Iraditional Methods
Integrated Methods
Decompose and Cut
DIP Framework
Application: ATM Cash Management Problem
Application: Block Angular MILP
Work in Progress
Work in Progress

A Framework for Decomposition in Integer Programming

 ${\sf Matthew} \ {\sf Galati}^1 \quad {\sf Ted} \ {\sf Ralphs}^2$

¹SAS Institute, Advanced Analytics, Operations Research R & D

 2 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

INFORMS Annual Meeting 2009 San Diego, CA

Outline

- Traditional Decomposition Methods
- Integrated Decomposition Methods
- Decompose and Cut
- DIP Framework
- 5 Application: ATM Cash Management Problem
- 6 Application: Block Angular MILP
- Work in Progress

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{IP} = \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A' x \ge b', A'' x \ge b'' \}$$

 $= \min_{x \in \mathbb{R}^n} \{c^+ x \mid A' x \ge b', A'' x \ge b''\}$

 $z_D = \min_{x \in \mathcal{D}'} \{ c^\top x \mid A'' x \ge b'' \}$

$$z_{IP} \geq z_D \geq z_{LP}$$

Assumptions

- ullet $OPT(c,\mathcal{P})$ and $SEP(x,\mathcal{P})$ are "hard"
- ullet $OPT(c,\mathcal{P}')$ and $SEP(x,\mathcal{P}')$ are "easy"
 - ullet \mathcal{Q}'' can be represented explicitly (description has polynomial size
 - \bullet \mathcal{P}' must be represented implicitly (description has exponential size

$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b''$$

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{IP} = \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A' x \ge b', A'' x \ge b'' \}$$

$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A' x \ge b', A'' x \ge b'' \}$$

 $z_D = \min_{x \in \mathcal{P}'} \{c \mid x \mid A'' x \ge b''\}$

 $z_{IP} \ge z_D \ge z_{LP}$

Assumptions

$$ullet$$
 $OPT(c,\mathcal{P})$ and $SEP(x,\mathcal{P})$ are "hard"

$$ullet$$
 $OPT(c,\mathcal{P}')$ and $SEP(x,\mathcal{P}')$ are "easy

$$\mathcal{Q}' = \{x \in \mathbb{R}^n \mid A'x \ge b'\}$$

$$\mathcal{Q}'' = \{x \in \mathbb{R}^n \mid A''x \ge b''\}$$

ullet \mathcal{Q}'' can be represented explicitly (description has polynomial size

 \bullet \mathcal{P}' must be represented implicitly (description has exponential size)

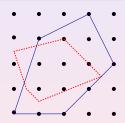
Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{IP} = \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A' x \ge b', A'' x \ge b'' \}$$

$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A' x \ge b', A'' x \ge b'' \}$$

$$z_D = \min_{x \in \mathcal{P}'} \{ c^\top x \mid A'' x \ge b'' \}$$

 $z_{IP} \ge z_D \ge z_{LP}$



Assumptions

$$ullet$$
 $OPT(c,\mathcal{P})$ and $SEP(x,\mathcal{P})$ are "hard"

$$ullet$$
 $OPT(c,\mathcal{P}')$ and $SEP(x,\mathcal{P}')$ are "easy

$$\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b'\}$$

$$\mathcal{Q}^{\prime\prime} = \{ x \in \mathbb{R}^n \mid A^{\prime\prime} x \ge b^{\prime\prime} \}$$

- ullet \mathcal{Q}'' can be represented explicitly (description has polynomial size
- \bullet \mathcal{P}' must be represented implicitly (description has exponential size)

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{IP} = \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A'x \ge b', A''x \ge b'' \}$$

$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A'x \ge b', A''x \ge b'' \}$$

$$z_D = \min_{x \in \mathcal{P}'} \{ c^\top x \mid A''x \ge b'' \}$$

$$z_{IP} \ge z_D \ge z_{LP}$$

$$ullet$$
 $OPT(c,\mathcal{P}')$ and $SEP(x,\mathcal{P}')$ are "easy

$$\mathcal{Q}''$$
 can be represented explicitly (description has polynomial size

$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b''$$

$$\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b'\}$$

$$\mathcal{Q}' = \{x \in \mathbb{R}^n \mid A'x \ge b'\}$$

$$\mathcal{Q}'' = \{x \in \mathbb{R}^n \mid A''x \ge b''\}$$

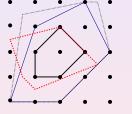
Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{IP} = \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A'x \ge b', A''x \ge b'' \}$$

$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A'x \ge b', A''x \ge b'' \}$$

$$z_D = \min_{x \in \mathcal{P}'} \{ c^\top x \mid A''x \ge b'' \}$$

$$z_{IP} \ge z_D \ge z_{LP}$$



Assumptions:

$$ullet$$
 $OPT(c,\mathcal{P})$ and $SEP(x,\mathcal{P})$ are "hard"

$$ullet$$
 $OPT(c, \mathcal{P}')$ and $SEP(x, \mathcal{P}')$ are "easy"

$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b'\}$$

$$\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b'\}$$

$$\mathcal{Q}' = \{x \in \mathbb{R}^n \mid A'x \ge b'\}$$

- \circ Q'' can be represented explicitly (description has polynomial size)
- \mathcal{P}' must be represented implicitly (description has exponential size)

$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b''$$

$$\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b'\}$$

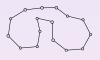
$$\mathcal{Q}' = \{x \in \mathbb{R}^n \mid A'x \ge b'\}$$

$$\mathcal{Q}'' = \{x \in \mathbb{R}^n \mid A''x \ge b''\}$$

Example - Traveling Salesman Problem

Classical Formulation

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$



Example - Traveling Salesman Problem

Classical Formulation

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Two Relaxations

1-Tree

$$\begin{array}{lcl} x(\delta(\{0\})) & = & 2 \\ x(E(V \setminus \{0\})) & = & |V| - 2 \\ x(E(S)) & \leq & |S| - 1 & \forall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V| - 1 \\ x_e \in \{0, 1\} & \forall e \in E \end{array}$$

Example - Traveling Salesman Problem

Classical Formulation

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Two Relaxations

1-Tree

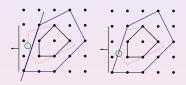
$$\begin{array}{lcl} x(\delta(\{0\})) & = & 2 \\ x(E(V \setminus \{0\})) & = & |V| - 2 \\ x(E(S)) & \leq & |S| - 1 & \forall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V| - 1 \\ x_e \in \{0, 1\} & \forall e \in E \end{array}$$

2-Matching

$$\begin{array}{ll} x(\delta(u)) & = & 2 & \forall u \in V \\ x_e \in \{0, 1\} & & \forall e \in E \end{array}$$

The Cutting Plane Method (CP) iteratively builds an *outer* approximation of \mathcal{P}' .

$$\min_{x \in \mathbb{R}^n} \{ c^\top x \mid A' x \ge b', A'' x \ge b'' \}$$



The Dantzig-Wolfe Method (DW) iteratively builds an inner approximation of \mathcal{P}' .

