation, we can improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zD = min
x∈P′

n

c⊤x
˛

˛ A′′x ≥ b′′
o

zIP ≥ zD ≥ zLP

Q′ = {x ∈ R
n | A′x ≥ b′}

Q′′ = {x ∈ R
n | A′′x ≥ b′′}

P′ = conv{x ∈ Z
n | A′x ≥ b′}

P = conv{x ∈ Z
n | A′x ≥ b′, A′′x ≥ b′′}

Assumptions:

OPT(P, c) and SEP(P, x) are “hard”

OPT(P ′, c) and SEP(P ′, x) are “easy”

Q′′ can be represented explicitly (description has polynomial size)

P ′ must be represented implicitly (description has exponential size)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 13/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Cutting Plane Method (CPM)

CPM combines an outer approximation of P ′ with an explicit description of Q′′

Master: zCP = minx∈Rn

˘

c⊤x | Dx ≥ d, A′′x ≥ b′′
¯

Subproblem: SEP(P ′, xCP)

P ′ = {x ∈ R
n | Dx ≥ d}

Exponential number of constraints

P0
O

= Q′ ∩ Q′′

x0
CP

= (2.25, 2.75)

(2, 1)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 14/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Cutting Plane Method (CPM)

CPM combines an outer approximation of P ′ with an explicit description of Q′′

Master: zCP = minx∈Rn

˘

c⊤x | Dx ≥ d, A′′x ≥ b′′
¯

Subproblem: SEP(P ′, xCP)

P ′ = {x ∈ R
n | Dx ≥ d}

Exponential number of constraints

P0
O

= Q′ ∩ Q′′

x0
CP

= (2.25, 2.75)

(2, 1)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 14/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Cutting Plane Method (CPM)

CPM combines an outer approximation of P ′ with an explicit description of Q′′

Master: zCP = minx∈Rn

˘

c⊤x | Dx ≥ d, A′′x ≥ b′′
¯

Subproblem: SEP(P ′, xCP)

P ′ = {x ∈ R
n | Dx ≥ d}

Exponential number of constraints

P1
O

= P0
O

∩ {x ∈ R
n | 3x1 − x2 ≥ 5}

x1
CP

= (2.42, 2.25)

(2, 1)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 14/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Cutting Plane Method (CPM)

CPM combines an outer approximation of P ′ with an explicit description of Q′′

Master: zCP = minx∈Rn

˘

c⊤x | Dx ≥ d, A′′x ≥ b′′
¯

Subproblem: SEP(P ′, xCP)

P ′ = {x ∈ R
n | Dx ≥ d}

Exponential number of constraints

P0
O

= Q′ ∩ Q′′

x0
CP

= (2.25, 2.75)

P1
O

= P0
O

∩ {x ∈ R
n | 3x1 − x2 ≥ 5}

x1
CP

= (2.42, 2.25)

(2, 1) (2, 1)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 14/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = minλ∈R
E
+

˘

c⊤
`
P

s∈E sλs
´ ˛

˛ A′′
`
P

s∈E sλs
´

≥ b′′,
P

s∈E λs = 1
¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
DW

A′′
´

P ′ =

8

<

:

x ∈ R
n

˛

˛

˛

˛

˛

˛

x =
X

s∈E

sλs,
X

s∈E

λs = 1, λs ≥ 0 ∀s ∈ E

9

=

;

Exponential number of variables

Q′′

P0
I

= conv(E0) ⊂ P′

s̃ = (2, 1)

x0
DW

= (4.25, 2)

c⊤ − û⊤A”c⊤

(2, 1)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 15/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = minλ∈R
E
+

˘

c⊤
`
P

s∈E sλs
´ ˛

˛ A′′
`
P

s∈E sλs
´

≥ b′′,
P

s∈E λs = 1
¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
DW

A′′
´

P ′ =

8

<

:

x ∈ R
n

˛

˛

˛

˛

˛

˛

x =
X

s∈E

sλs,
X

s∈E

λs = 1, λs ≥ 0 ∀s ∈ E

9

=

;

Exponential number of variables

Q′′

P1
I = conv(E1) ⊂ P′

s̃ = (3, 4)

x1
DW

= (2.64, 1.86)

c⊤ − û⊤A”

(2, 1)

c⊤

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 15/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = minλ∈R
E
+

˘

c⊤
`
P

s∈E sλs
´ ˛

˛ A′′
`
P

s∈E sλs
´

≥ b′′,
P

s∈E λs = 1
¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
DW

A′′
´

P ′ =

8

<

:

x ∈ R
n

˛

˛

˛

˛

˛

˛

x =
X

s∈E

sλs,
X

s∈E

λs = 1, λs ≥ 0 ∀s ∈ E

9

=

;

Exponential number of variables

Q′′

P2
I

= conv(E2) ⊂ P′

x2
DW

= (2.42, 2.25)

c⊤ − û⊤A”

(2, 1)

c⊤

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 15/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = minλ∈R
E
+

