
Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Doing It in Parallel (DIP) with
The COIN-OR High-Performance Parallel Search

Framework (CHiPPS)

TED RALPHS
LEHIGH UNIVERSITY

YAN XU
SAS INSTITUTE

LASZLO LADÁNYI
IBM T.J. WATSON RESEARCH

CENTER

MATTHEW SALTZMAN
CLEMSON UNIVERSITY

University of Newcastle, May 26, 2009
Thanks: Work supported in part by the National Science Foundation

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Outline

1 Introduction
Tree Search Algorithms
Parallel Computing
Previous Work

2 The CHiPPS Framework
Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

3 Applications
Knapsack Problem
Vehicle Routing

4 Results and Conclusions

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Tree Search Algorithms
Parallel Computing
Previous Work

Tree Search Algorithms

Tree search algorithms systematically search the nodes of an
acyclic graph for certain goal nodes.

Root
Initial State

Goal State

Tree search algorithms have been applied in many areas such as

Constraint satisfaction,
Game search,
Artificial intelligence, and
Mathematical programming.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Tree Search Algorithms
Parallel Computing
Previous Work

Elements of Tree Search Algorithms

A generic tree search algorithm consists of the following
elements:

Generic Tree Search Algorithm

Processing method: Is this a goal node?

Fathoming rule: Can node can be fathomed?

Branching method: What are the successors of this node?

Search strategy: What should we work on next?

The algorithm consists of choosing a candidate node, processing
it, and either fathoming or branching.

During the course of the search, various information (knowledge)
is generated and can be used to guide the search.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Tree Search Algorithms
Parallel Computing
Previous Work

Parallelizing Tree Search Algorithms

In general, the search tree can be very large.

Fortunately, the generic algorithm appears very easy to
parallelize.

The appearance is deceiving, as the search graph is not
generally known a priori and naı̈ve parallelization strategies are
not generally effective.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Tree Search Algorithms
Parallel Computing
Previous Work

Parallel Architectures

A parallel computer is a collection of processing elements that
can cooperate to perform a task.
Historically, most parallel computers could be considered to
belong to one of two broad architectural classes:

Architectures

Shared memory

Each processor can access any memory location.
Processing units share information through memory IO.
Software scales, hardware doesn’t.

Distributed memory

Each processing unit has its own local memory and can only
access its own memory directly.
Processing units share information via a network.
Hardware scales, software doesn’t.
Typical examples are massively parallel processors (MPP),
cluster, and computational grids.

Recently, multi-core processors and hybrids of these twoRalphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Tree Search Algorithms
Parallel Computing
Previous Work

Parallel Programming Tools

There are a wide variety of tools for parallizing program execution,
ranging from low-level, platform-specific to high-level,
platform-independent.

Low-level Tools: Sockets, threads, remote procedure calls.

Parallelizing Compilers: Compilers that automatically parallelize
sequential programs.

APIs: Standard programming interface for threading (primarily
OpenMP on shared memory computers).

Parallel Languages: Languages with parallel constructs such as
High Performance Fortran.

Message Passing Libraries: MPI, PVM, etc.

Grid Tools: Tools for coordinating remote jobs across networks
such as Condor.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Tree Search Algorithms
Parallel Computing
Previous Work

Parallel Programming Paradigms

A programming paradigm is a class of algorithms that have generally
the same control structure. Common paradigms include:

Task-Farming/Master-Worker

Single-Program Multiple-Data

Data Pipelining

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Tree Search Algorithms
Parallel Computing
Previous Work

Measuring Performance of a Parallel System

Parallel System: Parallel algorithm + parallel architecture.
Scalability: How well a parallel system takes advantage of
increased computing resources.

Terms

Sequential runtime: Ts

Parallel runtime: Tp

Parallel overhead: To = NTp − Ts

Speedup: S = Ts/Tp

Efficiency: E = S/N

Standard analysis considers change in efficiency on a fixed test
set as number of processors is increased.
Isoefficiency analysis considers the increase in problem size to
maintain a fixed efficiency as number of processors is increased.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Tree Search Algorithms
Parallel Computing
Previous Work

Parallel Overhead

The amount of parallel overhead determines the scalablity.