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{F}'}} \{ c^\top (\sum_{s \in \mathcal{F}'} s \lambda_s) : A''(\sum_{s \in \mathcal{F}'} s \lambda_s) \ge b'', \sum_{s \in \mathcal{F}'} \lambda_s = 1 \}$$

The Dantzig-Wolfe Method (DW) iteratively builds an *inner* approximation of \mathcal{P}' .

$$\min_{\lambda \in \mathbb{R}_{+}^{\mathcal{F}'}} \{ c^{\top}(\sum_{s \in \mathcal{F}'} s \lambda_{s}) : A''(\sum_{s \in \mathcal{F}'} s \lambda_{s}) \ge b'', \sum_{s \in \mathcal{F}'} \lambda_{s} = 1 \}$$

The Lagrangian Method (LD) iteratively traces an inner approximation of P'

$$\max_{u \in \mathbb{R}^n_+} \min_{s \in \mathcal{F}'} \{ (c^\top - u^\top A'') s + u^\top b'' \}$$

The Dantzig-Wolfe Method (DW) iteratively builds an *inner* approximation of \mathcal{P}' .

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{F}'}} \{ c^\top (\sum_{s \in \mathcal{F}'} s \lambda_s) : A''(\sum_{s \in \mathcal{F}'} s \lambda_s) \ge b'', \sum_{s \in \mathcal{F}'} \lambda_s = 1 \}$$

Common Threads

 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

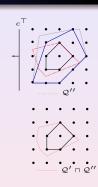
$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersectio of one explicitly defined polyhedron and one implicitly defined polyhedro

$$z_{CP} = z_{DW} = z_{LD} = z_D = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{L1}$$

- Traditional decomp-based bounding methods contain two primary steps
 - Master Problem: Update the primal/dual solution information
 - Subproblem: Update the approximation of \mathcal{P}' : $SEP(x,\mathcal{P}')$ or $OPT(c,\mathcal{P}')$

- Price and Cut (PC)
- Relax and Cut (RC)
- Decompose and Cut (DC)



Common Threads

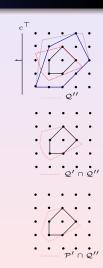
 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

$$z_{CP} = z_{DW} = z_{LD} = z_D = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{LP}$$

- Traditional decomp-based bounding methods contain two primary steps
 - Master Problem: Update the primal/dual solution information
 - Subproblem: Update the approximation of \mathcal{P}' : $SEP(x,\mathcal{P}')$ or $OPT(c,\mathcal{P}')$
- considering two implicitly defined polyhedra whose descriptions are iteratively refined.
 - Price and Cut (PC)
 - Relax and Cut (RC)
 - Decompose and Cut (DC)



Common Threads

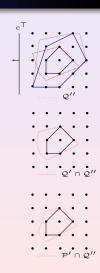
 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

$$z_{CP} = z_{DW} = z_{LD} = z_D = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{LP}$$

- Traditional decomp-based bounding methods contain two primary steps
 - Master Problem: Update the primal/dual solution information
 - Subproblem: Update the approximation of \mathcal{P}' : $SEP(x,\mathcal{P}')$ or $OPT(c,\mathcal{P}')$
- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.
 - Price and Cut (PC)
 - Relax and Cut (RC)
 - Decompose and Cut (DC)

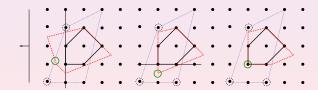


Price and Cut

Price and Cut: Use DW as the bounding method. If we let $\mathcal{F}' = \mathcal{P}' \cap \mathbb{Z}^n$, then

$$z_{DW} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{F}'}} \{ c^\top (\sum_{s \in \mathcal{F}'} s \lambda_s) : A''(\sum_{s \in \mathcal{F}'} s \lambda_s) \geq b'', \sum_{s \in \mathcal{F}'} \lambda_s = 1 \}$$

- As in the cutting plane method, separate $\hat{x} = \sum_{s \in \mathcal{F}'} s \hat{\lambda}_s$ from \mathcal{P} and add cuts to [A'', b''].
- Advantage: Cut generation takes place in the space of the compact formulation (the original space), maintaining the structure of the column generation subproblem.



Relax and Cut

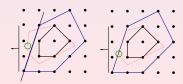
Relax and Cut: Use LD as the bounding method.

$$z_{LD} = \max_{u \in \mathbb{R}^n_+} \min_{s \in \mathcal{F}'} \{ (c^\top - u^\top A'') s + u^\top b'' \}$$

- In each iteration, separate $\hat{s} \in \operatorname{argmin}_{s \in \mathcal{F}'} \{ (c^\top u^\top A'') s + u^\top b'' \}$, a solution to the Lagrangian relaxation.
- Advantage: It is often much easier to separate a member of \mathcal{F}' from \mathcal{P} than an arbitrary real vector, such as \hat{x} .

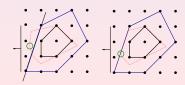
$$\min\{0\lambda: \sum_{s\in\mathcal{F}'} s\lambda_s = \hat{x}, \sum_{s\in\mathcal{F}'} \lambda_s = 1\}$$

- If \hat{x} lies outside \mathcal{P}' the decomposition will fail
 - Its dual ray (a Farkas Cut) provides a valid and violated inequality
 - This tells us that our cuts are missing something related to P
- Original idea proposed by Ralphs for VRP
 - Later used in TSP Concorde by ABCC (Local Cuts)
 - Now being used for generic MILP by Gurobi
- The machinery for solving this already exists (=column generation)
- Often gets *lucky* and produces incumbent solutions to original IP



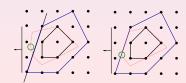
$$\min\{0\lambda: \sum_{s \in \mathcal{F}'} s \lambda_s = \hat{x}, \sum_{s \in \mathcal{F}'} \lambda_s = 1\}$$

- If \hat{x} lies outside \mathcal{P}' the decomposition will fail
 - Its dual ray (a Farkas Cut) provides a valid and violated inequality
 - This tells us that our cuts are missing something related to P'
- a Later used in TSD Concerds by ABCC (Local Cuts)
 - Now being used for generic MILP by Gurobi
- The machinery for solving this already exists (=column generation)
- a Often rate lucky and produces incumbent solutions to original ID