˘

c⊤
`
P

s∈E sλs
´ ˛

˛ A′′
`
P

s∈E sλs
´

≥ b′′,
P

s∈E λs = 1
¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
DW

A′′
´

P ′ =

8

<

:

x ∈ R
n

˛

˛

˛

˛

˛

˛

x =
X

s∈E

sλs,
X

s∈E

λs = 1, λs ≥ 0 ∀s ∈ E

9

=

;

Exponential number of variables

Q′′ Q′′ Q′′

P1
I = conv(E1) ⊂ P′ P2

I
= conv(E2) ⊂ P′P0

I
= conv(E0) ⊂ P′

s̃ = (3, 4)s̃ = (2, 1)

x0
DW

= (4.25, 2) x1
DW

= (2.64, 1.86) x2
DW

= (2.42, 2.25)

c⊤ − û⊤A”c⊤

c⊤ − û⊤A”

c⊤ − û⊤A”

(2, 1) (2, 1) (2, 1)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 15/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′

to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′

+

˘

mins∈E

˘

c⊤s + u⊤(b′′ − A′′s)
¯¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
LD

A′′
´

zLD = max
α∈R,u∈Rm′′

+

n

α + b′′⊤u
˛

˛

˛

“

c⊤ − u⊤A′′
”

s − α ≥ 0 ∀s ∈ E
o

= zDW

(2, 1)

c⊤ − û⊤A′′

Q′′

s̃ = (2, 1)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 16/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′

to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′

+

˘

mins∈E

˘

c⊤s + u⊤(b′′ − A′′s)
¯¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
LD

A′′
´

zLD = max
α∈R,u∈Rm′′

+

n

α + b′′⊤u
˛

˛

˛

“

c⊤ − u⊤A′′
”

s − α ≥ 0 ∀s ∈ E
o

= zDW

(2, 1)

Q′′

c⊤ − û⊤A′′

s̃ = (3, 4)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 16/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′

to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′

+

˘

mins∈E

˘

c⊤s + u⊤(b′′ − A′′s)
¯¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
LD

A′′
´

zLD = max
α∈R,u∈Rm′′

+

n

α + b′′⊤u
˛

˛

˛

“

c⊤ − u⊤A′′
”

s − α ≥ 0 ∀s ∈ E
o

= zDW

(2, 1)

c⊤ − û⊤A′′

Q′′

s̃ = (2, 1)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 16/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′

to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′

+

˘

mins∈E

˘

c⊤s + u⊤(b′′ − A′′s)
¯¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
LD

A′′
´

zLD = max
α∈R,u∈Rm′′

+

n

α + b′′⊤u
˛

˛

˛

“

c⊤ − u⊤A′′
”

s − α ≥ 0 ∀s ∈ E
o

= zDW

(2, 1) (2, 1) (2, 1)

Q′′

c⊤ − û⊤A′′

c⊤ − û⊤A′′
c⊤ − û⊤A′′

s̃ = (3, 4)

Q′′

s̃ = (2, 1)

Q′′

s̃ = (2, 1)

c⊤

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 16/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Common Threads

The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

The decomposition bound is obtained by optimizing over the intersection
of one explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomp-based bounding methods contain two primary steps

Master Problem: Update the primal/dual solution information

Subproblem: Update the approximation of P′: SEP(P′, x) or OPT(P′, c)

Integrated decomposition methods further improve the bound by
considering two implicitly defined polyhedra whose descriptions are
iteratively refined.

Price-and-Cut (PC)

Relax-and-Cut (RC)

Decompose-and-Cut (DC)

Q′′

Q′ ∩ Q′′

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 17/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Common Threads

The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

The decomposition bound is obtained by optimizing over the intersection
of one explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomp-based bounding methods contain two primary steps

Master Problem: Update the primal/dual solution information

Subproblem: Update the approximation of P′: SEP(P′, x) or OPT(P′, c)

Integrated decomposition methods further improve the bound by
considering two implicitly defined polyhedra whose descriptions are
iteratively refined.

Price-and-Cut (PC)

Relax-and-Cut (RC)

Decompose-and-Cut (DC)

Q′′

Q′ ∩ Q′′

P′ ∩ Q′′

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 17/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Common Threads

The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

The decomposition bound is obtained by optimizing over the intersection
of one explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomp-based bounding methods contain two primary steps

Master Problem: Update the primal/dual solution information

Subproblem: Update the approximation of P′: SEP(P′, x) or OPT(P′, c)

Integrated decomposition methods further improve the bound by
considering two implicitly defined polyhedra whose descriptions are
iteratively refined.

Price-and-Cut (PC)

Relax-and-Cut (RC)

Decompose-and-Cut (DC)

Q′′

Q′ ∩ Q′′

P′ ∩ Q′′

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 17/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Common Threads

The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

The decomposition bound is obtained by optimizing over the intersection
of one explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomp-based bounding methods contain two primary steps

Master Problem: Update the primal/dual solution information

Subproblem: Update the approximation of P′: SEP(P′, x) or OPT(P′, c)

Integrated decomposition methods further improve the bound by
considering two implicitly defined polyhedra whose descriptions are
iteratively refined.

