
Computational Experience with Hypergraph-based Methods for
Automatic Decomposition in Integer Programming

Ted Ralphs and Jiadong Wang
Lehigh University

CPAIOR 2013, IBM T.J. Watson Research Center, May 22, 2013

Thanks: Work supported in part by the National Science Foundation

Ralphs, Wang Generic Decomposition

Basic Setting

Integer Linear Program: Minimize/Maximize a linear objective function over
a (discrete) set of solutions satisfying specified linear constraints.

zIP = min
x∈Zn

{
c>x | Ax ≥ b

}

Convex hull of integer solutions

Linear programming relaxation

Ralphs, Wang Generic Decomposition

What is Decomposition?

Many complex models are built up from simpler structures.

Subsystems linked by system-wide constraints or variables.

Complex combinatorial structures obtained by combining simpler ones.

Decomposition is the process of breaking a model into smaller parts.

The goal is either to

reformulate the model for easier solution;

reformulate the model to obtain an improved relaxation (bound); or

separate the model into stages or levels (possibly with separate objectives).

0
0

1
1

2
2

0.6

3
3

4

0.2

5

0.8

6

0.2

7

4

5

8

6

0.8

9

7

10

0.8

8

11

9

12

0.6

13

10

14

11

15

0.4

0.2

12

0.2

0.2

0.2

13

0.4

0.6

0.8

14

0.6

0.2

0.2

15

0.2

0.2

0.2

0.8

0.6

Ralphs, Wang Generic Decomposition

Block Structure

“Classical” decomposition arises from block structure in the constraints.

By relaxing/fixing the linking variables/constraints, we get a separable
model.

A separable model consists of smaller submodels that are easier to solve.

The separability lends itself nicely to parallel implementation.
A01 A02 · · · A0κ

A1

A2

. . .

Aκκ



A10 A11

A20 A22

...
. . .

Aγ0 Aκκ



A00 A01 A02 · · · A0κ

A10 A11

A20 A22

...
. . .

Aγ0 Aκκ


Ralphs, Wang Generic Decomposition

The Decomposition Principle (in MIP)

Decomposition methods leverage our ability to solve either a relaxation or a
restriction.

Methodology is based on the ability to solve a given subproblem repeatedly
with varying inputs.

The goal of solving the subproblem repeatedly is to obtain information about
its structure that can be incorporated into a master problem.

Constraint decomposition

Relax a set of linking constraints to expose structure.

Leverages ability to solve either the optimization or separation
problem for a relaxation (with varying objectives and/or points to be
separated).

Variable decomposition

Fix the values of linking variables to expose the structure.

Leverages ability to solve a restriction (with varying right-hand sides).

Ralphs, Wang Generic Decomposition

Example: Facility Location Problem

We have n locations and m customers to be served from those locations.

There is a fixed cost cj and a capacity Wj associated with facility j.

There is a cost dij and demand wij for serving customer i from facility j.

We have two sets of binary variables.

yj is 1 if facility j is opened, 0 otherwise.

xij is 1 if customer i is served by facility j, 0 otherwise.

Capacitated Facility Location Problem

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.

n∑
j=1

xij = 1 ∀i

m∑
i=1

wijxij ≤Wjyj ∀j

xij , yj ∈ {0, 1} ∀i, j

Ralphs, Wang Generic Decomposition

DIP/DipPy: Decomposition-based Modeling and Solution

DIP (w/ Matt Galati)

DIP is a software framework and stand-alone solver for implementation and
use of a variety of decomposition-based algorithms.

Decomposition-based algorithms have traditionally been difficult to
implement and compare.

DIP abstracts the common, generic elements of these methods.

Key: API is in terms of the compact formulation.
The framework takes care of reformulation and implementation.
DIP is now a fully generic decomposition-based parallel MILP solver.

DipPy (w/ Mike O’Sullivan)

Python-based modeling language.

User can express decompositions in a
“natural” way.

Allows access to multiple
decomposition methods.

⇐ Joke !

Ralphs, Wang Generic Decomposition

CHiPPS (w/ Yan Xu)

CHiPPS is the COIN-OR High Performance Parallel Search.

CHiPPS is a set of C++ class libraries for implementing tree search
algorithms for both sequential and parallel environments.

CHiPPS Components (Current)

ALPS (Abstract Library for Parallel Search)

is the search-handling layer (parallel and sequential).
provides various search strategies based on node priorities.

BiCePS (Branch, Constrain, and Price Software)

is the data-handling layer for relaxation-based optimization.
adds notion of variables and constraints.
assumes iterative bounding process.

BLIS (BiCePS Linear Integer Solver)

is a concretization of BiCePS.
specific to models with linear constraints and objective function.