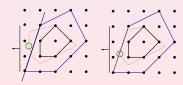
$$\min\{0\lambda: \sum_{s \in \mathcal{F}'} s \lambda_s = \hat{x}, \sum_{s \in \mathcal{F}'} \lambda_s = 1\}$$

- If \hat{x} lies outside \mathcal{P}' the decomposition will fail
 - Its dual ray (a Farkas Cut) provides a valid and violated inequality
 - This tells us that our cuts are missing something related to P'
- Original idea proposed by Ralphs for VRP
 - Later used in TSP Concorde by ABCC (Local Cuts)
 - Now being used for generic MILP by Gurobi
- The machinery for solving this already exists (=column generation
- a Often gets lucky and produces incumbent solutions to original IP

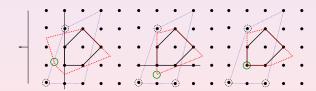


$$\min\{0\lambda: \sum_{s \in \mathcal{F}'} s \lambda_s = \hat{x}, \sum_{s \in \mathcal{F}'} \lambda_s = 1\}$$

- If \hat{x} lies outside \mathcal{P}' the decomposition will fail
 - Its dual ray (a Farkas Cut) provides a valid and violated inequality
 - ullet This tells us that our cuts are missing something related to \mathcal{P}'
- Original idea proposed by Ralphs for VRP
 - Later used in TSP Concorde by ABCC (Local Cuts)
 - Now being used for generic MILP by Gurobi
- The machinery for solving this already exists (=column generation)
- Often gets lucky and produces incumbent solutions to original IP



- Run CPM+DC for a few iterations using Farkas cuts to push point into \mathcal{P}' . Upon successful decomposition, use this as initial seed columns.
 - Jump starts master bound $z_{DW}^0 = z_{CP}$
 - Often gets lucky and produces incumbent solutions to original IP
- Rather than (or in addition to) separating \hat{x} , separate each member of $\{s \in \mathcal{F}' \mid \hat{\lambda}_s > 0\}$.
- As with RC, much easier to separate members of \mathcal{F}' from \mathcal{P} than \hat{x} .
- RC only gives us one member of \mathcal{F}' to separate, while PC gives us a set, one of which must be violated by any inequality violated by \hat{x} .



Branching in Price and Cut

• Many complex approaches possible, but we can simply branch on variables in the original compact space using:

$$\hat{x} = \sum_{s \in \mathcal{F}'} s \hat{\lambda}_s$$

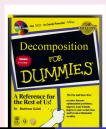
- This is equivalent to branching on cuts in the reformulated space. Simply add the original column bounds into [A'', b''].
- This simple idea takes care of (most) of the design issues related to branching including dichotomy and dual updates in pricing.
- Current Limitation: Identical subproblems are currently treated like non-identical (bad for symmetry).
 - Review and Classification of Branching Schemes for Branch-and-price by Francois Vanderbeck
 - In some cases, we can still get around this using this framework

Iraditional Methods
Integrated Methods
Decompose and Cut
DIP Framework
Application: ATM Cash Management Problem
Application: Block Angular MILP
Work in Process

DIP Framework: Motivation

DIP Framework

DIP (Decomposition for Integer Programming) is a software framework that provides a virtual sandbox for testing and comparing various decomposition-based bounding methods.



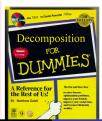
Iraditional Methods
Integrated Methods
Decompose and Cut
DIP Framework
Application: ATM Cash Management Problem
Application: Block Angular MILP
Work in Progress
Work in Progress

DIP Framework: Motivation

DIP Framework

DIP (Decomposition for Integer Programming) is a software framework that provides a virtual sandbox for testing and comparing various decomposition-based bounding methods.

- It's very difficult to compare the variants discussed here in a controlled way.
- ullet The method for separation/optimization over \mathcal{P}' is the primary application-dependent component of any of these algorithms.

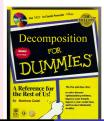


DIP Framework: Motivation

DIP Framework

DIP (Decomposition for Integer Programming) is a software framework that provides a virtual sandbox for testing and comparing various decomposition-based bounding methods.

- It's very difficult to compare the variants discussed here in a controlled way.
- ullet The method for separation/optimization over \mathcal{P}' is the primary application-dependent component of any of these algorithms.
- DIP abstracts the common, generic elements of these methods.
 - Key: The user defines application-specific components in the space of the compact formulation.
 - The framework takes care of reformulation and implementation for all variants described here.



Integrated Methods Decompose and Cut DIP Framework Application: ATM Cash Management Problem Application: Block Angular MILP Work in Progress

DIP Framework: Implementation

COmputational INfrastructure for Operations Research Have some DIP with your CHiPPs?

- DIP was built around data structures and interfaces provided by COIN-OR.

- - - Galati, Ralphs

DIP Framework: Implementation

COmputational INfrastructure for Operations Research Have some DIP with your CHiPPs?

- DIP was built around data structures and interfaces provided by COIN-OR.
- The DIP framework, written in C++, is accessed through two user interfaces:
 - Applications Interface: DipApp
 - Algorithms Interface: DipAlgo
- DIP provides the bounding method for branch and bound
- ALPS (Abstract Library for Parallel Search) provides the framework for parallel tree search
 - AlpsDipModel: public AlpsModel
 - a wrapper class that calls (data access) methods from DipApp
 - AlpsDipTreeNode : public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DipAlgo

DIP Framework: Implementation

COmputational INfrastructure for Operations Research Have some DIP with your CHiPPs?

- DIP was built around data structures and interfaces provided by COIN-OR.
- The DIP framework, written in C++, is accessed through two user interfaces:
 - Applications Interface: DipApp
 - Algorithms Interface: DipAlgo
- DIP provides the bounding method for branch and bound.
- ALPS (Abstract Library for Parallel Search) provides the framework for parallel tree search.
 - AlpsDipModel : public AlpsModel
 - a wrapper class that calls (data access) methods from DipApp
 - AlpsDipTreeNode : public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DipAlgo

Iraditional Methods
Integrated Methods
Decompose and Cut
DIP Framework
Application: ATM Cash Management Problem
Application: Block Angular MILP
Work in Progress

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC
- ullet Automatic reformulation allows users to deal with vars and cons in the original space
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point)
- Can utilize CGL cuts in all algorithms (separate from original space)
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Threaded oracle for block angular case

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point)
- Can utilize CGL cuts in all algorithms (separate from original space)
 - Design question: What about LP-based cuts (Gomory, L&P)
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Threaded oracle for block angular case

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point)
- Can utilize CGL cuts in all algorithms (separate from original space)
 - Design question: What about LP-based cuts (Gomory, L&P)
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Threaded oracle for block angular case

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design guestion: What about LP-based cuts (Gomory, L&P)
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Threaded oracle for block angular case

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Threaded oracle for block angular case

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Threaded oracle for block angular case

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides
- Threaded oracle for block angular case

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool i
- Flexible parameter interface: command line, param file, direct call overrides
- Threaded oracle for block angular case

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides
- Threaded oracle for block angular case.