Price-and-Cut (PC)

Relax-and-Cut (RC)

Decompose-and-Cut (DC)

Q′′

Q′ ∩ Q′′

P′ ∩ Q′′

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 17/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.’s of P ′

min
λ∈RE

+,(x+,x−)∈Rn
+

8

<

:

x+ + x−

˛

˛

˛

˛

˛

˛

X

s∈E

sλs + x+ − x− = x̂CP,
X

s∈E

λs = 1

9

=

;

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 18/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.’s of P ′

min
λ∈RE

+,(x+,x−)∈Rn
+

8

<

:

x+ + x−

˛

˛

˛

˛

˛

˛

X

s∈E

sλs + x+ − x− = x̂CP,
X

s∈E

λs = 1

9

=

;

If x̂CP lies outside P ′ the decomposition will fail

By the Farkas Lemma the proof of infeasibility provides a valid and violated inequality

Decomposition Cuts

ut
DC

s + αt
DC

≤ 0 ∀s ∈ P ′ and

ut
DC

x̂CP + αt
DC

> 0

(2,1)(2,1)

PO = Q′′PO = Q′′

{s ∈ E | (λCP)s > 0}

PI = P′ PI = P′

xCP ∈ P′ xCP /∈ P′

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 18/48

Motivation
Methods
Software

Interfaces
Future

Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.’s of P ′.

min
λ∈RE

+,(x+,x−)∈Rn
+

8

<

:

x+ + x−

˛

˛

˛

˛

˛

˛

X

s∈E

sλs + x+ − x− = x̂CP,
X

s∈E

λs = 1

9

=

;

Original used to solve VRP with TSP as relaxation.

Essentially, we are transforming an optimization algorithm into a separation algorithm.

The machinery for solving this already exists (=column generation)

Much easier than DW problem because it’s a feasibility problem and

x̂i = 0 ⇒ si = 0, can remove constraints not in support, and

x̂i = 1 and si ∈ {0, 1} ⇒ constraint is redundant with convexity constraint

Often gets lucky and produces incumbent solutions to original IP

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 19/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Outline

1 Motivation

2 Methods
Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

3 Software
Implementation and API
Algorithmic Details

4 Interfaces
DIPPY
MILPBlock

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 20/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

DIP Framework

DIP Framework

DIP (Decomposition for Integer Programming) is an open-source software framework that pro-
vides an implementation of various decomposition methods with minimal user responsibility

Allows direct comparison CPM/DW/LD/PC/RC/DC in one framework

DIP abstracts the common, generic elements of these methods

Key: The user defines application-specific components in the space of
the compact formulation - greatly simplifying the API

Define [A′′, b′′] and/or [A′, b′]

Provide methods for OPT(P′, c) and/or SEP(P′, x)

Framework handles all of the algorithm-specific reformulation

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 21/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

DIP Framework: Implementation

COmputational INfrastructure for Operations Research
Have some DIP with your CHiPPS?

DIP was built around data structures and interfaces provided by COIN-OR

The DIP framework, written in C++, is accessed through two user interfaces:

Applications Interface: DecompApp

Algorithms Interface: DecompAlgo

DIP provides the bounding method for branch and bound

ALPS (Abstract Library for Parallel Search) provides the framework for tree search

AlpsDecompModel : public AlpsModel

a wrapper class that calls (data access) methods from DecompApp

AlpsDecompTreeNode : public AlpsTreeNode

a wrapper class that calls (algorithmic) methods from DecompAlgo

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 22/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

DIP Framework: Applications API

The base class DecompApp provides an interface for user to define the application-specific
components of their algorithm

Define the model(s)

setModelObjective(double * c): define c

setModelCore(DecompConstraintSet * model): define Q′′

setModelRelaxed(DecompConstraintSet * model, int block): define Q′ [optional]

solveRelaxed(): define a method for OPT(P ′, c) [optional, if Q′, CBC is built-in]

generateCuts(): define a method for SEP(P ′, x) [optional, CGL is built-in]

isUserFeasible(): is x̂ ∈ P? [optional, if P = conv(P ′ ∩Q′′ ∩ Z)]

All other methods have appropriate defaults but are virtual and may be overridden

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 23/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

DIP Framework: Algorithm API

The base class DecompAlgo provides the shell (init / master / subproblem / update).

Each of the methods described has derived default implementations DecompAlgoX :

public DecompAlgo which are accessible by any application class, allowing full flexibility.

New, hybrid or extended methods can be easily derived by overriding the various
subroutines, which are called from the base class. For example,

Alternative methods for solving the master LP in DW, such as interior point methods

Add stabilization to the dual updates in LD (stability centers)

For LD, replace subgradient with volume providing an approximate primal solution

Hybrid init methods like using LD or DC to initialize the columns of the DW master

During PC, adding cuts to either master and/or subproblem.

