A Framework for Decomposition in Integer Programming

Matthew Galati! Ted Ralphs?

1SAS Institute, Advanced Analytics, Operations Research R & D

2 CORGL Lab, Department of Industrial and Systems Engineering, Lehigh University

INFORMS Annual Meeting 2009
San Diego, CA

Galati, Ralphs A Framework for Decomposition in IP

Outline

@ Traditional Decomposition Methods

© Integrated Decomposition Methods

© Decompose and Cut

@ DIP Framework

© Application: ATM Cash Management Problem
@ Application: Block Angular MILP

0 Work in Progress

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

The Decomposition Principle in Integer Programming

relaxation, we can improve the bound yielded by the LP relaxation.

Basic Idea: By leveraging our ability to solve the optimization/separation problem for aJ

. ’ 1Al 17" © © O O O
zip = mm{ch\A:czb,szb}
TEL™
o (] [] L]
. .
. . .
© [} [} [} [}
P =conv{z € Z" | Alx > b/, Az > b/
Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
relaxation, we can improve the bound yielded by the LP relaxation. J

zip = min {ch | Az >0, A"z > 0"}
VA

zLp = m]iRn {cTz’ | Az >0, A2 > b}
zeR™

Q' ={zeR™ | Alxc >0}
Q" ={zeR™ | Az > b}

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
relaxation, we can improve the bound yielded by the LP relaxation. J

zip = min {ch | Az >0, A"z > 0"}
VA

zLp = m]iRn {cTz’ | Az >0, A2 > b}
zeR™

zp = min{c'z|A"z>b"}
z€P’

P! = conv{z € 2™ | Az > b’}

_______ Q' ={z eR™ | Az > b}

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
relaxation, we can improve the bound yielded by the LP relaxation. J

zip = min {ch | Az >0, A"z > 0"}
VA

zLp = m]iRn {cTz’ | Az >0, A2 > b}
zeR™

zp = min{c'z|A"z>b"}
z€P’

2[p 2 2D 2 ZLP

P =conv{z € Z" | Alx > b/, Az > b/
P’ = conv{x € 2" | A’z > '}

Q' ={zeR™ | Alx >0}

Q" ={zer™ | Az >}

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
relaxation, we can improve the bound yielded by the LP relaxation. J

zip = min {ch | Az >0, A"z > 0"}
VA

zLp = m]iRn {cTz’ | Az >0, A2 > b}
zeR™

zp = min{c'z|A"z>b"}
z€P’

2[p 2 2D 2 ZLP

Assumptions: ———— P =conv{z €z | A’z > b, Az > b/’
o OPT(c,P) and SEP(z,P) are “hard” P =@l € 70 | Az 2 ')
Q' ={z eR™ | Alz >}
@ OPT(c,P') and SEP(z,P’) are “easy”

Q" = (@ € R | Aa > b}
@ Q" can be represented explicitly (description has polynomial size)

@ P’ must be represented implicitly (description has exponential size)

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

Example - Traveling Salesman Problem

Classical Formulation

z(6({u})) = 2 Yu eV
«(E(S)) < ISI-1 ¥ScCV,3<S|<|V|-1
ze € {0,1} Ve e E

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

Example - Traveling Salesman Problem

Classical Formulation

z(0({u})) = 2 Yu €V

2(B(S) < IS|-1 ¥SCV,3<IS|<|V]—1

ze € {0,1} Ve e E

Two Relaxations
1-Tree

=(6({0})) = 2
z(E(V\{0})) = [V|-2
z(E(S)) < ISl=1 vScVvA\{o},3<[SI<|V[-1
ze € {0,1} Vee E

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

Example - Traveling Salesman Problem

Classical Formulation

z(6({u})) = 2 Yu eV
2(B(S)) < |S|-1 ¥ScV,3<[S|<|V|—1 @
ze € {0,1} Ve e E
Two Relaxations
1-Tree
z(6({0})) = 2
z(E(V\{0})) = [V[-2
z(E(S)) < [SI=1 VScV\{0},3<|S|<|V[-1
ze € {0,1} Vee E
2-Matching
z(0(u)) = 2 YueV
ze € {0,1} Vee E 0§>,

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

Traditional Decomposition Methods

The Cutting Plane Method (CP) iteratively builds an outer approximation of P’.

mingepn {c'x | Az > b, A"z > b}

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

Traditional Decomposition Methods

The Dantzig-Wolfe Method (DW) iteratively builds an inner approximation of P’.

