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The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
relaxation, we can improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

{c⊤x | A′x ≥ b′, A′′x ≥ b′′}

zLP = min
x∈Rn

{c⊤x | A′x ≥ b′, A′′x ≥ b′′}

zD = min
x∈P′

{c⊤x | A′′x ≥ b′′}

zIP ≥ zD ≥ zLP

P = conv{x ∈ Z
n | A′x ≥ b′, A′′x ≥ b′′}Assumptions:

OPT (c,P) and SEP (x,P) are “hard”

OPT (c,P ′) and SEP (x,P ′) are “easy”

Q′′ can be represented explicitly (description has polynomial size)

P ′ must be represented implicitly (description has exponential size)
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Example - Traveling Salesman Problem

Classical Formulation

x(δ({u})) = 2 ∀u ∈ V
x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E
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Traditional Decomposition Methods

The Cutting Plane Method (CP) iteratively builds an outer approximation of P ′.

minx∈Rn{c⊤x | A′x ≥ b′, A′′x ≥ b′′}
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Traditional Decomposition Methods

The Dantzig-Wolfe Method (DW) iteratively builds an inner approximation of P ′.

min
λ∈R

F′
+

{c⊤(
P

s∈F′ sλs) : A′′(
P

s∈F′ sλs) ≥ b′′,
P

s∈F′ λs = 1}
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Traditional Decomposition Methods

The Dantzig-Wolfe Method (DW) iteratively builds an inner approximation of P ′.

min
λ∈R

F′
+

{c⊤(
P

s∈F′ sλs) : A′′(
P

s∈F′ sλs) ≥ b′′,
P

s∈F′ λs = 1}

The Lagrangian Method (LD) iteratively traces an inner approximation of P ′

maxu∈R
n
+

mins∈F′{(c⊤ − u⊤A′′)s + u⊤b′′}
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Common Threads

The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

The decomposition bound is obtained by optimizing over the intersection
of one explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩Q′′} ≥ zLP

Traditional decomp-based bounding methods contain two primary steps

Master Problem: Update the primal/dual solution information

Subproblem: Update the approximation of P′: SEP (x,P′) or OPT (c,P′)

Integrated decomposition methods further improve the bound by
considering two implicitly defined polyhedra whose descriptions are
iteratively refined.

Price and Cut (PC)

Relax and Cut (RC)

Decompose and Cut (DC)

Q′′

Q′ ∩ Q′′

c⊤
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Price and Cut

Price and Cut: Use DW as the bounding method. If we let F ′ = P ′ ∩ Z
n, then

zDW = min
λ∈R

F′
+

{c⊤(
X

s∈F′

sλs) : A′′(
X

s∈F′

sλs) ≥ b′′,
X

s∈F′

λs = 1}

As in the cutting plane method, separate x̂ =
P

s∈F′ sλ̂s from P and add cuts to [A′′, b′′].

Advantage: Cut generation takes place in the space of the compact formulation (the
original space), maintaining the structure of the column generation subproblem.
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Relax and Cut

Relax and Cut: Use LD as the bounding method.

zLD = max
u∈R

n
+

min
s∈F′

{(c⊤ − u⊤A′′)s + u⊤b′′}

In each iteration, separate ŝ ∈ argmins∈F′{(c⊤ − u⊤A′′)s + u⊤b′′}, a solution to the
Lagrangian relaxation.

Advantage: It is often much easier to separate a member of F ′ from P than an arbitrary
real vector, such as x̂.
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Decompose and Cut (in CPM)

Decompose and Cut: For each iteration of CPM, decompose into convex combo of e.p.’s of P ′.

min{0λ :
X

s∈F′

sλs = x̂,
X

s∈F′

λs = 1}

If x̂ lies outside P ′ the decomposition will fail
Its dual ray (a Farkas Cut) provides a valid and violated inequality
This tells us that our cuts are missing something related to P′

Original idea proposed by Ralphs for VRP
Later used in TSP Concorde by ABCC (Local Cuts)
Now being used for generic MILP by Gurobi

The machinery for solving this already exists (=column generation)

Often gets lucky and produces incumbent solutions to original IP
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Decompose and Cut (in PC)

Run CPM+DC for a few iterations using Farkas cuts to push point into P ′. Upon
successful decomposition, use this as initial seed columns.