Ralphs, Wang Generic Decomposition

DipPy: Facility Location Example

from products import REQUIREMENT, PRODUCTS

from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY

prob = dippy.DipProblem("Facility_Location")

ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]

assign_vars = LpVariable.dicts("x", ASSIGNMENTS, 0, 1, LpBinary)

use_vars = LpVariable.dicts("y", LOCATIONS, 0, 1, LpBinary)

prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)

for j in PRODUCTS:

prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) == 1

for i in LOCATIONS:

prob.relaxation[i] += lpSum(assign_vars[(i, j)] * REQUIREMENT[j]

for j in PRODUCTS) <= CAPACITY * use_vars[i]

dippy.Solve(prob, {doPriceCut:1})

Ralphs, Wang Generic Decomposition

DIP: Overview of Methods

Cutting Plane Method (CPM)

CPM combines an outer approximation of P ′ with an explicit description of Q′′

Master: zCP = minx∈Rn

{
c>x | Dx ≥ d,A′′x ≥ b′′

}
Subproblem: SEP(P ′, xCP)

Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = minλ∈RE
+

{
c>
(∑

s∈E sλs
) ∣∣ A′′ (∑

s∈E sλs
)
≥ b′′,

∑
s∈E λs = 1

}
Subproblem: OPT

(
P ′, c> − u>

DWA
′′)

Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints
of Q′′ to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′

+

{
mins∈E

{
c>s+ u>(b′′ −A′′s)

}}
Subproblem: OPT

(
P ′, c> − u>

LDA
′′)

Ralphs, Wang Generic Decomposition

DIP: Common Threads

The LP bound is obtained by optimizing over the intersection
of two explicitly defined polyhedra.

zLP = min
x∈Rn
{c>x | x ∈ Q′ ∩Q′′}

The decomposition bound is obtained by optimizing over the
intersection of two polyhedra.

zCP = zDW = zLD = zD = min
x∈Rn
{c>x | x ∈ P ′ ∩Q′′} ≥ zLP

Decomposition-based bounding methods have two main steps

Master Problem: Update the primal/dual solution
information
Subproblem: Update the approximation of P ′: SEP(P ′, x) or
OPT(P ′, c)

Integrated decomposition methods further improve the bound.

Price-and-Cut (PC)
Relax-and-Cut (RC)
Decompose-and-Cut (DC)

Q′′

Q′ ∩ Q′′

Q′′

Q′ ∩ Q′′

P′ ∩ Q′′

Ralphs, Wang Generic Decomposition

DipPy: Callbacks

def solve_subproblem(prob, index, redCosts, convexDual):

...

return knapsack01(obj, weights, CAPACITY)

def knapsack01(obj, weights, capacity):

...

return solution

def first_fit(prob):

...

return bvs

prob.init_vars = first_fit

def choose_branch(prob, sol):

...

return ([], down_branch_ub, up_branch_lb, [])

def generate_cuts(prob, sol):

...

return new_cuts

def heuristics(prob, xhat, cost):

...

return sols

dippy.Solve(prob, {’doPriceCut’: ’1’})

Ralphs, Wang Generic Decomposition

Generic Decomposition-based Branch and Bound

Traditionally, decomposition-based branch-and-bound methods have required
extensive problem-specific customization.

Identifying the decomposition (which constraints to relax).

Formulating and solving the subproblem.

Formulating and solving the master problem.

Performing the branching operation.

However, it is possible to replace these components with generic alternatives.

The decomposition can be identified automatically by analyzing the
matrix or through a modeling language.

The subproblem can be solved with a generic MILP solver.

The branching can be done in the original compact formulation.

The remainder of the talk focuses on the crucial first step.

Ralphs, Wang Generic Decomposition

Decomposition Software

Column Generation Frameworks

ABACUS [Jünger and Thienel(2012)]

SYMPHONY [Ralphs et al.(2012)Ralphs, Ladányi, Güzelsoy, and Mahajan]

COIN/BCP [Ladányi(2012)]

Generic Decomposition-based Solvers

BaPCod [Vanderbeck(2012)]

Dantzig-Wolfe
Automatic reformulation,
Generic cuts
Generic branching

GCG [Gamrath and Lübbecke(2012)]

Dantzig-Wolfe
Automatic hypergraph-based decomposition
Automatic reformulation,
Generic cut generation
Generic branching

Ralphs, Wang Generic Decomposition

Automatic Structure Detection

For problems in which the structure is not given, it may be detected
automatically.

Hypergraph partitioning methods can be used to identify the structure.

We map each row of the original matrix to a hyperedge and the nonzero
elements to nodes in a hypergraph.

We use a partitioning model/algorithm (hMetis) that identifies a
singly-bordered block diagonal matrix with a given number of blocks.