minAeRf/ {cT (ser 8Xs) t AT (D e 8As) 20,30 cm As = 1}

BB B

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

Traditional Decomposition Methods

The Dantzig-Wolfe Method (DW) iteratively builds an inner approximation of P’.

minAeRf/ {cT (ser 8Xs) t AT (D e 8As) 20,30 cm As = 1}

BB B

The Lagrangian Method (LD) iteratively traces an inner approximation of P’

maxy egn minge 7 {(cT —uT A")s +uTd"}

By B

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

Traditional Decomposition Methods

The Dantzig-Wolfe Method (DW) iteratively builds an inner approximation of P’.

minAeRf/ {cT (ser 8Xs) t AT (D e 8As) 20,30 cm As = 1}

BB B

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

Common Threads

9 The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

. T ’ 7"
_ , .,
Z[P—II’EII}L{C z|z€EQ o"}

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

Common Threads

9 The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

. T ’ 7"
_ , .,
Z[P—II’EII}L{C z|z€EQ o"}

9 The decomposition bound is obtained by optimizing over the intersection
of one explicitly defined polyhedron and one implicitly defined polyhedron.

ZCOP = 2DW = ZLD = 2D = nel]iRn {CT."L’ lzeP' NQ"} > 21p
ZERT
9 Traditional decomp-based bounding methods contain two primary steps
@ Master Problem: Update the primal/dual solution information
@ Subproblem: Update the approximation of P’: SEP(z,P’) or OPT(c, P’)

Galati, Ralphs A Framework for Decomposition in IP

Traditional Methods

Common Threads

9 The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

. T ’ 7"
_ ,
Z[P—II’EII}L{C z|z€EQ o"}

9 The decomposition bound is obtained by optimizing over the intersection
of one explicitly defined polyhedron and one implicitly defined polyhedron.

ZCOP = 2DW = ZLD = 2D = nel]iRn {CT.Z’ lzeP' NQ"} > 21p
ZERT
9 Traditional decomp-based bounding methods contain two primary steps
@ Master Problem: Update the primal/dual solution information
@ Subproblem: Update the approximation of P’: SEP(z,P’) or OPT(c, P’)

9 Integrated decomposition methods further improve the bound by

considering two implicitly defined polyhedra whose descriptions are t 7 Ce

iteratively refined. : .
@ Price and Cut (PC)) t
@ Relax and Cut (RC) R -V

@ Decompose and Cut (DC)

Galati, Ralphs A Framework for Decomposition in IP

Integrated Methods

Price and Cut

Price and Cut: Use DW as the bounding method. If we let 7/ = P’ N Z™, then

zpw = min {c'(Z shs) + A”(Z shs) > b, Z As =1}
AeRZ’

F seF! seF! seF!

9 As in the cutting plane method, separate & = 3~/ s\s from P and add cuts to [A”, b"].

o Advantage: Cut generation takes place in the space of the compact formulation (the
original space), maintaining the structure of the column generation subproblem.

Galati, Ralphs A Framework for Decomposition in IP

Integrated Methods

Relax and Cut

Relax and Cut: Use LD as the bounding method.

. T T Al T
= ma 2t —u AT b
w20 = o miplle” —uTAa 4wty

o In each iteration, separate § € argmin, . 7/ {(c” —u' A”)s +uTb"}, a solution to the
Lagrangian relaxation.

@ Advantage: It is often much easier to separate a member of F’ from P than an arbitrary
real vector, such as .

Galati, Ralphs A Framework for Decomposition in IP

Decompose and Cut

Decompose and Cut (in CPM)

Decompose and Cut: For each iteration of CPM, decompose into convex combo of e.p.’s of P’.

min{O\ : Z SAs = T, Z As =1}

SEF’ SEF’

Galati, Ralphs A Framework for Decomposition in IP

Decompose and Cut

Decompose and Cut (in CPM)

Decompose and Cut: For each iteration of CPM, decompose into convex combo of e.p.’s of P’.

min{O\ : Z SAs = T, Z As =1}

SEF’ SEF’

@ If # lies outside P’ the decomposition will fail
@ Its dual ray (a Farkas Cut) provides a valid and violated inequality
@ This tells us that our cuts are missing something related to P’

Galati, Ralphs A Framework for Decomposition in IP

Decompose and Cut

Decompose and Cut (in CPM)

Decompose and Cut: For each iteration of CPM, decompose into convex combo of e.p.’s of P’.

min{O\ : Z SAs = T, Z As =1}

SEF’ SEF’