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides.
- Threaded oracle for block angular case.

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides.
- Threaded oracle for block angular case.

Iraditional Methods
Integrated Methods
Decompose and Cut
DIP Framework
Application: ATM Cash Management Problem
Application: Block Angular MILP
Work in Progress

- The base class DipApp provides an interface for the user to define the application-specific components of their algorithm.
- In order to develop an application, the user must derive the following methods/objects.

```
DipApp::createModels(). Define [A",b"] and [A',b'] (optional).
TSP 1-Tree: [A",b"] define the 2-matching constraints.
TSP 2-Match: [A",b"] define trivial subtour constraints.
DipApp::isUserFeasible(). Does x* define a feasible solution?
TSP: do we have a feasible tour?
DipApp::solveRelaxed(). Provide a subroutine for OPT(c,P').
This is optional as well, if [A',b'] is defined (it will call the built in IP solver, currently CBC).
TSP 1-Tree: provide a solver for 1-tree.
TSP 2-Match: provide a solver for 2-matching.
```

- All other methods have appropriate defaults but are virtual and may be overridden.
 - DipApp::heuristics()
 - DipApp::generateInitVars()
 - DipApp::generateCuts(
 - ..

- The base class DipApp provides an interface for the user to define the application-specific components of their algorithm.
- In order to develop an application, the user must derive the following methods/objects.
- ullet DipApp::createModels(). Define $[A^{\prime\prime},b^{\prime\prime}]$ and $[A^{\prime},b^{\prime}]$ (optional).
 - TSP 1-Tree: [A'', b''] define the 2-matching constraints.
 - TSP 2-Match: [A'', b''] define trivial subtour constraints.

```
    All other methods have appropriate defaults but are virtual and may be overridden
```

- DipApp::heuristics()
- DipApp::generateInitVars()
 - DipApp::generateCuts()

- The base class DipApp provides an interface for the user to define the application-specific components of their algorithm.
- In order to develop an application, the user must derive the following methods/objects.
- DipApp::createModels(). Define [A'',b''] and [A',b'] (optional).
 - TSP 1-Tree: [A'', b''] define the 2-matching constraints.
 - TSP 2-Match: [A'', b''] define trivial subtour constraints.
- DipApp::isUserFeasible(). Does x^* define a feasible solution?
 - TSP: do we have a feasible tour?

- All other methods have appropriate defaults but are vintual and may be overridden
 - DipApp::heuristics(
 - DipApp::generateInitVars()
 - DipApp::generateCuts(

- The base class DipApp provides an interface for the user to define the application-specific components of their algorithm.
- In order to develop an application, the user must derive the following methods/objects.
- DipApp::createModels(). Define $[A^{\prime\prime},b^{\prime\prime}]$ and $[A^{\prime},b^{\prime}]$ (optional).
 - TSP 1-Tree: [A'', b''] define the 2-matching constraints.
 - TSP 2-Match: [A'', b''] define trivial subtour constraints.
- DipApp::isUserFeasible(). Does x^* define a feasible solution?
 - TSP: do we have a feasible tour?
- DipApp::solveRelaxed(). Provide a subroutine for $OPT(c, \mathcal{P}')$.
 - This is optional as well, if [A', b'] is defined (it will call the built in IP solver, currently CBC).
 - TSP 1-Tree: provide a solver for 1-tree.
 - TSP 2-Match: provide a solver for 2-matching.
- All other methods have appropriate defaults but are virtual and may be overridden.
 - 2 DinAppergraphs Trit Mana()
 - DipApp::generateInitVars()
 - DipApp::generateCuts(
 - ..

- The base class DipApp provides an interface for the user to define the application-specific components of their algorithm.
- In order to develop an application, the user must derive the following methods/objects.

```
• DipApp::createModels(). Define [A^{\prime\prime},b^{\prime\prime}] and [A^{\prime},b^{\prime}] (optional).
```

- TSP 1-Tree: [A'', b''] define the 2-matching constraints.
- TSP 2-Match: $[A^{\prime\prime}, \dot{b}^{\prime\prime}]$ define trivial subtour constraints.
- DipApp::isUserFeasible(). Does x^* define a feasible solution?
 - TSP: do we have a feasible tour?
- DipApp::solveRelaxed(). Provide a subroutine for $OPT(c, \mathcal{P}')$.
 - This is optional as well, if [A', b'] is defined (it will call the built in IP solver, currently CBC).
 - TSP 1-Tree: provide a solver for 1-tree.
 - TSP 2-Match: provide a solver for 2-matching.
- All other methods have appropriate defaults but are virtual and may be overridden.
 - DipApp::heuristics()
 - DipApp::generateInitVars()
 - DipApp::generateCuts()
 - ...

DIP Framework: Compare and Contrast to BCP

Limitations:

- BCP: The user must derive methods for almost all of the algorithmic components: (master reformulation, expansion of rows and columns, branching in reformulated space, calculation of pricing mechanisms like reduced cost, etc).
- DIP: There exists a compact formulation which forms the basis of the model attributes.

Design

- BCP: The user defines the model attributes and algorithmic components based on one pre-defined solution method (i.e., PC or CPM).
- DIP: The user defines the model attributes and algorithmic components based on one pre-defined compact formulation. The different algorithmic details are managed by the framework.

Parallelization

- BCP: Designed for shared or distributed memory for branch-and-bound search.
- DIP: Threaded for block angular shared memory processing
- DIP: Built on top of Alps so potential for fully distributed branch-and-bound search (in the future)

DIP Framework: Compare and Contrast to BCP

Limitations:

- BCP: The user must derive methods for almost all of the algorithmic components: (master reformulation, expansion of rows and columns, branching in reformulated space, calculation of pricing mechanisms like reduced cost, etc).
- DIP: There exists a compact formulation which forms the basis of the model attributes.

Design:

- BCP: The user defines the model attributes and algorithmic components based on one pre-defined solution *method* (i.e., PC or CPM).
- DIP: The user defines the model attributes and algorithmic components based on one pre-defined compact formulation. The different algorithmic details are managed by the framework.