Major Components of Parallel Overhead in Tree Search

Communication Overhead (cost of sharing knowledge)

Idle Time

Handshaking/Synchronization (cost of sharing knowledge)
Task Starvation (cost of not sharing knowledge)
Ramp Up Time
Ramp Down Time

Performance of Redundant Work (cost of not sharing
knowledge)

Knowledge sharing is the main driver of efficiency.

This breakdown highlights the tradeoff between centralized and
decentralized knowledge storage and decision-making.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Tree Search Algorithms
Parallel Computing
Previous Work

Previous Work

Previous tree search codes:

Game tree search: ZUGZWANG and APHID

Constraint programming: ECLiPSe, etc.
Optimization:

Commercial: CPLEX, Lindo, Mosek, SAS/OR, Xpress, etc.
Serial: ABACUS, bc-opt, COIN/CBC, GLPK, MINTO, SCIP, etc.
Parallel: COIN/BCP, FATCOP, PARINO, PICO, SYMPHONY, etc.

However, to our knowledge:

Few studies of general tree search algorithms, and only one
framework (PIGSeL).

No study has emphasized scalability for data-intensive
applications.

Many packages are not open source or not easy to specialize for
particular problem classes.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

The COIN-OR High-Performance Parallel Search
Framework

CHiPPS has been under development since 2000 in partnership
with IBM, NSF, and the COIN-OR Foundation.

The broad goal was to develop a succesor to SYMPHONY and
BCP, two previous parallel MIP solvers.

It consists of a hierarchy of C++ class libraries for implementing
general parallel tree search algorithms.

It is an open source project hosted by COIN-OR.
Design goals

Scalability
Usability

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

COIN-OR

The software discussed in this talk is available for free download
from the Computational Infrastructure for Operations Research
Web site

projects.coin-or.org/CHiPPS

The COIN-OR Foundation (www.coin-or.org)
An non-profit educational foundation promoting the development
and use of interoperable, open-source software for operations
research.
A consortium of researchers in both industry and academia
dedicated to improving the state of computational research in OR.

The COIN-OR Repository
A library of interoperable software tools for building optimization
codes, as well as some stand-alone packages.
A venue for peer review of OR software tools.
A development platform for open source projects, including an SVN
repository, project management tools, etc.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

Algorithm Design Elements (Scalability)

For scalability, the main objective is to control overhead. Design
issues fall into three broad categories:

Task Management
Task granularity
Ramp up/Ramp down
Termination detection

Knowledge Management
Sharing
Storage
Searching

Load balancing
Static (mapping)
Dynamic

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

Algorithm Design Elements (Knowledge Management)

Knowledge is information generated during the search.
Knowledge generated during the search procedure guides the
algorithm and changes the shape of the tree dynamically.
This is essentially what makes load balancing difficult.
Parallel tree search algorithms differ primarily in the way
knowledge is shared (Trienekens ’92).

Knowledge sharing is necessary to achieve good efficiency.
Helps eliminate the performance of redundant work.
Helps avoid “task starvation.”
Goal is for parallel search to mirror sequential search.

Knowledge sharing also increases communication overhead.

This is the fundamental tradeoff.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

Algorithm Design Elements (Usability)

Ease of use
Intuitive class structure.
No need to understand implementation.

Generality
Minimal algorithmic assumptions in base layer.
Specialized methods implemented in derived classes

Extensibility
Mechanism for defining new knowledge types.
Ability to develop custom applications.

Portability
Coded in ANSI/ISO C++.
No dependance on architecture, operating system, or third-party
software.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

CHiPPS Library Hierarchy

ALPS (Abstract Library for Parallel
Search)

search-handling layer
prioritizes based on quality

BiCePS (Branch, Constrain, and Price
Software)

data-handling layer for
relaxation-based optimization
variables and constraints
iterative bounding procedure

BLIS (BiCePS Linear Integer Solver)
concretization of BiCePS
linear constraints and objective

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

Knowledge Sharing

All knowledge to be shared is stored in classes derived from a
single base class and has an associated encoded form.
Encoded form is used for identification, storage, and
communication.
Knowledge is maintained by one or more knowledge pools.
The knowledge pools communicate through knowledge brokers.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

Master-Hub-Worker Paradigm

Master WorkersHubs

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

Task Granularity

Task granularity is a crucial element of parallel efficiency.