Jump starts master bound z0
DW = zCP

Often gets lucky and produces incumbent solutions to original IP

Rather than (or in addition to) separating x̂, separate each member of {s ∈ F ′ | λ̂s > 0}.

As with RC, much easier to separate members of F ′ from P than x̂.

RC only gives us one member of F ′ to separate, while PC gives us a set, one of which
must be violated by any inequality violated by x̂.
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Branching in Price and Cut

Many complex approaches possible, but we can simply branch on variables in the original
compact space using:

x̂ =
X

s∈F′

sλ̂s

This is equivalent to branching on cuts in the reformulated space. Simply add the original
column bounds into [A′′, b′′].

This simple idea takes care of (most) of the design issues related to branching including
dichotomy and dual updates in pricing.

Current Limitation: Identical subproblems are currently treated like non-identical (bad for
symmetry).

Review and Classification of Branching Schemes for Branch-and-price by Francois Vanderbeck

In some cases, we can still get around this using this framework
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DIP Framework: Motivation

DIP Framework

DIP (Decomposition for Integer Programming) is a software framework that provides a virtual
sandbox for testing and comparing various decomposition-based bounding methods.

It’s very difficult to compare the variants discussed here in a controlled way.

The method for separation/optimization over P ′ is the primary application-dependent
component of any of these algorithms.

DIP abstracts the common, generic elements of these methods.

Key: The user defines application-specific components in the space of the compact formulation.
The framework takes care of reformulation and implementation for all variants described here.
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DIP Framework: Implementation

COmputational INfrastructure for Operations Research
Have some DIP with your CHiPPs?

DIP was built around data structures and interfaces provided by COIN-OR.

The DIP framework, written in C++, is accessed through two user interfaces:

Applications Interface: DipApp

Algorithms Interface: DipAlgo

DIP provides the bounding method for branch and bound.

ALPS (Abstract Library for Parallel Search) provides the framework for parallel tree search.

AlpsDipModel : public AlpsModel
a wrapper class that calls (data access) methods from DipApp

AlpsDipTreeNode : public AlpsTreeNode
a wrapper class that calls (algorithmic) methods from DipAlgo
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DIP Features

One interface to all default algorithms: CP/DC, DW, LD, PC, RC.

Automatic reformulation allows users to deal with vars and cons in the original space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

Can utilize CGL cuts in all algorithms (separate from original space).

Design question: What about LP-based cuts (Gomory, L&P)?

General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.

Column generation based on multiple algorithms can be easily defined and employed.

Can derive bounds based on multiple model/algorithm combinations.

Provides default (naive) branching rules in the original space.

Active LP compression, variable and cut pool management.

Flexible parameter interface: command line, param file, direct call overrides.

Threaded oracle for block angular case.
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DIP - Applications

The base class DipApp provides an interface for the user to define the application-specific
components of their algorithm.

In order to develop an application, the user must derive the following methods/objects.

DipApp::createModels(). Define [A′′, b′′] and [A′, b′] (optional).
TSP 1-Tree: [A′′, b′′] define the 2-matching constraints.
TSP 2-Match: [A′′, b′′] define trivial subtour constraints.

DipApp::isUserFeasible(). Does x∗ define a feasible solution?
TSP: do we have a feasible tour?

DipApp::solveRelaxed(). Provide a subroutine for OPT (c,P ′).
This is optional as well, if [A′, b′] is defined (it will call the built in IP solver, currently CBC).
TSP 1-Tree: provide a solver for 1-tree.
TSP 2-Match: provide a solver for 2-matching.

All other methods have appropriate defaults but are virtual and may be overridden.
DipApp::heuristics()
DipApp::generateInitVars()
DipApp::generateCuts()
...
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DIP Framework: Compare and Contrast to BCP

Limitations:

BCP: The user must derive methods for almost all of the algorithmic components: (master
reformulation, expansion of rows and columns, branching in reformulated space, calculation of
pricing mechanisms like reduced cost, etc).

DIP: There exists a compact formulation which forms the basis of the model attributes.

Design:

BCP: The user defines the model attributes and algorithmic components based on one pre-defined
solution method (i.e., PC or CPM).

DIP: The user defines the model attributes and algorithmic components based on one pre-defined
compact formulation. The different algorithmic details are managed by the framework.

Parallelization:

BCP: Designed for shared or distributed memory for branch-and-bound search.