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗


Ralphs, Wang Generic Decomposition

Hidden Block Structure

Detected block structure for p2756 instance

Ralphs, Wang Generic Decomposition

Hidden Block Structure

Detected block structure for p2756 instance

Ralphs, Wang Generic Decomposition

Quality Measures for Decomposition

The goal of the partitioning is to have a “good decomposition.”
Generally, we judge goodness in terms of bound and computation time.
There is a potential tradeoff involving the number of blocks, the number of
linking rows, and the distribution of integer variables.
We want to identify decompositions based on easily identified features.

Potential Features

The fraction of nonzero elements in the matrix appearing in the
coupling rows (α),

The fraction of nonzero elements appearing in the coupling rows that
are in integer columns (β),

The fraction of the nonzero elements in integer columns in the matrix
that appear in coupling rows (γ),

The average fraction of the nonzeros in each block that are in integer
columns (η),

The standard deviation of the fraction of integer elements elements in
the blocks (θ).

Ralphs, Wang Generic Decomposition

Relationship between Features

Ralphs, Wang Generic Decomposition

A Measure for Decomposition Quality

Π = 1−min{α, γ}

Ralphs, Wang Generic Decomposition

Coercing the Hypergraph Partitioner

We have now seen the features that are considered “important” in
identifying a good decomposition.

How do we encourage the partitioner to give us such a decomposition?

With respect to the underlying graph, the partitioner has two goals.

The weight of the cut should be minimized.

The partition should be “balanced.”

The first goal essentially corresponds to minimizing the number of coupling
rows.

The second goal corresponds to balancing the size of the blocks.

We can affect the behavior of the algorithm by assigning weights to the
nodes and hyperedges.

Ralphs, Wang Generic Decomposition

Choosing the Block Number

Ralphs, Wang Generic Decomposition

Finding the Structure

In many cases, there is a “natural” block structure arising from the original
model.

Problems for which decomposition is the “killer approach” often have
identical blocks, since this leads to symmetry in the compact formulation.

We would like to be able to identify this structure automatically.

One simple strategy is to make a frequency table.

of Nonzeros 2 11 12 13 24 40 100
of Rows 2220 20 20 2 1998 100 20

Table: Histogram for atm20-100

of Nonzeros 2 3 5 6 7 8 9 10 11 13
of Rows 9 130 221 4 8 8 7 6 2 1

Table: Histogram for glass4

Ralphs, Wang Generic Decomposition

Exploiting Concurrency

Concurrency can be exploited in multiple ways.

Solving the subproblems

Exploring the tree

Determining the decomposition (or whether to use decomposition)

Ralphs, Wang Generic Decomposition

Computational Setups

Test set: 23 instances with block structure (but without blocks given)

Experiments are performed on compute node with two AMD Opteron(tm)
2GHz 8-core Processors

Try up to 10 candidate block numbers (in these case, there is a clear
“natural” block number).

Time limit is 1800 seconds.

Ralphs, Wang Generic Decomposition

Computational results

Ralphs, Wang Generic Decomposition

Example: Block Number versus Root Bound

Figure shows root bound for different block numbers with atm20-100.

Probem solves in 1000 seconds with “natural” block number and times out
with 7200 second limit in other cases.

Ralphs, Wang Generic Decomposition

Conclusions

We are far from having a reliable method for choosing when and how to
apply decomposition.

Though hypergraph partitioning is the right tools in linear algebra, it is not
clear that it is the right tool here.

We may be better off looking for specific structure using native algorithms.

Ralphs, Wang Generic Decomposition

Future work

Where do I start??

We have only scratched the surface of what is needed to make a true generic
decomposition-based solver.

The implementation needs many improvements in basic components.

We need a better decision logic for when to use which algorithm.

We need better support for identical blocks.

To exploit parallelism, we need the ability to dynamically allocate cores after
the initial phase.

We need more testing on hybrid distributed/shared parallelism.

Methods that hybridize CP and MIP through the decomposition would be
interesting.

Want to help :)?

Ralphs, Wang Generic Decomposition

References I

Gamrath, G. and M. Lübbecke 2012.
GCG.
Available from http://scip.zib.de.

Jünger, M. and S. Thienel 2012.
SYMPHONY.
Available from http://www.coin-or.org/projects/ABACUS.xml.

Ladányi, L. 2012.
BCP.
Available from http://www.coin-or.org/projects/Bcp.xml.

Ralphs, T., L. Ladányi, M. Güzelsoy, and A. Mahajan 2012.
SYMPHONY.
Available from http://www.coin-or.org/projects/SYMPHONY.xml.

Ralphs, Wang Generic Decomposition

http://scip.zib.de
http://www.coin-or.org/projects/ABACUS.xml
http://www.coin-or.org/projects/Bcp.xml
http://www.coin-or.org/projects/SYMPHONY.xml

References II

Vanderbeck, F. 2012.
BapCod: A generic branch-and-price code.
Available from
http://ralyx.inria.fr/2007/Raweb/realopt/uid31.html.

Ralphs, Wang Generic Decomposition

http://ralyx.inria.fr/2007/Raweb/realopt/uid31.html