In CHiPPS, each worker is capable of exploring an entire subtree
autonomously.

By stopping the search prematurely, the task granularity can be
adjusted dynamically.

As granularity increases, communication overhead deacreases,
but other sources of overhead increase.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

Synchronization

As much as possible, we have eliminated handshaking and
synchronization.

A knowledge broker can work completely asynchronously, as
long as its local node pool is not empty.

This asynchronism can result in an increase in the performance
of redundant work.

To overcome this, we need good load balancing.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

Load Balancing

Static
Performed at startup
Two types

Two-level root initialization.
Spiral initialization.

Dynamic
Performed periodically and as needed.
Balance by quantity and quality.
Keep subtrees together to enable differencing.
Three types

Inter-cluster dynamic load balancing,
Intra-cluster dynamic load balancing, and
Worker-initiated dynamic load balancing.

Workers do not know each others’ workloads.
Donors and receivers are matched at both the hub and master
level.
Three schemes work together to ensure workload is balanced.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

Alps Class Hierarchy

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

BiCePS: Basic Notions

BiCePS introduces the notion of variables and constraints
(generically referred to as objects).

Objects are abstract entities with values and bounds.

They are used to build mathematical programming models.

Search tree nodes consist of subproblems described by sets of
variables and constraints.
Key assumptions

Algorithm is relaxation-based branch-and-bound.
Bounding is an iterative procedure involving generation of variables
and constraints.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

BiCePS: Differencing Scheme

Descriptions of search tree nodes can be extremely large.

For this reason, subtrees are stored using a differencing scheme.

Nodes are described using differences from the parent is this
description is smaller.

Again, there is a tradeoff between memory savings and
additional computation.

This approach requires keeping subtrees wholeas much as
possible.

This impacts load balacing significantly.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

BLIS: Branch, Cut, and Price

MILP

min cTx (1)

s.t. Ax ≤ b (2)

xi ∈ Z ∀ i ∈ I (3)

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n, I ⊆ {1, 2, . . . , n}.

Basic Algorithmic Elements

Search strategy.

Branching scheme.

Object generators.

Heuristics.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

BLIS: Branching Scheme

BLIS Branching scheme comprises three components:
Branching object: has feasible region and can be branched on.
Branching candidate:

created from objects not in their feasible regions or
contains instructions for how to conduct branching.

Branching method:
specifies how to create a set of branching candidates.
has the method to compare objects and choose the best one.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

BLIS: Constraint Generators

BLIS constraint generator:
provides an interface between BLIS and the algorithms in
COIN/Cgl.
provides a base class for deriving specific generators.
has the ability to specify rules to control generator:

where to call: root, leaf?
how many to generate?
when to activate or disable?

contains the statistics to guide generating.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

BLIS: Heuristics

BLIS primal heuristic:
defines the functionality to heuristically search for solutions.
has the ability to specify rules to control heuristics.

where to call: before root, after bounding, at solution?
how often to call?
when to activate or disable?

collects statistics to guide the heuristic.
provides a base class for deriving specific heuristics.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Knapsack Problem
Vehicle Routing

Implementing a Knapsack Solver

As a demonstration application, we implemented a solver for the
knapsack problem using ALPS.

The solver uses the closed form solution of the LP relaxation as
a bound.

Branching is on the fractional variable.
Implementation consists of deriving a few classes to specify the
algorithm.

KnapModel
KnapTreeNode
KnapSolution
KnapParams

Once the classes have been implemented, the user writes a
main function.