DIP: Threaded for block angular shared memory processing.

DIP: Built on top of Alps so potential for fully distributed branch-and-bound search (in the future).
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DIP - Algorithms

The base class DipAlgo provides the shell (init / master / subproblem / update).

Each of the methods described has derived default implementations DipAlgoX : public

DipAlgo which are accessible by any application class, allowing full flexibility.

New, hybrid or extended methods can be easily derived by overriding the various
subroutines, which are called from the base class. For example,

Alternative methods for solving the master LP in DW, such as interior point methods.

Add stabilization to the dual updates in LD, as in bundle methods.

For LD, replace subgradient with Volume, providing an approximate primal solution.

Hybrid methods like using LD to initialize the columns of the DW master.

During PC, adding cuts to either master and subproblem.

...

DecompAlgo

DecompAlgoUSERDecompAlgoRCDecompAlgoPCDecompAlgoC
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DIP - Applications

Table: COIN/DIP Applications

Application Description P ′ Cuts Input
SmallIP intro example, tiny IP MILP CGL user
MCF intro BCP to DIP example NetFlow CGL user
MILP random partition into A′, A′′ MILP CGL mps/lp
MILPBlock user-defined blocks for A′ MILP(s) CGL mps/lp, block
AP3 3-index assignment AP user user
GAP generalized assignment KP(s) CGL user
MAD matrix decomposition MaxClique CGL user
MMKP multi-dim/choice knapsack MCKP CGL user

MDKP CGL user
TSP traveling salesman problem 1Tree Concorde user

2Match Concorde user
VRP vehicle routing problem mTSP CVRPSEP user

kTree CVRPSEP user
q-Route(s) CVRPSEP user

ATM cash management (SAS COE) MILP(s) CGL user
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Application - ATM Cash Management Problem - Business Problem

SAS Center of Excellence in Operations Research Applications (OR COE)

Determine schedule for allocation of cash inventory at branch banks to service ATMs

Given historical training data per day/ATM first define polynomial fit for predicted cash
flow need

Determine the multipliers for fit to minimize mismatch based on predicted withdrawals

Constraints

Amount of cash allocated each day

For each ATM, limit on number of days cash flow can be less than predicted withdrawal
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Application - ATM Cash Management Problem - MINLP Formulation

Simple looking nonconvex quadratic integer NLP

”it is not interesting for MINLP - it is too easy”

Linearize the absolute value, add binaries for count constraints.

So far, no MINLP solvers seem to be able to solve this (several die with numerical failures).

min
X

a∈A,d∈D

|fad|

s.t. cx
adxa + cy

ad
ya + cxy

ad
xaya + cu

adua + cad = fad ∀a ∈ A, d ∈ D
X

a∈A

fad ≤ Bd ∀d ∈ D

|{d ∈ D | fad < 0}| ≤ Ka ∀a ∈ A

xa, ya ∈ [0, 1] ∀a ∈ A

ua ≥ 0 ∀a ∈ A

fad ∈ [0, wad] ∀a ∈ A, d ∈ D
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Application - ATM Cash Management Problem - MILP Approx Formulation

Discretization of x domain {0, 0.1, 0.2, ..., 1.0}.
Linearization of product of binary and continuous, and absolute value.

min
X

a∈A,d∈D

f+

ad
+ f−

ad

s.t. cx
ad

X

t∈T

ctxat + cy
ad

ya + cxy
ad

X

t∈T

ctzat + cu
adua + cad = f+

ad
− f−

ad
∀a ∈ A, d ∈ D

X

t∈T

xat ≤ 1 ∀a ∈ A

zat ≤ xat ∀a ∈ A, t ∈ T

zat ≥ ya ∀a ∈ A, t ∈ T

zat ≥ xat + ya − 1 ∀a ∈ A, t ∈ T

f−

ad
≤ wadvad ∀a ∈ A, d ∈ D

X

a∈A

f+

ad
− f−

ad
≤ Bd ∀d ∈ D

X

d∈D

vad ≤ Ka ∀a ∈ A
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Application - ATM Cash Management Problem - MILP Approx Formulation

xat ∈ {0, 1} ∀a ∈ A, t ∈ T

zat ∈ [0, 1] ∀a ∈ A, t ∈ T

vad ∈ {0, 1} ∀a ∈ A, d ∈ D

ya ∈ [0, 1] ∀a ∈ A

ua ≥ 0 ∀a ∈ A

f+

ad
, f−

ad
∈ [0, wad] ∀a ∈ A, d ∈ D

The MILP formulation has a natural block angular structure.
Master constraints are just the budget constraint.
Subproblem constraints (the rest) - one block for each ATM.
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Application - ATM Cash Management Problem - in DIP

Extremely easy to define this problem in DIP.