...

DecompAlgoDC

DecompAlgo

DecompAlgoC DecompAlgoPC DecompAlgoRC

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 24/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

DIP Framework: Feature Overview

One interface to all algorithms: CP/DC, DW, LD, PC, RC. Change aapproach by
switching parameters.

Automatic reformulation allows users to specify methods in the compact (original) space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

Novel options for cut generation

Can utilize CGL cuts in all algorithms (separate from original space).
Can utilize structured separation (efficient algorithms that apply only to vectors with special
structure (integer) in various ways.
Can separate from P′ using subproblem solver (DC).

Easy to combine different approaches
Column generation based on multiple algorithms or nested subproblems can be easily defined and
employed.
Bounds based on multiple model/algorithm combinations.

Provides generic (naive) branching rules,

Active LP compression, variable and cut pool management. overrides.

Fully generic algorithm for problems with block structure.
Automatic detection of blocks.
Threaded oracle.
No coding required.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 25/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Working in the Compact Space

The key to the implementation of this unified framework is that we always maintain a
representation of the problem in the compact space.

This allows us to employ most of the usual techniques used in LP-based branch and bound
without modification, even in this more general setting.

There are some challenges related to this approach that we are still working on.

Gomory cuts

Preprocessing

Identical subproblems

Strong branching

Allowing the user to express all methods in the compact space is extremely powerful when
it comes to modeling language support.

It is important to note that DIP currently assumes the existence of a formulation in the
compact space.

We are working on relaxing this assumption, but this means the loss of the fully generic
implementation of some techniques.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 26/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Branching

By default, we branch on variables in the compact space.

In PC, this is done by mapping back to the compact space x̂ =
P

s∈E sλ̂s.

Variable branching in the compact space is constraint branching in the extended space

This idea makes it possible define generic branching procedures.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 27/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Branching

By default, we branch on variables in the compact space.

In PC, this is done by mapping back to the compact space x̂ =
P

s∈E sλ̂s.

Variable branching in the compact space is constraint branching in the extended space

This idea makes it possible define generic branching procedures.

(2,1) (2,1)(2,1)

Node 1 Node 2

Node 4

Node 3

xDW = (2.42, 2.25)

{s ∈ E | (λDW)s > 0}

P I

PO

xDW = (3, 3.75)

P I
P I

PO
PO

xDW = (3, 3)

{s ∈ E | (λDW)s > 0} {s ∈ E | (λDW)s > 0}

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 27/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Branching

By default, we branch on variables in the compact space.

In PC, this is done by mapping back to the compact space x̂ =
P

s∈E sλ̂s.

Variable branching in the compact space is constraint branching in the extended space

This idea makes it possible define generic branching procedures.

(2,1) (2,1)(2,1)

Node 1 Node 2

Node 4

Node 3

xDW = (2.42, 2.25)

{s ∈ E | (λDW)s > 0}

P I

PO

xDW = (3, 3.75)

P I
P I

PO
PO

xDW = (3, 3)

{s ∈ E | (λDW)s > 0} {s ∈ E | (λDW)s > 0}

Node 1: 4λ(4,1) + 5λ(5,5) + 2λ(2,1) + 3λ(3,4) ≤ 2
Node 2: 4λ(4,1) + 5λ(5,5) + 2λ(2,1) + 3λ(3,4) ≥ 3

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 27/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Branching for RC

In general, Lagrangian methods do not provide a primal solution λ

Let B define the extreme points found in solving subproblems for zLD

Build an inner approximation using this set, then proceed as in PC

PI =

8

<

:

x ∈ R
n

˛

˛

˛

˛

˛

˛

x =
X

s∈B

sλs,
X

s∈B

λs = 1, λs ≥ 0 ∀s ∈ B

9

=

;

min
λ∈RB

+

8

<

:

c⊤

0

@

X

s∈B

sλs

1

A

˛

˛

˛

˛

˛

˛

A′′

0

@

X

s∈B

sλs

1

A ≥ b′′,
X

s∈B

λs = 1

9

=

;

Closely related to volume algorithm and bundle methods

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 28/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Branching for RC

In general, Lagrangian methods do not provide a primal solution λ

Let B define the extreme points found in solving subproblems for zLD

Build an inner approximation using this set, then proceed as in PC

PI =

8

<

:

x ∈ R
n

˛

˛

˛

˛

˛

˛

x =
X

s∈B

sλs,
X

s∈B

λs = 1, λs ≥ 0 ∀s ∈ B

9

=

;

min
λ∈RB

+

8

<

:

c⊤

0

@

X

s∈B

sλs

1

A

˛

˛

˛

˛

˛

˛

A′′

0

@

X

s∈B

sλs

1

A ≥ b′′,
X

s∈B

λs = 1

9

=

;