The only difference between parallel and serial code is the
knowledge broker class that is used.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Knapsack Problem
Vehicle Routing

Sample main() Function

int main(int argc, char* argv[])
{

KnapModel model;
#if defined(SERIAL)

AlpsKnowledgeBrokerSerial knap(argc, argv, model);
#elif defined(PARALLEL_MPI)

AlpsKnowledgeBrokerMPI knap(argc, argv, model);
#endif

knap.registerClass("MODEL", new KnapModel);
knap.registerClass("SOLUTION", new KnapSolution);
knap.registerClass("NODE", new KnapTreeNode);
knap.search();
knap.printResult();
return 0;

}

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Knapsack Problem
Vehicle Routing

The Vehicle Routing Problem

The VRP is a combinatorial problem whose ground set is the edges
of a graph G(V, E). Notation:

V is the set of customers and the depot (0).

d is a vector of the customer demands.

k is the number of routes.

C is the capacity of a truck.

A feasible solution is composed of:

a partition {R1, . . . , Rk} of V such that
∑

j∈Ri
dj ≤ C, 1 ≤ i ≤ k;

a permutation σi of Ri ∪ {0} specifying the order of the customers
on route i.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Knapsack Problem
Vehicle Routing

Standard IP Formulation for the VRP

VRP Formulation
∑n

j=1 x0j = 2k
∑n

j=1 xij = 2 ∀i ∈ V \ {0}
∑

i∈S
j 6∈S

xij ≥ 2b(S) ∀S ⊂ V \ {0}, |S| > 1.

b(S) = lower bound on the number of trucks required to service S
(normally

⌈(
∑

i∈S di
)

/C
⌉

).

The number of constraints in this formulation is exponential.

We must therefore generate the constraints dynamically.

A solver can be implemented in BLIS by deriving just a few
classes.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Knapsack Problem
Vehicle Routing

Implementing the VRP Solver

The algorithm is defined by deriving the following classes.
VrpModel
VrpSolution
VrpCutGenerator
VrpHeuristic
VrpVariable
VrpsParams

Once the classes have been implemented, the user writes a
main function as before.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Computational Results: Platforms

Clemson Cluster

Machine: Beowulf cluster with 52 nodes
Node: dual core PPC, speed 1654 MHz
Memory: 4G RAM each node
Operating System: Linux
Message Passing: MPICH

SDSC Blue Gene System

Machine: IBM Blue Gene with 3,072 compute nodes
Node: dual processor, speed 700 MHz
Memory: 512 MB RAM each node
Operating System: Linux
Message Passing: MPICH

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

KNAP Scalability for Moderately Difficult Instances

Tested the 10 instances in the moderately difficult set on the
Clemson cluster.
The default algorithm was used except that

the static load balancing scheme is the two-level root initialization,
the number of nodes generated by the master is 3000, and
the size of a unit work is 300 nodes.

P Node Ramp-up Idle Ramp-down Wallclock Eff
4 193057493 0.28% 0.02% 0.01% 586.90 1.00
8 192831731 0.58% 0.08% 0.09% 245.42 1.20
16 192255612 1.20% 0.26% 0.37% 113.43 1.29
32 191967386 2.34% 0.71% 1.47% 56.39 1.30
64 190343944 4.37% 2.27% 5.49% 30.44 1.21

Super-linear speedup observed.

Ramp-up, ramp-down, and idle time overhead remains low.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

KNAP Scalability for Very Difficult Instances

Tested the 26 instances in the difficult set on the Blue Gene
system.
The default algorithm was used except that

the static load balancing scheme is the two-level root initialization,
the number of nodes generated by the master varies from 10000 to
30000 depends on individual instance,
the number of nodes generated by a hub varies from 10000 to
20000 depends on individual instance,
the size a unit work is 300 nodes; and
multiple hubs were used.

P Node Ramp-up Idle Ramp-down Wallclock Eff
64 14733745123 0.69% 4.78% 2.65% 6296.49 1.00
128 14776745744 1.37% 6.57% 5.26% 3290.56 0.95
256 14039728320 2.50% 7.14% 9.97% 1672.85 0.94
512 13533948496 7.38% 4.30% 14.83% 877.54 0.90
1024 13596979694 8.33% 3.41% 16.14% 469.78 0.84
2048 14045428590 9.59% 3.54% 22.00% 256.22 0.77

KNAP scales well even when using several thousand processors.
Ramp-up and ramp-down overhead inevitably increase.Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

The Performance of Serial BLIS on Generic MILPs

Test Bed

Test Machine: PC, 2.8 GHz Pentium, 2.0G RAM, Linux

Test instances: Selected 33 instances from Lehigh/CORAL
and MIPLIB 3 that both solvers can solve in 10 minutes.