DipApp::createModels. Just define master constraints and blocks.

Master constraints (budget constraints).
Subproblem constraints (the rest) - one for each ATM.

Data setup: 648 lines of code.

> wc −l ATM Instance .∗
491 ATM Instance . cpp
157 ATM Instance . h
648 t o t a l

Model setup: 1221 lines of code (407 lines are comments).

> wc −l ATM Dip∗.∗
951 ATM DipApp . cpp
197 ATM DipApp . h
73 ATM DipParam . h

1221 t o t a l
> grep ”//” ATM Dip∗.∗ | wc −l
407

Nothing else is necessary to solve this model in DIP!
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Computational Results - ATM Cash Management Problem (5 min)
DIP1.0 CPX11

|A| |D| s Time Gap Nodes Time Gap Nodes

5 25 1 1.76 OPT 7 0.76 OPT 467
5 25 2 3.18 OPT 21 1.41 OPT 804
5 25 3 4.52 OPT 24 0.43 OPT 147
5 25 4 2.89 OPT 26 1.51 OPT 714
5 25 5 5.12 OPT 8 0.15 OPT 32

5 50 1 T 3.88% 331 T ∞ 64081
5 50 2 T 0.20% 458 88.46 OPT 38341
5 50 3 29.40 OPT 46 8.10 OPT 3576
5 50 4 2.49 OPT 3 4.16 OPT 1317
5 50 5 T 1.08% 448 57.50 OPT 32443

10 50 1 T 0.22% 487 T 3.79% 76376
10 50 2 109.47 OPT 99 T ∞ 58130
10 50 3 T 0.11% 403 T ∞ 41236
10 50 4 6.03 OPT 1 T 1.92% 93891
10 50 5 7.02 OPT 3 T 0.17% 158470

10 100 1 T 1.80% 38 T ∞ 13581
10 100 2 T 1.90% 101 T ∞ 9486
10 100 3 T 1.57% 112 T ∞ 9080
10 100 4 T 3.44% 19 T ∞ 10766
10 100 5 T 1.15% 35 T ∞ 11807

20 100 1 T 0.02% 7 T ∞ 8786
20 100 2 T 1.12% 26 T ∞ 3773
20 100 3 T 0.22% 164 T ∞ 5878
20 100 4 T 0.64% 306 T ∞ 7613
20 100 5 T 0.11% 538 T ∞ 4775
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Computational Results - ATM Cash Management Problem (1 hr)
DIP1.0 CPX11

|A| |D| s Time Gap Nodes Time Gap Nodes

5 25 1 1.83 OPT 7 0.76 OPT 467
5 25 2 4.49 OPT 21 1.41 OPT 804
5 25 3 6.15 OPT 24 0.42 OPT 147
5 25 4 4.25 OPT 26 1.49 OPT 714
5 25 5 5.12 OPT 8 0.16 OPT 32

5 50 1 639.69 OPT 291 T 0.10% 1264574
5 50 2 2244.28 OPT 791 87.96 OPT 38341
5 50 3 30.27 OPT 46 8.09 OPT 3576
5 50 4 2.36 OPT 3 4.13 OPT 1317
5 50 5 T 0.76% 439 57.55 OPT 32443

10 50 1 1543.85 OPT 709 T 0.76% 998624
10 50 2 107.89 OPT 99 1507.84 OPT 351879
10 50 3 T 0.11% 1496 T 0.81% 667371
10 50 4 5.82 OPT 1 1319.00 OPT 433155
10 50 5 6.61 OPT 3 365.51 OPT 181013

10 100 1 T 1.11% 87 T ∞ 128155
10 100 2 T 1.43% 6017 T ∞ 116522
10 100 3 T 0.95% 334 T ∞ 118617
10 100 4 T 2.50% 126 T ∞ 108899
10 100 5 T 1.11% 179 T ∞ 167617

20 100 1 358.38 OPT 8 T ∞ 93519
20 100 2 T 0.61% 126 T ∞ 68863
20 100 3 T 0.18% 365 T ∞ 95981
20 100 4 T 0.11% 224 T ∞ 81836
20 100 5 T 0.11% 220 T ∞ 101917
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Application - Block Angular MILP (as a Generic Framework)

DIP provides a black-box framework for applying Branch-Cut-And-Price to generic MILP.
This is the first framework to do this (to my knowledge).
Similar efforts are being talked about by F. Vanderbeck BaPCod.