Parallelization

- BCP: Designed for shared or distributed memory for branch-and-bound search
- DIP: Threaded for block angular shared memory processing
- DIP: Built on top of Alps so potential for fully distributed branch-and-bound search (in the future)

DIP Framework: Compare and Contrast to BCP

Limitations:

- BCP: The user must derive methods for almost all of the algorithmic components: (master reformulation, expansion of rows and columns, branching in reformulated space, calculation of pricing mechanisms like reduced cost, etc).
- DIP: There exists a compact formulation which forms the basis of the model attributes.

Design:

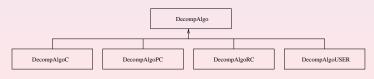
- BCP: The user defines the model attributes and algorithmic components based on one pre-defined solution method (i.e., PC or CPM).
- DIP: The user defines the model attributes and algorithmic components based on one pre-defined compact formulation. The different algorithmic details are managed by the framework.

Parallelization:

- BCP: Designed for shared or distributed memory for branch-and-bound search.
- DIP: Threaded for block angular shared memory processing.
- DIP: Built on top of Alps so potential for fully distributed branch-and-bound search (in the future).

DIP - Algorithms

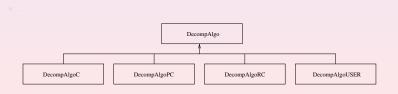
- The base class DipAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described has derived default implementations DipAlgoX: public
 DipAlgo which are accessible by any application class, allowing full flexibility.
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,
 - Alternative methods for solving the master LP in DW, such as interior point methods.
 - Add stabilization to the dual updates in LD, as in bundle methods.
 - For LD, replace subgradient with Volume, providing an approximate primal solution
 - Hybrid methods like using LD to initialize the columns of the DW master
 - During PC, adding cuts to either master and subproblem
 - o ...



Iraditional Methods
Integrated Methods
Decompose and Cut
DIP Framework
Application: ATM Cash Management Problem
Application: Block Angular MILP
Work in Progress

DIP - Algorithms

- The base class DipAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described has derived default implementations DipAlgoX: public DipAlgo which are accessible by any application class, allowing full flexibility.



DIP - Algorithms

- The base class DipAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described has derived default implementations DipAlgoX: public DipAlgo which are accessible by any application class, allowing full flexibility.
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,
 - Alternative methods for solving the master LP in DW, such as interior point methods.
 - Add stabilization to the dual updates in LD, as in bundle methods.
 - For LD, replace subgradient with Volume, providing an approximate primal solution.
 - Hybrid methods like using LD to initialize the columns of the DW master.
 - During PC, adding cuts to either master and subproblem.
 - ...

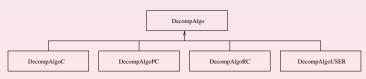


Table: COIN/DIP Applications

Application	Description	\mathcal{P}'	Cuts	Input
SmallIP	intro example, tiny IP	MILP	CGL	user
MCF	intro BCP to DIP example	NetFlow	CGL	user
MILP	random partition into A', A''	MILP	CGL	mps/lp
MILPBlock	user-defined blocks for A'	MILP(s)	CGL	mps/lp, block
AP3	3-index assignment	AP	user	user
GAP	generalized assignment	KP(s)	CGL	user
MAD	matrix decomposition	MaxClique	CGL	user
MMKP	multi-dim/choice knapsack	MCKP	CGL	user
		MDKP	CGL	user
TSP	traveling salesman problem	1Tree	Concorde	user
		2Match	Concorde	user
VRP	vehicle routing problem	mTSP	CVRPSEP	user
		kTree	CVRPSEP	user
		q-Route(s)	CVRPSEP	user
ATM	cash management (SAS COE)	MILP(s)	CGL	user

Application - ATM Cash Management Problem - Business Problem

SAS Center of Excellence in Operations Research Applications (OR COE)

- Determine schedule for allocation of cash inventory at branch banks to service ATMs
- Given historical training data per day/ATM first define polynomial fit for predicted cash flow need
 - · Determine the multipliers for fit to minimize mismatch based on predicted withdrawals
- Constraints
 - Amount of cash allocated each day
 - For each ATM, limit on number of days cash flow can be less than predicted withdrawal

Application - ATM Cash Management Problem - MINLP Formulation

- Simple looking nonconvex quadratic integer NLP
 - "it is not interesting for MINLP it is too easy"
- Linearize the absolute value, add binaries for count constraints.
- So far, no MINLP solvers seem to be able to solve this (several die with numerical failures).

$$\begin{aligned} & \min \sum_{a \in A, d \in D} |f_{ad}| \\ & \text{s.t. } c_{ad}^x x_a + c_{ad}^y y_a + c_{ad}^x x_a y_a + c_{ad}^u u_a + c_{ad} & = f_{ad} & \forall a \in A, d \in D \\ & \sum_{a \in A} f_{ad} & \leq B_d & \forall d \in D \\ & |\{d \in D \mid f_{ad} < 0\}| & \leq K_a & \forall a \in A \\ & x_a, y_a & \in [0, 1] & \forall a \in A \\ & u_a & \geq 0 & \forall a \in A \\ & f_{ad} & \in [0, w_{ad}] & \forall a \in A, d \in D \end{aligned}$$

Application - ATM Cash Management Problem - MILP Approx Formulation

- Discretization of x domain $\{0, 0.1, 0.2, ..., 1.0\}$.
- Linearization of product of binary and continuous, and absolute value.

$$\min \sum_{a \in A, d \in D} f_{ad}^{+} + f_{ad}^{-}$$
s.t. $c_{ad}^{x} \sum_{t \in T} c_{t}x_{at} + c_{ad}^{y}y_{a} + c_{ad}^{xy} \sum_{t \in T} c_{t}z_{at} + c_{ad}^{u}u_{a} + c_{ad} = f_{ad}^{+} - f_{ad}^{-} \qquad \forall a \in A, d \in D$

$$\sum_{t \in T} x_{at} \qquad \leq 1 \qquad \forall a \in A$$

$$z_{at} \qquad \leq x_{at} \qquad \forall a \in A, t \in T$$

$$z_{at} \qquad \geq y_{a} \qquad \forall a \in A, t \in T$$

$$z_{at} \qquad \geq x_{at} + y_{a} - 1 \qquad \forall a \in A, t \in T$$

$$z_{at} \qquad \leq x_{at} + y_{a} - 1 \qquad \forall a \in A, t \in T$$

$$\sum_{a \in A} f_{ad}^{+} - f_{ad}^{-} \qquad \leq w_{ad}v_{ad} \qquad \forall a \in A, d \in D$$

$$\sum_{a \in A} f_{ad}^{+} - f_{ad}^{-} \qquad \leq B_{d} \qquad \forall d \in D$$

$$\sum_{a \in A} v_{ad} \qquad \leq K_{a} \qquad \forall a \in A$$

Application - ATM Cash Management Problem - MILP Approx Formulation

x_{at}	$\in \{0,1\}$	$\forall a \in A, t \in T$
z_{at}	$\in [0, 1]$	$\forall a \in A, t \in T$
v_{ad}	$\in \{0,1\}$	$\forall a \in A, d \in D$
y_a	$\in [0, 1]$	$\forall a \in A$
u_a	≥ 0	$\forall a \in A$
f_{ad}^+, f_{ad}^-	$\in [0, w_{ad}]$	$\forall a \in A, d \in D$

- The MILP formulation has a natural block angular structure.
 - Master constraints are just the budget constraint.
 - Subproblem constraints (the rest) one block for each ATM.