BLIS (serial version)
Branching strategy: Pseudocost branching.
Cuts generators: Gomory, Knapsack, Flow Cover, MIR, Probing,
and Clique.
Heuristics: Rounding.

COIN/Cbc
Branching strategy: Strong branching.
Cut generators: Gomory, Knapsack, Flow Cover, MIR, Probing, and
Clique.
Heuristics: Rounding and Local search.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Running Times

Problem Row Column Nonzero Time-BLIS Time-CBC
22433 198 429 3408 95.00 37.59
23588 137 368 3701 118.75 108.75
air03 124 10757 91028 36.45 7.84
aligninq 340 1831 15734 356.76 181.22
bell3a 123 133 347 49.21 38.49
dcmulti 290 548 1315 18.68 13.84
dsbmip 1182 1886 7366 55.30 38.66
· · · · · · · · · · · · · · · · · ·
qnet1 503 1541 4622 20.17 41.80
rgn 24 180 460 20.06 62.61
roy 162 149 411 23.79 7.56
stein27 118 27 378 25.15 9.78
vpm1 234 378 749 1.45 16.24
TOTAL 1642.61 1238.32

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Performance Profile

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Does Differencing Make a Difference?

A Simple Test

38 MILP instances from Lehigh/CORAL and MIPLIB3.

Solved to optimality by using BLIS in 10 minutes.

PC, 2.8 GHz Pentium, 2G RAM, Linux, COIN/Clp.

No Yes Geometric
Total Time 2016 seconds 1907 seconds 1.0
Total Peak Memory 1412 MB 286 MB 4.3

Problem Time(No) Memory(No) Time(Yes) Memory(Yes)
dcmulti 4.20 s 17.4 MB 4.19 s 1.4 MB
dsbmip 33.28 s 34.1 MB 33.16 s 2.4 MB
egout 0.18 s 0.3 MB 0.18 s 0.2 MB
enigma 6.41 s 13.1 MB 6.16 s 2.3 MB
fiber 6.60 s 17.6 MB 6.56 s 2.1 MB
...

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

BLIS Scalability for Moderately Difficult Instances

Selected 18 MILP instances from Lehigh/CORAL, MIPLIB 3.0,
MIPLIB 2003, BCOL, and markshare.
Tested on the Clemson cluster.

Instance Nodes Ramp Idle Ramp Comm Wallclock Eff
-up -down Overhead

1 P 11809956 − − − − 33820.53 1.00
Per Node − − − − 0.00286
4P 11069710 0.03% 4.62% 0.02% 16.33% 10698.69 0.79
Per Node 0.03% 4.66% 0.00% 16.34% 0.00386
8P 11547210 0.11% 4.53% 0.41% 16.95% 5428.47 0.78
Per Node 0.10% 4.52% 0.53% 16.95% 0.00376
16P 12082266 0.33% 5.61% 1.60% 17.46% 2803.84 0.75
Per Node 0.27% 5.66% 1.62% 17.45% 0.00371
32P 12411902 1.15% 8.69% 2.95% 21.21% 1591.22 0.66
Per Node 1.22% 8.78% 2.93% 21.07% 0.00410
64P 14616292 1.33% 11.40% 6.70% 34.57% 1155.31 0.46
Per Node 1.38% 11.46% 6.72% 34.44% 0.00506

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Impact of Problem Properties

Instance input150 1 is a knapsack instance. When using 128
processors, BLIS achieved super-linear speedup mainly to the
decrease of the tree size

Instance fc 30 50 2 is a fixed-charge network flow instance. It
exhibits very significant increases in the size of its search tree.

Instance pk1 is a small integer program with 86 variables and 45
constraints. It is relatively easy to solve.