Currently, the only input needed is MPS/LP and a block file.

Future work will attempt to embed automatic recognition of the block angular structure
using packages from linear algebra like: MONET, hMETIS, Mondriaan.
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Application - Block Angular MILP (applied to Retail Optimization)

SAS Retail Optimization Solution

The following problem comes from SAS Retail Optimization.

It is related to a multi-tiered supply chain distribution problem where each block represents
a store.

Table: One hour time limit

DIP-PC DIP-Hyb CPX11
Instance Time Gap Nodes Time Gap Nodes Time Gap Nodes

retail3 0.39 OPT 1 10.51 OPT 1 T 2.30% 2674921
retail27 2.88 OPT 1 12.36 OPT 1 T 0.49% 1434931
retail4 87.81 OPT 1 100.66 OPT 1 T 19.57% 991976
retail6 528.91 OPT 1866 176.35 OPT 984 T 0.01% 2632157

retail31 554.63 OPT 54 1159.46 OPT 495 T 1.61% 1606911
retail33 T 99.49% 5318 T 29.32% 329 T 0.01% 288257

Note: retail33 LowerBound: CPX11 = 492, DIP-PC = 562
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Current Computational Research for Price and Cut

Can we implement Gomory cuts in Price and Cut?
Similar to Interior Point crossover to Simplex, we can crossover from x̂ to a feasible basis, load
that into the solver and generate tableau cuts.
Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.

Decomp and Cut is expensive but has many potential benefits. What is the trade-off?
Generation of initial columns to start Price and Cut. Gives z0

DW = zCP .
If the initial x̂ is not in P′, Farkas cuts can move the point to the interior.
Along the way, we might generate incumbents for zIP .

Nested pricing.

Choose an oracle with P′ and a restriction P̂′ ⊂ P′.
Price exactly (for bounds) on P′, but generate columns heuristically on P̂′.

Feasibility pump for Price and Cut.
Given s ∈ F ′, solve an auxiliary MILP feasible to P′ minimizing the L1 norm between s and A′′.

For block angular case, solve the master (small model) as an IP at end of each B&B node.

Cheap, often produces incumbents.

Built on top of ALPS - so parallelization of the B&B should be easy to try.
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Summary

Traditional Decomposition Methods approximate P as P ′ ∩ Q′′.
P′ ⊃ P may have a large description.

Integrated Decomposition Methods approximate P as PI ∩ PO.
Both PI ⊂ P′ and PO ⊃ P may have a large description.

DIP provides an easy-to-use framework for comparing and developing various
decomposition-based bounding methods.

The user only needs to define the components based on the compact formulation (irrespective of
algorithm).

The interface to ALPS allows us to investigate large-scale problems on distributed networks.

The code is open-source, currently released under CPL and available through the COIN-OR
project repository www.coin-or.org.

Related publications:

T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming,
Mathematical Programming 106 (2006), 261

T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and
Practice, John Karlof, ed. (2005), 57

Galati, Ralphs A Framework for Decomposition in IP



Traditional Methods
Integrated Methods
Decompose and Cut

DIP Framework
Application: ATM Cash Management Problem

Application: Block Angular MILP
Work in Progress

Summary

Traditional Decomposition Methods approximate P as P ′ ∩ Q′′.
P′ ⊃ P may have a large description.

Integrated Decomposition Methods approximate P as PI ∩ PO.
Both PI ⊂ P′ and PO ⊃ P may have a large description.

DIP provides an easy-to-use framework for comparing and developing various
decomposition-based bounding methods.

The user only needs to define the components based on the compact formulation (irrespective of
algorithm).

The interface to ALPS allows us to investigate large-scale problems on distributed networks.

The code is open-source, currently released under CPL and available through the COIN-OR
project repository www.coin-or.org.