Application - ATM Cash Management Problem - in DIP

- Extremely easy to define this problem in DIP.
- DipApp::createModels. Just define master constraints and blocks.
 - Master constraints (budget constraints).
 - Subproblem constraints (the rest) one for each ATM.
- Data setup: 648 lines of code.

```
> wc -I ATM_Instance.*
491 ATM_Instance.cpp
157 ATM_Instance.h
648 total
```

Model setup: 1221 lines of code (407 lines are comments).

```
> wc -l ATM_Dip*.*
951 ATM_DipApp.cpp
197 ATM_DipApp.h
73 ATM_DipApp.h
1221 total
> grep "//" ATM_Dip*.* | wc -l
407
```

Nothing else is necessary to solve this model in DIP!

Iraditional Methods
Integrated Methods
Decompose and Cut
DIP Framework
Application: ATM Cash Management Problem
Application: Block Angular MILP
Work in Progress

Computational Results - ATM Cash Management Problem (5 min)

П				DIP1.0			CPX11		
[A	D	s	Time	Gap	Nodes	Time	Gap	Nodes
	5	25	1	1.76	OPT	7	0.76	OPT	467
Ī	5	25	2	3.18	OPT	21	1.41	OPT	804
Ī	5	25	3	4.52	OPT	24	0.43	OPT	147
	5	25	4	2.89	OPT	26	1.51	OPT	714
[5	25	5	5.12	OPT	8	0.15	OPT	32
	5	50	1	Т	3.88%	331	Т	∞	64081
Ī	5	50	2	Т	0.20%	458	88.46	OPT	38341
Ī	5	50	3	29.40	OPT	46	8.10	OPT	3576
Ī	5	50	4	2.49	OPT	3	4.16	OPT	1317
[5	50	5	Т	1.08%	448	57.50	OPT	32443
ſ	10	50	1	Т	0.22%	487	Т	3.79%	76376
Ī	10	50	2	109.47	OPT	99	Т	∞	58130
Ī	10	50	3	Т	0.11%	403	Т	∞	41236
	10	50	4	6.03	OPT	1	Т	1.92%	93891
[10	50	5	7.02	OPT	3	T	0.17%	158470
	10	100	1	Т	1.80%	38	Т	∞	13581
Ī	10	100	2	Т	1.90%	101	Т	∞	9486
Ī	10	100	3	Т	1.57%	112	Т	∞	9080
Ī	10	100	4	Т	3.44%	19	Т	∞	10766
[10	100	5	Т	1.15%	35	Т	∞	11807
	20	100	1	Т	0.02%	7	Т	∞	8786
Ī	20	100	2	Т	1.12%	26	Т	∞	3773
Ī	20	100	3	Т	0.22%	164	Т	∞	5878
Ī	20	100	4	Т	0.64%	306	Т	∞	7613
	20	100	5	Т	0.11%	538	Т	∞	4775

Galati, Ralphs

A Framework for Decomposition in IP

Iraditional Methods
Integrated Methods
Decompose and Cut
DIP Framework
Application: ATM Cash Management Problem
Application: Block Angular MILP
Work in Progress

Computational Results - ATM Cash Management Problem (1 hr)

Ī				DIP1.0			CPX11		
ĺ	A	D	s	Time	Gap	Nodes	Time	Gap	Nodes
ſ	5	25	1	1.83	OPT	7	0.76	OPT	467
Ī	5	25	2	4.49	OPT	21	1.41	OPT	804
Ī	5	25	3	6.15	OPT	24	0.42	OPT	147
	5	25	4	4.25	OPT	26	1.49	OPT	714
[5	25	5	5.12	OPT	8	0.16	OPT	32
ſ	5	50	1	639.69	OPT	291	T	0.10%	1264574
Ì	5	50	2	2244.28	OPT	791	87.96	OPT	38341
Ī	5	50	3	30.27	OPT	46	8.09	OPT	3576
Ī	5	50	4	2.36	OPT	3	4.13	OPT	1317
	5	50	5	Т	0.76%	439	57.55	OPT	32443
Ī	10	50	1	1543.85	OPT	709	Т	0.76%	998624
ı	10	50	2	107.89	OPT	99	1507.84	OPT	351879
Ì	10	50	3	Т	0.11%	1496	Т	0.81%	667371
Ī	10	50	4	5.82	OPT	1	1319.00	OPT	433155
	10	50	5	6.61	OPT	3	365.51	OPT	181013
Ī	10	100	1	Т	1.11%	87	Т	∞	128155
Ì	10	100	2	Т	1.43%	6017	Т	∞	116522
Ī	10	100	3	Т	0.95%	334	Т	∞	118617
Ī	10	100	4	Т	2.50%	126	Т	∞	108899
	10	100	5	Т	1.11%	179	Т	∞	167617
	20	100	1	358.38	OPT	8	T	∞	93519
Ī	20	100	2	Т	0.61%	126	Т	∞	68863
Ī	20	100	3	T	0.18%	365	T	∞	95981
	20	100	4	Т	0.11%	224	Т	∞	81836
	20	100	5	T	0.11%	220	T	∞	101917

Galati, Ralphs

A Framework for Decomposition in IP

Application - Block Angular MILP (as a Generic Framework)

- DIP provides a black-box framework for applying Branch-Cut-And-Price to generic MILP.
 - This is the first framework to do this (to my knowledge).
 - Similar efforts are being talked about by F. Vanderbeck BaPCod.
- Currently, the only input needed is MPS/LP and a block file.
- Future work will attempt to embed automatic recognition of the block angular structure using packages from linear algebra like: MONET, hMETIS, Mondriaan.

$$\begin{pmatrix} A''_{1} & A''_{2} & \cdots & A''_{k} \\ A'_{1} & & & & \\ & & A'_{2} & & & \\ & & & \ddots & & \\ & & & & A'_{k} \end{pmatrix}$$

Application - Block Angular MILP (applied to Retail Optimization)

SAS Retail Optimization Solution

- The following problem comes from SAS Retail Optimization.
- It is related to a multi-tiered supply chain distribution problem where each block represents a store.