Instance P Node Ramp-up Idle Ramp-down Wallclock Eff
input150 1 64 75723835 0.44% 3.38% 1.45% 1257.82 1.00

128 64257131 1.18% 6.90% 2.88% 559.80 1.12
256 84342537 1.62% 5.53% 7.02% 380.95 0.83
512 71779511 3.81% 10.26% 10.57% 179.48 0.88

fc 30 50 2 64 3494056 0.15% 31.46% 9.18% 564.20 1.00
128 3733703 0.22% 33.25% 21.71% 399.60 0.71
256 6523893 0.23% 29.99% 28.99% 390.12 0.36
512 13358819 0.27% 23.54% 29.00% 337.85 0.21

pk1 64 2329865 3.97% 12.00% 5.86% 103.55 1.00
128 2336213 11.66% 12.38% 10.47% 61.31 0.84
256 2605461 11.55% 13.93% 20.19% 41.04 0.63
512 3805593 19.14% 9.07% 26.71% 36.43 0.36

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

BLIS Scalability for Very Difficult Instances

Tests on Clemson’s palmetto cluster (60 on the Top 500 list,
11/2008, Linux, MPICH, 8-core 2.33GHz Xeon/Opteron mix,
12-16GB RAM).

Tests use one processor per node.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Raw Computational Results
Name 256 128 64 1

mcf2 926 1373 2091 43059
neos-1126860 2184 1830 2540 39856
neos-1122047 1676 1125 1532 NS
neos-1413153 4230 3500 2990 20980
neos-1456979 78.06% NS NS
neos-1461051 396 1082 536 NS
neos-1599274 1500 8108 9075
neos-548047 137.29% 376.48% 482%
neos-570431 1034 1255 1308 21873
neos-611838 712 956 886 8005
neos-612143 565 1716 1315 4837
neos-693347 1.28% 1.70% NS
neos-912015 538 438 275 10674
neos-933364 6.67% 6.79% 11.80%
neos-933815 6.54% 8.77% 32.85%
neos-934184 6.67% 6.76% 9.15%
neos18 30.78% 30.78% 79344

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Speedups

Name 256 128 64

mcf2 46.5 31.36 20.59
neos-1126860 18.25 21.78 15.69
neos-1413153 4.96 5.99 7.02
neos-1599274 6.05 1.12
neos-570431 21.15 17.43 16.72
neos-611838 11.24 8.37 9.03
neos-612143 8.56 2.82 3.68
neos-912015 19.84 24.37 38.81

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Efficiency

Name 256 128 64

mcf2 0.18 0.25 0.32
neos-1126860 0.07 0.17 0.25
neos-1413153 0.02 0.05 0.11
neos-1599274 0.05 0.02
neos-570431 0.08 0.14 0.26
neos-611838 0.04 0.07 0.14
neos-612143 0.03 0.02 0.06
neos-912015 0.08 0.19 0.61

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Shameless Promotion

In October, 2007, the VRP/TSP solver won the Open Contest of
Parallel Programming at the 19th International Symposium on

Computer Architecture and High Performance Computing.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

ALPS

Our methods implemented in ALPS seem effective in improving
scalibility.

The framework is useful for implementing serial or parallel tree
search applications.

The KNAP application achieves very good scalability.
There is still much room for improvement

load balancing,
fault tolerance,
hybrid architectures,
grid enable.

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

BLIS

The performance of BLIS in serial mode is favorable when
compared to state of the art non-commercial solvers.

The scalability for solving generic MILPs is highly dependent on
properties of individual instances.

Based on BLIS, applications like VRP/TSP can be implemented
in a straightforword way.
Much work is still needed

Callable library API
Support for column generation
Enhanced heuristics
Additional capabilities

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Obtaining CHiPPS

The CHiPPS framework is available for download at

https://projects.coin-or.org/CHiPPS

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Thank You!

Questions?

Ralphs, Xu, Ladányi, & Saltzman DIP with CHiPPS

	Introduction
	Tree Search Algorithms
	Parallel Computing
	Previous Work

	The CHiPPS Framework
	Introduction
	ALPS: Abstract Library For Parallel Search
	BiCePS: Branch, Constrain, and Price Software
	BLIS: BiCePS Linear Integer Solver

	Applications
	Knapsack Problem
	Vehicle Routing

	Results and Conclusions
	Computational Experiments
	Conclusions