Closely related to volume algorithm and bundle methods

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 28/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Branching for RC

In general, Lagrangian methods do not provide a primal solution λ

Let B define the extreme points found in solving subproblems for zLD

Build an inner approximation using this set, then proceed as in PC

PI =

8

<

:

x ∈ R
n

˛

˛

˛

˛

˛

˛

x =
X

s∈B

sλs,
X

s∈B

λs = 1, λs ≥ 0 ∀s ∈ B

9

=

;

min
λ∈RB

+

8

<

:

c⊤

0

@

X

s∈B

sλs

1

A

˛

˛

˛

˛

˛

˛

A′′

0

@

X

s∈B

sλs

1

A ≥ b′′,
X

s∈B

λs = 1

9

=

;

Closely related to volume algorithm and bundle methods

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 28/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Algorithmic Details

Performance improvements

Detection and removal of columns that are close to parallel

Basic dual stabilization (Wentges smoothing)

Redesign (and simplification) of treatment of master-only variables.

New features and enhancements

Branching can be auto enforced in subproblem or master (when oracle is MILP)

Ability to stop subproblem calculation on gap/time and calculate LB (can branch early)

For oracles that provide it, allow multiple columns for each subproblem call

Management of compression of columns once master gap is tight

Use of generic MILP solution technology

Using the mapping x̂ =
P

s∈E sλ̂s we can import any generic MILP technique to the PC/RC
context.

Use generic MILP solver to solve subproblems.

Hooks to define branching methods, heuristics, etc.

Algorithms for generating initial columns

Solve OPT(P′, c + r) for random perturbations

Solve OPT(PN) heuristically

Run several iterations of LD or DC collecting extreme points

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 29/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Algorithmic Details

Performance improvements

Detection and removal of columns that are close to parallel

Basic dual stabilization (Wentges smoothing)

Redesign (and simplification) of treatment of master-only variables.

New features and enhancements

Branching can be auto enforced in subproblem or master (when oracle is MILP)

Ability to stop subproblem calculation on gap/time and calculate LB (can branch early)

For oracles that provide it, allow multiple columns for each subproblem call

Management of compression of columns once master gap is tight

Use of generic MILP solution technology

Using the mapping x̂ =
P

s∈E sλ̂s we can import any generic MILP technique to the PC/RC
context.

Use generic MILP solver to solve subproblems.

Hooks to define branching methods, heuristics, etc.

Algorithms for generating initial columns

Solve OPT(P′, c + r) for random perturbations

Solve OPT(PN) heuristically

Run several iterations of LD or DC collecting extreme points

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 29/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Algorithmic Details

Performance improvements

Detection and removal of columns that are close to parallel

Basic dual stabilization (Wentges smoothing)

Redesign (and simplification) of treatment of master-only variables.

New features and enhancements

Branching can be auto enforced in subproblem or master (when oracle is MILP)

Ability to stop subproblem calculation on gap/time and calculate LB (can branch early)

For oracles that provide it, allow multiple columns for each subproblem call

Management of compression of columns once master gap is tight

Use of generic MILP solution technology

Using the mapping x̂ =
P

s∈E sλ̂s we can import any generic MILP technique to the PC/RC
context.

Use generic MILP solver to solve subproblems.

Hooks to define branching methods, heuristics, etc.

Algorithms for generating initial columns

Solve OPT(P′, c + r) for random perturbations

Solve OPT(PN) heuristically

Run several iterations of LD or DC collecting extreme points

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 29/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Algorithmic Details

Performance improvements

Detection and removal of columns that are close to parallel

Basic dual stabilization (Wentges smoothing)

Redesign (and simplification) of treatment of master-only variables.

New features and enhancements

Branching can be auto enforced in subproblem or master (when oracle is MILP)

Ability to stop subproblem calculation on gap/time and calculate LB (can branch early)

For oracles that provide it, allow multiple columns for each subproblem call

Management of compression of columns once master gap is tight

Use of generic MILP solution technology

Using the mapping x̂ =
P

s∈E sλ̂s we can import any generic MILP technique to the PC/RC
context.

Use generic MILP solver to solve subproblems.

Hooks to define branching methods, heuristics, etc.

Algorithms for generating initial columns

Solve OPT(P′, c + r) for random perturbations

Solve OPT(PN) heuristically

Run several iterations of LD or DC collecting extreme points

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 29/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Algorithmic Details (cont.)

Choice of master LP solver

Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)

Primal simplex after adding columns (warm-start primal feasible)

Interior-point methods might help with stabilization vs extremal duals

Price-and-branch heuristic

For block-angular case, at end of each node, solve with λ ∈ Z

Used in root node by Barahona and Jensen (’98), we extend to tree

Compression of master LP and object pools: Reduce size of master LP, improve efficiency
of subproblem processing.

Nested pricing: Can solve more constrained versions of subproblem heuristically to get high
quality columns.