@ If # lies outside P’ the decomposition will fail
@ Its dual ray (a Farkas Cut) provides a valid and violated inequality
@ This tells us that our cuts are missing something related to P’
@ Original idea proposed by Ralphs for VRP
¢ Later used in TSP Concorde by ABCC (Local Cuts)
@ Now being used for generic MILP by Gurobi

Galati, Ralphs A Framework for Decomposition in IP

Decompose and Cut

Decompose and Cut (in CPM)

Decompose and Cut: For each iteration of CPM, decompose into convex combo of e.p.’s of P’.

min{O\ : Z SAs = T, Z As =1}

SEF’ SEF’

@ If # lies outside P’ the decomposition will fail
@ Its dual ray (a Farkas Cut) provides a valid and violated inequality
@ This tells us that our cuts are missing something related to P’
@ Original idea proposed by Ralphs for VRP
¢ Later used in TSP Concorde by ABCC (Local Cuts)
@ Now being used for generic MILP by Gurobi
@ The machinery for solving this already exists (=column generation)

9@ Often gets lucky and produces incumbent solutions to original IP

Galati, Ralphs A Framework for Decomposition in IP

Decompose and Cut

Decompose and Cut (in PC)

@ Run CPM+DC for a few iterations using Farkas cuts to push point into P’. Upon
successful decomposition, use this as initial seed columns.
@ Jump starts master bound z%w = zcp
@ Often gets lucky and produces incumbent solutions to original IP

o Rather than (or in addition to) separating #, separate each member of {s € F’ | A5 > 0}.

@ As with RC, much easier to separate members of '/ from P than z.

@ RC only gives us one member of F’ to separate, while PC gives us a set, one of which
must be violated by any inequality violated by z.

Galati, Ralphs A Framework for Decomposition in IP

Decompose and Cut

Branching in Price and Cut

@ Many complex approaches possible, but we can simply branch on variables in the original
compact space using:
i3 = Z SAs

seF’

@ This is equivalent to branching on cuts in the reformulated space. Simply add the original
column bounds into [A”, b"].

9 This simple idea takes care of (most) of the design issues related to branching including
dichotomy and dual updates in pricing.

@ Current Limitation: ldentical subproblems are currently treated like non-identical (bad for
symmetry).

@ Review and Classification of Branching Schemes for Branch-and-price by Francois Vanderbeck

@ In some cases, we can still get around this using this framework

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Framework: Motivation

DIP Framework
DIP (Decomposition for Integer Programming) is a software framework that provides a virtual
sandbox for testing and comparing various decomposition-based bounding methods.

o Allcs
s MIP foCrsto PO

Decomposition

r%u]\?XMIES

A Reference for
the Rest of Us!

by MashewGalati

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Framework: Motivation

DIP Framework
DIP (Decomposition for Integer Programming) is a software framework that provides a virtual
sandbox for testing and comparing various decomposition-based bounding methods.

9 It's very difficult to compare the variants discussed here in a controlled way.
@ The method for separation/optimization over P’ is the primary application-dependent

component of any of these algorithms.

Decomposition
FOR

EuMMIE.S

A Reference for
the Rest of Us!

DIP Framework

DIP Framework: Motivation

DIP Framework

DIP (Decomposition for Integer Programming) is a software framework that provides a virtual
sandbox for testing and comparing various decomposition-based bounding methods.

9 It's very difficult to compare the variants discussed here in a controlled way.

@ The method for separation/optimization over P’ is the primary application-dependent
component of any of these algorithms.
9@ DIP abstracts the common, generic elements of these methods.

@ Key: The user defines application-specific components in the space of the compact formulation.
@ The framework takes care of reformulation and implementation for all variants described here.

Decomposition
FOR

EuMMIE.S

A Reference for
the Rest of Us!

by MashewGalati

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Framework: Implementation

COmputational INfrastructure for Operations Research
Have some DIP with your CHiPPs?

@ DIP was built around data structures and interfaces provided by COIN-OR.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Framework: Implementation

COmputational INfrastructure for Operations Research
Have some DIP with your CHiPPs?

@ DIP was built around data structures and interfaces provided by COIN-OR.

@ The DIP framework, written in C++, is accessed through two user interfaces:
@ Applications Interface: DipApp
@ Algorithms Interface: DipAlgo

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Framework: Implementation

COmputational INfrastructure for Operations Research
Have some DIP with your CHiPPs?

@ DIP was built around data structures and interfaces provided by COIN-OR.