Related publications:

T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming,
Mathematical Programming 106 (2006), 261

T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and
Practice, John Karlof, ed. (2005), 57

Galati, Ralphs A Framework for Decomposition in IP



Traditional Methods
Integrated Methods
Decompose and Cut

DIP Framework
Application: ATM Cash Management Problem

Application: Block Angular MILP
Work in Progress

Summary

Traditional Decomposition Methods approximate P as P ′ ∩ Q′′.
P′ ⊃ P may have a large description.

Integrated Decomposition Methods approximate P as PI ∩ PO.
Both PI ⊂ P′ and PO ⊃ P may have a large description.

DIP provides an easy-to-use framework for comparing and developing various
decomposition-based bounding methods.

The user only needs to define the components based on the compact formulation (irrespective of
algorithm).

The interface to ALPS allows us to investigate large-scale problems on distributed networks.

The code is open-source, currently released under CPL and available through the COIN-OR
project repository www.coin-or.org.

Related publications:

T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming,
Mathematical Programming 106 (2006), 261

T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and
Practice, John Karlof, ed. (2005), 57

Galati, Ralphs A Framework for Decomposition in IP



Traditional Methods
Integrated Methods
Decompose and Cut

DIP Framework
Application: ATM Cash Management Problem

Application: Block Angular MILP
Work in Progress

Summary

Traditional Decomposition Methods approximate P as P ′ ∩ Q′′.
P′ ⊃ P may have a large description.

Integrated Decomposition Methods approximate P as PI ∩ PO.
Both PI ⊂ P′ and PO ⊃ P may have a large description.

DIP provides an easy-to-use framework for comparing and developing various
decomposition-based bounding methods.

The user only needs to define the components based on the compact formulation (irrespective of
algorithm).

The interface to ALPS allows us to investigate large-scale problems on distributed networks.

The code is open-source, currently released under CPL and available through the COIN-OR
project repository www.coin-or.org.

Related publications:

T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming,
Mathematical Programming 106 (2006), 261

T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and
Practice, John Karlof, ed. (2005), 57

Galati, Ralphs A Framework for Decomposition in IP



Traditional Methods
Integrated Methods
Decompose and Cut

DIP Framework
Application: ATM Cash Management Problem

Application: Block Angular MILP
Work in Progress

Summary

Traditional Decomposition Methods approximate P as P ′ ∩ Q′′.
P′ ⊃ P may have a large description.

Integrated Decomposition Methods approximate P as PI ∩ PO.
Both PI ⊂ P′ and PO ⊃ P may have a large description.

DIP provides an easy-to-use framework for comparing and developing various
decomposition-based bounding methods.

The user only needs to define the components based on the compact formulation (irrespective of
algorithm).

The interface to ALPS allows us to investigate large-scale problems on distributed networks.

The code is open-source, currently released under CPL and available through the COIN-OR
project repository www.coin-or.org.

Related publications:

T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming,
Mathematical Programming 106 (2006), 261

T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and
Practice, John Karlof, ed. (2005), 57

Galati, Ralphs A Framework for Decomposition in IP



Traditional Methods
Integrated Methods
Decompose and Cut

DIP Framework
Application: ATM Cash Management Problem

Application: Block Angular MILP
Work in Progress

Example - TSP

Separation of Subtour Inequalities:

x(E(S)) ≤ |S| − 1

SEP (x, Subtour), for x ∈ R
n can be solved in O(|V |4) (Min-Cut)

SEP (s, Subtour), for s a 2-matching, can be solved in O(|V |)

Simply determine the connected components Ci, and set S = Ci for each component (each gives
a violation of 1).
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Example - TSP
Separation of Comb Inequalities:

x(E(H)) +
k

X

i=1

x(E(Ti)) ≤ |H| +
k

X

i=1

(|Ti| − 1) − ⌈k/2⌉

SEP (x, Blossoms), for x ∈ R
n can be solved in O(|V |5) (Padberg-Rao)

SEP (s, Blossoms), for s a 1-Tree, can be solved in O(|V |2)
Construct candidate handles H from BFS tree traversal and an odd (>= 3) set of edges with one
endpoint in H and one in V \ H as candidate teeth (each gives a violation of ⌈k/2⌉ − 1).

This can also be used as a quick heuristic to separate 1-Trees for more general comb structures, for
which there is no known polynomial algorithm for separation of arbitrary vectors.
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