Interfaces for Pricing Algorithms (for IBM Project)

User can provide an initial dual vector

User can manipulate duals used at each pass (and specify per block)

User can select which block to process next (alternative to all or round-robin)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 30/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Algorithmic Details (cont.)

Choice of master LP solver

Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)

Primal simplex after adding columns (warm-start primal feasible)

Interior-point methods might help with stabilization vs extremal duals

Price-and-branch heuristic

For block-angular case, at end of each node, solve with λ ∈ Z

Used in root node by Barahona and Jensen (’98), we extend to tree

Compression of master LP and object pools: Reduce size of master LP, improve efficiency
of subproblem processing.

Nested pricing: Can solve more constrained versions of subproblem heuristically to get high
quality columns.

Interfaces for Pricing Algorithms (for IBM Project)

User can provide an initial dual vector

User can manipulate duals used at each pass (and specify per block)

User can select which block to process next (alternative to all or round-robin)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 30/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Algorithmic Details (cont.)

Choice of master LP solver

Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)

Primal simplex after adding columns (warm-start primal feasible)

Interior-point methods might help with stabilization vs extremal duals

Price-and-branch heuristic

For block-angular case, at end of each node, solve with λ ∈ Z

Used in root node by Barahona and Jensen (’98), we extend to tree

Compression of master LP and object pools: Reduce size of master LP, improve efficiency
of subproblem processing.

Nested pricing: Can solve more constrained versions of subproblem heuristically to get high
quality columns.

Interfaces for Pricing Algorithms (for IBM Project)

User can provide an initial dual vector

User can manipulate duals used at each pass (and specify per block)

User can select which block to process next (alternative to all or round-robin)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 30/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Algorithmic Details (cont.)

Choice of master LP solver

Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)

Primal simplex after adding columns (warm-start primal feasible)

Interior-point methods might help with stabilization vs extremal duals

Price-and-branch heuristic

For block-angular case, at end of each node, solve with λ ∈ Z

Used in root node by Barahona and Jensen (’98), we extend to tree

Compression of master LP and object pools: Reduce size of master LP, improve efficiency
of subproblem processing.

Nested pricing: Can solve more constrained versions of subproblem heuristically to get high
quality columns.

Interfaces for Pricing Algorithms (for IBM Project)

User can provide an initial dual vector

User can manipulate duals used at each pass (and specify per block)

User can select which block to process next (alternative to all or round-robin)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 30/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

Algorithmic Details (cont.)

Choice of master LP solver

Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)

Primal simplex after adding columns (warm-start primal feasible)

Interior-point methods might help with stabilization vs extremal duals

Price-and-branch heuristic

For block-angular case, at end of each node, solve with λ ∈ Z

Used in root node by Barahona and Jensen (’98), we extend to tree

Compression of master LP and object pools: Reduce size of master LP, improve efficiency
of subproblem processing.

Nested pricing: Can solve more constrained versions of subproblem heuristically to get high
quality columns.

Interfaces for Pricing Algorithms (for IBM Project)

User can provide an initial dual vector

User can manipulate duals used at each pass (and specify per block)

User can select which block to process next (alternative to all or round-robin)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 30/48

Motivation
Methods
Software

Interfaces
Future

Implementation and API
Algorithmic Details

DIP Framework: Example Applications

Application Description P ′ OPT(c) SEP(x) Input
AP3 3-index assignment AP Jonker user user
ATM cash management (SAS COE) MILP(s) CBC CGL user
GAP generalized assignment KP(s) Pisinger CGL user
MAD matrix decomposition MaxClique Cliquer CGL user
MILP random partition into A′, A′′ MILP CBC CGL mps
MILPBlock user-defined blocks for A′ MILP(s) CBC CGL mps, block
MMKP multi-dim/choice knapsack MCKP Pisinger CGL user

MDKP CBC CGL user
SILP intro example, tiny IP MILP CBC CGL user
TSP traveling salesman problem 1-Tree Boost Concorde user

2-Match CBC Concorde user
VRP vehicle routing problem k-TSP Concorde CVRPSEP user

b-Match CBC CVRPSEP user

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 31/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

Outline

1 Motivation

2 Methods
Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

3 Software
Implementation and API
Algorithmic Details

4 Interfaces
DIPPY
MILPBlock

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 32/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

DIPPY

DIPPY provides an interface to DIP through the modeling language PuLP.

PuLP is a modeling language that provides functionality similar to other modeling
languages.

It is built on top of Python so you get the full power of that language for free.

PuLP and DIPPY are being developed by Stuart Mitchell and Mike O’Sullivan in Auckland
and are part of COIN.

Through DIPPY, a user can

Specify the model and the relaxation, including the block structure.

Implement methods (coded in Python) for solving the relaxation, generating cuts, custom
branching.

With Dippy, it is possible to code a customized column-generation method from scratch in
a few hours.

This would have taken months with previously available tools.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 33/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

Example: Facility Location Problem

We are given n facility locations and m customers to be serviced from those locations.

There is a fixed cost cj and a capacity Wj associated with facility j.