@ The DIP framework, written in C++, is accessed through two user interfaces:
@ Applications Interface: DipApp
@ Algorithms Interface: DipAlgo

@ DIP provides the bounding method for branch and bound.
@ ALPS (Abstract Library for Parallel Search) provides the framework for parallel tree search.

@ AlpsDipModel : public AlpsModel
@ a wrapper class that calls (data access) methods from DipApp

@ AlpsDipTreeNode : public AlpsTreeNode
@ a wrapper class that calls (algorithmic) methods from DipAlgo

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Features

@ One interface to all default algorithms: CP/DC, DW, LD, PC, RC.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Features

@ One interface to all default algorithms: CP/DC, DW, LD, PC, RC.

9@ Automatic reformulation allows users to deal with vars and cons in the original space.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Features

@ One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
9@ Automatic reformulation allows users to deal with vars and cons in the original space.

o Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Features

<

One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
Automatic reformulation allows users to deal with vars and cons in the original space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

¢ ¢ ¢

Can utilize CGL cuts in all algorithms (separate from original space).
@ Design question: What about LP-based cuts (Gomory, L&P)?
@ General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Features

<

One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
Automatic reformulation allows users to deal with vars and cons in the original space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

¢ ¢ ¢

Can utilize CGL cuts in all algorithms (separate from original space).
@ Design question: What about LP-based cuts (Gomory, L&P)?
@ General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.

@ Column generation based on multiple algorithms can be easily defined and employed.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Features

<

One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
Automatic reformulation allows users to deal with vars and cons in the original space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

¢ ¢ ¢

Can utilize CGL cuts in all algorithms (separate from original space).
@ Design question: What about LP-based cuts (Gomory, L&P)?
@ General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
@ Column generation based on multiple algorithms can be easily defined and employed.

@ Can derive bounds based on multiple model/algorithm combinations.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Features

@ One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
9@ Automatic reformulation allows users to deal with vars and cons in the original space.

o Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
o Can utilize CGL cuts in all algorithms (separate from original space).

@ Design question: What about LP-based cuts (Gomory, L&P)?

@ General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.

@ Column generation based on multiple algorithms can be easily defined and employed.

@ Can derive bounds based on multiple model/algorithm combinations.

<

Provides default (naive) branching rules in the original space.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Features

<

One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
Automatic reformulation allows users to deal with vars and cons in the original space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

¢ ¢ ¢

Can utilize CGL cuts in all algorithms (separate from original space).
@ Design question: What about LP-based cuts (Gomory, L&P)?
@ General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
@ Column generation based on multiple algorithms can be easily defined and employed.
@ Can derive bounds based on multiple model/algorithm combinations.
o Provides default (naive) branching rules in the original space.

9@ Active LP compression, variable and cut pool management.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Features

<

One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
Automatic reformulation allows users to deal with vars and cons in the original space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

¢ ¢ ¢

Can utilize CGL cuts in all algorithms (separate from original space).
@ Design question: What about LP-based cuts (Gomory, L&P)?
@ General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
@ Column generation based on multiple algorithms can be easily defined and employed.
@ Can derive bounds based on multiple model/algorithm combinations.
o Provides default (naive) branching rules in the original space.
9@ Active LP compression, variable and cut pool management.

9 Flexible parameter interface: command line, param file, direct call overrides.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Features

<

One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
Automatic reformulation allows users to deal with vars and cons in the original space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

¢ ¢ ¢

Can utilize CGL cuts in all algorithms (separate from original space).
@ Design question: What about LP-based cuts (Gomory, L&P)?
@ General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
@ Column generation based on multiple algorithms can be easily defined and employed.
@ Can derive bounds based on multiple model/algorithm combinations.
o Provides default (naive) branching rules in the original space.
9@ Active LP compression, variable and cut pool management.
9 Flexible parameter interface: command line, param file, direct call overrides.

@ Threaded oracle for block angular case.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP - Applications

@ The base class DipApp provides an interface for the user to define the application-specific
components of their algorithm.

@ In order to develop an application, the user must derive the following methods/objects.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP - Applications

@ The base class DipApp provides an interface for the user to define the application-specific
components of their algorithm.

@ In order to develop an application, the user must derive the following methods/objects.

9 DipApp: :createModels (). Define [A” 0] and [A’, '] (optional).
@ TSP 1-Tree: [A”,b"'] define the 2-matching constraints.
& TSP 2-Match: [A”’,b"'] define trivial subtour constraints.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP - Applications

@ The base class DipApp provides an interface for the user to define the application-specific
components of their algorithm.