Table: One hour time limit

	DIP-PC			DIP-Hyb			CPX11		
Instance	Time	Gap	Nodes	Time	Gap	Nodes	Time	Gap	Nodes
retail3	0.39	OPT	1	10.51	OPT	1	Т	2.30%	2674921
retail27	2.88	OPT	1	12.36	OPT	1	Т	0.49%	1434931
retail4	87.81	OPT	1	100.66	OPT	1	Т	19.57%	991976
retail6	528.91	OPT	1866	176.35	OPT	984	Т	0.01%	2632157
retail31	554.63	OPT	54	1159.46	OPT	495	Т	1.61%	1606911
retail33	Т	99.49%	5318	Т	29.32%	329	Т	0.01%	288257

Note: retail33 LowerBound: CPX11 = 492, DIP-PC = 562

- Can we implement Gomory cuts in Price and Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts.
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.
- ullet Decomp and Cut is expensive but has many potential benefits. What is the trade-off
 - ullet Generation of initial columns to start Price and Cut. Gives $z_{DW}^{
 m v}=z_{CD}$
 - If the initial \hat{x} is not in \mathcal{P}' . Farkas cuts can move the point to the interior.
 - Along the way, we might generate incumbents for z_{IP} .
- Nested pricing.
 - Choose an oracle with \mathcal{P}' and a restriction $\mathcal{P}' \subset \mathcal{P}$
 - ullet Price exactly (for bounds) on \mathcal{P}' , but generate columns heuristically on \mathcal{P}' .
- Feasibility pump for Price and Cut
 - ullet Given $s\in \mathcal{F}'$, solve an auxiliary MILP feasible to \mathcal{P}' minimizing the L_1 norm between s and A''
- For block angular case, solve the master (small model) as an IP at end of each B&B node
 - Cheap, often produces incumbents.
- Built on top of ALPS so parallelization of the B&B should be easy to try.

- Can we implement Gomory cuts in Price and Cut?
 - ullet Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts.
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.
- Decomp and Cut is expensive but has many potential benefits. What is the trade-off?
 - Generation of initial columns to start Price and Cut. Gives $z_{DW}^0 = z_{CP}$.
 - If the initial \hat{x} is not in \mathcal{P}' , Farkas cuts can move the point to the interior.
 - ullet Along the way, we might generate incumbents for z_{IP} .
- Nested pricing
 - ullet Choose an oracle with \mathcal{P}' and a restriction $\mathcal{P}' \subset \mathcal{P}$
 - Price exactly (for bounds) on \mathcal{P}' , but generate columns heuristically on \mathcal{P}' .
- Feasibility pump for Price and Cut
 - ullet Given $s\in \mathcal{F}'$, solve an auxiliary MILP feasible to \mathcal{P}' minimizing the L_1 norm between s and A'
- ullet For block angular case, solve the master (small model) as an IP at end of each B&B node
 - Cheap, often produces incumbents.
- Built on top of ALPS so parallelization of the B&B should be easy to try.

- Can we implement Gomory cuts in Price and Cut?
 - ullet Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts.
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.
- Decomp and Cut is expensive but has many potential benefits. What is the trade-off?
 - Generation of initial columns to start Price and Cut. Gives $z_{DW}^0 = z_{CP}$.
 - If the initial \hat{x} is not in \mathcal{P}' , Farkas cuts can move the point to the interior.
 - ullet Along the way, we might generate incumbents for $z_{IP}.$
- Nested pricing.
 - Choose an oracle with \mathcal{P}' and a restriction $\hat{\mathcal{P}'} \subset \mathcal{P}'$.
 - Price exactly (for bounds) on \mathcal{P}' , but generate columns heuristically on $\hat{\mathcal{P}}'$.
- Feasibility pump for Price and Cut
 - ullet Given $s\in \mathcal{F}'$, solve an auxiliary MILP feasible to \mathcal{P}' minimizing the L_1 norm between s and A
- For block angular case, solve the master (small model) as an IP at end of each B&B node.
 Cheap, often produces incumbents.
 - Cheap, often produces incumbents.
- Built on top of ALPS so parallelization of the B&B should be easy to try

- Can we implement Gomory cuts in Price and Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts.
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.
- Decomp and Cut is expensive but has many potential benefits. What is the trade-off?
 - Generation of initial columns to start Price and Cut. Gives $z_{DW}^0 = z_{CP}$.
 - If the initial \hat{x} is not in \mathcal{P}' , Farkas cuts can move the point to the interior.
 - ullet Along the way, we might generate incumbents for z_{IP} .
- Nested pricing.
 - Choose an oracle with \mathcal{P}' and a restriction $\hat{\mathcal{P}'} \subset \mathcal{P}'$.
 - Price exactly (for bounds) on \mathcal{P}' , but generate columns heuristically on $\hat{\mathcal{P}}'$.
- Feasibility pump for Price and Cut.
 - ullet Given $s \in \mathcal{F}'$, solve an auxiliary MILP feasible to \mathcal{P}' minimizing the L_1 norm between s and A''.
- For block angular case, solve the master (small model) as an IP at end of each B&B node.
 - Cheap, often produces incumbents.
- Built on top of ALPS so parallelization of the B&B should be easy to try.

- Can we implement Gomory cuts in Price and Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts.
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.
- Decomp and Cut is expensive but has many potential benefits. What is the trade-off?
 - Generation of initial columns to start Price and Cut. Gives $z_{DW}^0 = z_{CP}$.
 - If the initial \hat{x} is not in \mathcal{P}' , Farkas cuts can move the point to the interior.
 - Along the way, we might generate incumbents for z_{IP} .
- Nested pricing.
 - Choose an oracle with \mathcal{P}' and a restriction $\hat{\mathcal{P}'} \subset \mathcal{P}'$.
 - Price exactly (for bounds) on \mathcal{P}' , but generate columns heuristically on $\hat{\mathcal{P}}'$.
- Feasibility pump for Price and Cut.
 - Given $s \in \mathcal{F}'$, solve an auxiliary MILP feasible to \mathcal{P}' minimizing the L_1 norm between s and A''.
- For block angular case, solve the master (small model) as an IP at end of each B&B node.
 - Cheap, often produces incumbents.
- Built on top of ALPS so parallelization of the B&B should be easy to try

- Can we implement Gomory cuts in Price and Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts.
 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.
- Decomp and Cut is expensive but has many potential benefits. What is the trade-off?
 - Generation of initial columns to start Price and Cut. Gives $z_{DW}^0 = z_{CP}$.
 - If the initial \hat{x} is not in \mathcal{P}' , Farkas cuts can move the point to the interior.
 - Along the way, we might generate incumbents for z_{IP} .
- Nested pricing.
 - Choose an oracle with \mathcal{P}' and a restriction $\hat{\mathcal{P}'} \subset \mathcal{P}'$.
 - Price exactly (for bounds) on \mathcal{P}' , but generate columns heuristically on $\hat{\mathcal{P}}'$.
- Feasibility pump for Price and Cut.
 - Given $s \in \mathcal{F}'$, solve an auxiliary MILP feasible to \mathcal{P}' minimizing the L_1 norm between s and A''.
- For block angular case, solve the master (small model) as an IP at end of each B&B node.
 - Cheap, often produces incumbents.
- Built on top of ALPS so parallelization of the B&B should be easy to try.

- Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap \mathcal{Q}''$.
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.
- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - ullet Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a *large* description.
- DIP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).
- The interface to ALPS allows us to investigate large-scale problems on distributed networks
- The code is open-source, currently released under CPL and available through the COIN-OR project repository www.coin-or.org.
- Related publications
 - T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming Mathematical Programming 106 (2006), 261
 - T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57

- ullet Traditional Decomposition Methods approximate ${\mathcal P}$ as ${\mathcal P}'\cap {\mathcal Q}''.$
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.
- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a *large* description.
- DIP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).
- The interface to ALPS allows us to investigate large-scale problems on distributed networks
- The code is open-source, currently released under CPL and available through the COIN-OF project repository www.coin-or.org.
- Related publications
 - T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming Mathematical Programming 106 (2006), 261
 - T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57

- Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap \mathcal{Q}''$.
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.
- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a *large* description.
- DIP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).
- The interface to ALPS allows us to investigate large-scale problems on distributed networks.
- The code is open-source, currently released under CPL and available through the COIN-OF project repository www.coin-or.org.
- Related publications
 - T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming Mathematical Programming 106 (2006), 261
 - T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57

- Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap \mathcal{Q}''$.
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.
- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a *large* description.
- DIP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).
- The interface to ALPS allows us to investigate large-scale problems on distributed networks.
- The code is open-source, currently released under CPL and available through the COIN-OR project repository www.coin-or.org.
- Related publications
 - T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming Mathematical Programming 106 (2006), 261
 - T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57

- Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap \mathcal{Q}''$.
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.
- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a *large* description.
- DIP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).
- The interface to ALPS allows us to investigate large-scale problems on distributed networks.
- The code is open-source, currently released under CPL and available through the COIN-OR project repository www.coin-or.org.
- Related publications:
 - T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming, Mathematical Programming 106 (2006), 261
 - T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57

Separation of Subtour Inequalities:

$$x(E(S)) \le |S| - 1$$

- SEP(x, Subtour), for $x \in \mathbb{R}^n$ can be solved in $O(|V|^4)$ (Min-Cut)
- \bullet SEP(s, Subtour), for s a 2-matching, can be solved in O(|V|)
 - Simply determine the connected components C_i , and set $S=C_i$ for each component (each give a violation of 1).

Separation of Subtour Inequalities:

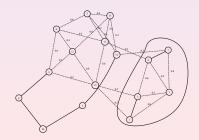
$$x(E(S)) \le |S| - 1$$

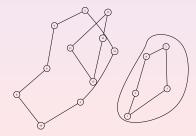
- SEP(x, Subtour), for $x \in \mathbb{R}^n$ can be solved in $O(|V|^4)$ (Min-Cut)
- SEP(s, Subtour), for s a 2-matching, can be solved in O(|V|)
 - Simply determine the connected components C_i , and set $S=C_i$ for each component (each gives a violation of 1).

Separation of Subtour Inequalities:

$$x(E(S)) \le |S| - 1$$

- SEP(x, Subtour), for $x \in \mathbb{R}^n$ can be solved in $O(|V|^4)$ (Min-Cut)
- SEP(s, Subtour), for s a 2-matching, can be solved in O(|V|)
 - Simply determine the connected components C_i , and set $S=C_i$ for each component (each gives a violation of 1).

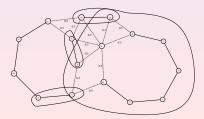




Separation of Comb Inequalities:

$$x(E(H)) + \sum_{i=1}^{k} x(E(T_i)) \le |H| + \sum_{i=1}^{k} (|T_i| - 1) - \lceil k/2 \rceil$$

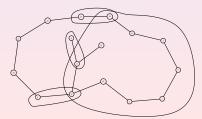
- SEP(x, Blossoms), for $x \in \mathbb{R}^n$ can be solved in $O(|V|^5)$ (Padberg-Rao)
- \bullet SEP(s. Blossoms), for s a 1-Tree, can be solved in O
 - Construct candidate handles H from BFS tree traversal and an odd (>= 3) set of edges with one
 endpoint in H and one in V \ H as candidate teeth (each gives a violation of \[\begin{align*} \begin{align*} \ k/2 \end{align*} -1 \).
 - This can also be used as a quick heuristic to separate 1-Trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.



Separation of Comb Inequalities:

$$x(E(H)) + \sum_{i=1}^{k} x(E(T_i)) \le |H| + \sum_{i=1}^{k} (|T_i| - 1) - \lceil k/2 \rceil$$

- SEP(x, Blossoms), for $x \in \mathbb{R}^n$ can be solved in $O(|V|^5)$ (Padberg-Rao)
- SEP(s, Blossoms), for s a 1-Tree, can be solved in $O(|V|^2)$
 - Construct candidate handles H from BFS tree traversal and an odd (>= 3) set of edges with one endpoint in H and one in $V \setminus H$ as candidate teeth (each gives a violation of $\lceil k/2 \rceil 1$).
 - This can also be used as a quick heuristic to separate 1-Trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.



Separation of Comb Inequalities:

$$x(E(H)) + \sum_{i=1}^{k} x(E(T_i)) \le |H| + \sum_{i=1}^{k} (|T_i| - 1) - \lceil k/2 \rceil$$

- SEP(x, Blossoms), for $x \in \mathbb{R}^n$ can be solved in $O(|V|^5)$ (Padberg-Rao)
- SEP(s, Blossoms), for s a 1-Tree, can be solved in $O(|V|^2)$
 - Construct candidate handles H from BFS tree traversal and an odd (>= 3) set of edges with one endpoint in H and one in $V \setminus H$ as candidate teeth (each gives a violation of $\lceil k/2 \rceil 1$).
 - This can also be used as a quick heuristic to separate 1-Trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.