There is a cost dij and demand wij associated with serving customer i from facility j.

We have two sets of binary variables.

yj is 1 if facility j is opened, 0 otherwise.

xij is 1 if customer i is served by facility j, 0 otherwise.

Capacitated Facility Location Problem

min

n
X

j=1

cjyj +
m

X

i=1

n
X

j=1

dijxij

s.t.

n
X

j=1

xij = 1 ∀i

m
X

i=1

wijxij ≤ Wj ∀j

xij ≤ yj ∀i, j

xij , yj ∈ {0, 1} ∀i, j

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 34/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

DIPPY Code for Facility Location

DIPPY

from f a c i l i t y d a t a import REQUIREMENT , PRODUCTS, LOCATIONS , CAPACITY

prob = d i ppy . DipProblem (” F a c i l i t y L o c a t i o n ”)

a s s i g n = LpVar i ab l e . d i c t s (”Ass ignment” , [(i , j) f o r i i n LOCATIONS f o r
j i n PRODUCTS] , 0 , 1 , LpBinary)

open = LpVar i ab l e . d i c t s (” FixedCharge ” , LOCATIONS , 0 , 1 , LpBinary)

o b j e c t i v e : m i n im i s e waste
prob += lpSum(e x c e s s [i] f o r i i n LOCATIONS) , ”min”

a s s i gnmen t c o n s t r a i n t s
f o r j i n PRODUCTS :

prob += lpSum(a s s i g n [(i , j)] f o r i i n LOCATIONS) == 1

Aggregate c a p a c i t y c o n s t r a i n t s
f o r i i n LOCATIONS :

prob . r e l a x a t i o n [i] += lpSum(a s s i g n [(i , j)]∗REQUIREMENT [j] f o r j i n
PRODUCTS) + e x c e s s [i] == CAPACITY ∗ open [i]

Di s agg r e ga t e d c a p a c i t y c o n s t r a i n t s
f o r i i n LOCATIONS :

f o r j i n PRODUCTS :
prob . r e l a x a t i o n [i] += a s s i gn [(i , j)] <= open [i]

Orde r i n g c o n s t r a i n t s
f o r i ndex , l o c a t i o n i n enumerate(LOCATIONS) :

i f i n d e x > 0 :
prob += use [LOCATIONS [index −1]] >= open [l o c a t i o n]

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 35/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

DIPPY Auxiliary Methods for Facility Location

DIPPY

de f s o l v e s ubp rob l em (prob , i ndex , redCosts , convexDual) :
. . .
z , s o l u t i o n = knapsack01 (ob j , we ights , CAPACITY)
. . .
r e t u rn []

p rob . r e l a x e d s o l v e r = so l v e subp rob l em
de f knapsack01 (ob j , we ights , c a p a c i t y) :

. . .
r e t u rn c [n−1][c a p a c i t y] , s o l u t i o n

d e f f i r s t f i t (p rob) :
. . .
r e t u rn bvs

d e f one each (prob) :
. . .
r e t u rn bvs

prob . i n i t v a r s = f i r s t f i t
d e f c hoo s e an t i s ymme t r y b r an ch (prob , s o l) :

. . .
r e t u rn ([] , down branch ub , up b ran ch l b , [])

p rob . b ranch method = choo s e an t i s ymme t r y b r an ch
de f g e n e r a t e w e i g h t c u t s (prob , s o l) :

. . .
r e t u rn new cuts

prob . g e n e r a t e c u t s = g e ne r a t e w e i g h t c u t s
d e f h e u r i s t i c s (prob , xhat , c o s t) :

. . .
r e t u rn s o l s

p rob . h e u r i s t i c s = h e u r i s t i c s
d i pp y . S o l v e (prob , {

’ doPr i ceCut ’ : ’ 1 ’ ,
})

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 36/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

MILPBlock: Decomposition-based MILP Solver

Many difficult MILPs have a block structure, but this structure is not part of the input
(MPS) or is not exploitable by the solver.

In practice, it is common to have models composed of independent subsystems coupled by
global constraints.

The result may be models that are highly symmetric and difficult to solve using traditional
methods, but would be easy to solve if the structure were known.

0

B

B

B

B

B

@

A′′
1 A′′

2 · · · A′′
κ

A′
1

A′
2

. . .

A′
κ

1

C

C

C

C

C

A

MILPBlock provides a black-box solver for applying integrated methods to generic MILP

Input is an MPS/LP and a block file specifying structure.

Optionally, the block file can be automatically generated using the hypergraph partitioning
algorithm of HMetis.

This is the engine underlying DIPPY.

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 37/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

Hidden Block Structure

0 500 1000 1500 2000 2500

0

200

400

600

nz = 8937

MIPLIB2003 instance : p2756

Detected block structure for p2756 instance
Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 38/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

Hidden Block Structure

0 500 1000 1500 2000 2500

0

200

400

600

Instance p2756 with 10 blocks partitioning

Detected block structure for p2756 instance
Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 39/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

Hidden Block Structure

0 50 100 150 200

0

50

100

150

200

nz = 839

MIPLIB2003 instance : a1c1s1

Detected block structure for a1c1s1 instance
Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 40/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

Hidden Block Structure

0 50 100 150 200

0

50

100

150

200

Instance a1c1s1 with 10 blocks partitioning

Detected block structure for a1c1s1 instance
Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 41/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

Bound Improvement

DWR CBC
insta cols rows opt k bound root

10teams 2025 230 924 3 918.1 917
noswot 128 182 563.8 3 -41.2 -43
p2756 2756 755 3124 3 3115.5 2688.7

timtab1 397 171 764772 3 350885 28694
timtab2 675 294 1096560 3 431963 83592
vpm2 378 234 13.7 3 12.2 9.8
pg5 34 2600 125 -14339.4 3 -15179.2 -16646.5

pg 2700 125 -8674.34 3 -15179.2 -16646.5
k16x240 480 256 10674 3 3303.6 2769.8

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 42/48

Motivation
Methods
Software

Interfaces
Future

DIPPY
MILPBlock

Application - Block-Angular MILP (applied to Retail Optimization)

SAS Retail Optimization Solution

Multi-tiered supply chain distribution problem where each block represents a store

Prototype model developed in SAS/OR’s OPTMODEL (algebraic modeling language)

CPX11 DIP-PC
Instance Time Gap Nodes Time Gap Nodes
retail27 T 2.30% 2674921 3.18 OPT 1
retail31 T 0.49% 1434931 767.36 OPT 41
retail3 529.77 OPT 2632157 0.54 OPT 1
retail4 T 1.61% 1606911 116.55 OPT 1
retail6 1.12 OPT 803 264.59 OPT 303

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 43/48

Motivation
Methods
Software

Interfaces
Future

Outline

1 Motivation

2 Methods
Cutting Plane Method
Dantzig-Wolfe Method
Lagrangian Method
Integrated Methods

3 Software
Implementation and API
Algorithmic Details

4 Interfaces
DIPPY
MILPBlock

5 Current and Future Research

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 44/48

Motivation
Methods
Software

Interfaces
Future

Related Projects Currently using DIP

OSDip – Optimization Services (OS) wraps DIP

University of Chicago – Kipp Martin

Dippy – Python interface for DIP through PuLP

University of Auckland – Michael O’Sullivan

SAS – DIP-like solver for PROC OPTMODEL

SAS Institute – Matthew Galati

National Workforce Management, Cross-Training and Scheduling Project

IBM Business Process Re-engineering – Alper Uygur

Transmission Switching Problem for Electricity Networks

University of Denmark – Jonas Villumsem

University of Auckland – Andy Philipott

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 45/48

Motivation
Methods
Software

Interfaces
Future

DIP@SAS in PROC OPTMODEL

Prototype PC algorithm embedded in PROC OPTMODEL (based on MILPBlock)

Minor API change - one new suffix on rows or cols (.block)

Preliminary Results (Recent Clients):

Client Problem IP-GAP Real-Time
DIP@SAS CPX12.1 DIP@SAS CPX12.1

ATM Cash Management and Predictive Model (India) OPT ∞ 103 2000 (T)
ATM Cash Management (Singapore) OPT OPT 86 831

OPT OPT 90 783
Retail Inventory Optimization (UK) 1.6% 9% 1200 1200 (T)

4.7% 19% 1200 1200 (T)
2.6% ∞ 1200 1200 (T)

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 47/48

Motivation
Methods
Software

Interfaces
Future

Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 48/48

Motivation
Methods
Software

Interfaces
Future

Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 48/48

Motivation
Methods
Software

Interfaces
Future

Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 48/48

Motivation
Methods
Software

Interfaces
Future

Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 48/48

Motivation
Methods
Software

Interfaces
Future

Current Research

Block structure (Important!)

Identical subproblems for eliminating symmetry

Better automatic detection

Parallelism

Parallel solution of subproblems with block structure

Parallelization of search using ALPS

Solution of multiple subproblems or generation of multiple solutions in parallel.

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts

Branch-and-Relax-and-Cut: Computational focus thus far has been on CPM/DC/PC

General algorithmic improvements

Improvements to warm-starting of node solves

Improved search strategy

Improved branching (strong branching, pseudo-cost branching, etc.)

Better dual stabilization

Improved generic column generation (multiple columns generated per round, etc)

Addition of generic MILP techniques

Heuristics, branching strategies, presolve

Gomory cuts in Price-and-Cut

Ralphs, Galati, Wang Decomposition Methods for Integer Linear Programming 48/48

	Motivation
	Methods
	Cutting Plane Method
	Dantzig-Wolfe Method
	Lagrangian Method
	Integrated Methods

	Software
	Implementation and API
	Algorithmic Details

	Interfaces
	DIPPY
	MILPBlock

	Current and Future Research