@ In order to develop an application, the user must derive the following methods/objects.

9 DipApp: :createModels (). Define [A” 0] and [A’, '] (optional).
@ TSP 1-Tree: [A”,b"'] define the 2-matching constraints.
& TSP 2-Match: [A”’,b"'] define trivial subtour constraints.

@ DipApp: :isUserFeasible(). Does z* define a feasible solution?
@ TSP: do we have a feasible tour?

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP - Applications

@ The base class DipApp provides an interface for the user to define the application-specific
components of their algorithm.

@ In order to develop an application, the user must derive the following methods/objects.

9 DipApp: :createModels (). Define [A” 0] and [A’, '] (optional).
@ TSP 1-Tree: [A”,b"'] define the 2-matching constraints.
& TSP 2-Match: [A”’,b"'] define trivial subtour constraints.

@ DipApp: :isUserFeasible(). Does z* define a feasible solution?
@ TSP: do we have a feasible tour?

o DipApp: :solveRelaxed(). Provide a subroutine for OPT(c, P’).

@ This is optional as well, if [A’, b'] is defined (it will call the built in IP solver, currently CBC).
@ TSP 1-Tree: provide a solver for 1-tree.
@ TSP 2-Match: provide a solver for 2-matching.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP - Applications

@ The base class DipApp provides an interface for the user to define the application-specific
components of their algorithm.

@ In order to develop an application, the user must derive the following methods/objects.

9 DipApp: :createModels (). Define [A” 0] and [A’, '] (optional).
@ TSP 1-Tree: [A”,b"'] define the 2-matching constraints.
& TSP 2-Match: [A”’,b"'] define trivial subtour constraints.

@ DipApp: :isUserFeasible(). Does z* define a feasible solution?
@ TSP: do we have a feasible tour?

o DipApp: :solveRelaxed(). Provide a subroutine for OPT(c, P’).
@ This is optional as well, if [A’, b'] is defined (it will call the built in IP solver, currently CBC).
@ TSP 1-Tree: provide a solver for 1-tree.
@ TSP 2-Match: provide a solver for 2-matching.

9 All other methods have appropriate defaults but are virtual and may be overridden.
@ DipApp: :heuristics()
¢ DipApp: :generateInitVars()
@ DipApp: :generateCuts()
O oo

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Framework: Compare and Contrast to BCP

@ Limitations:

@ BCP: The user must derive methods for almost all of the algorithmic components: (master
reformulation, expansion of rows and columns, branching in reformulated space, calculation of
pricing mechanisms like reduced cost, etc).

@ DIP: There exists a compact formulation which forms the basis of the model attributes.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Framework: Compare and Contrast to BCP

@ Limitations:

@ BCP: The user must derive methods for almost all of the algorithmic components: (master
reformulation, expansion of rows and columns, branching in reformulated space, calculation of
pricing mechanisms like reduced cost, etc).

@ DIP: There exists a compact formulation which forms the basis of the model attributes.
@ Design:

@ BCP: The user defines the model attributes and algorithmic components based on one pre-defined
solution method (i.e., PC or CPM).

@ DIP: The user defines the model attributes and algorithmic components based on one pre-defined
compact formulation. The different algorithmic details are managed by the framework.

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP Framework: Compare and Contrast to BCP

@ Limitations:

@ BCP: The user must derive methods for almost all of the algorithmic components: (master
reformulation, expansion of rows and columns, branching in reformulated space, calculation of
pricing mechanisms like reduced cost, etc).

@ DIP: There exists a compact formulation which forms the basis of the model attributes.

@ Design:

@ BCP: The user defines the model attributes and algorithmic components based on one pre-defined
solution method (i.e., PC or CPM).

@ DIP: The user defines the model attributes and algorithmic components based on one pre-defined
compact formulation. The different algorithmic details are managed by the framework.

9 Parallelization:
@ BCP: Designed for shared or distributed memory for branch-and-bound search.

@ DIP: Threaded for block angular shared memory processing.

@ DIP: Built on top of Alps so potential for fully distributed branch-and-bound search (in the future).

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP - Algorithms

9 The base class DipAlgo provides the shell (init / master / subproblem / update).

DecompAlgo

DecompAlgoC ‘ ‘ DecompAlgoPC ‘ ‘ DecompAlgoRC ‘ ‘ DecompAlgoUSER

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP - Algorithms

9 The base class DipAlgo provides the shell (init / master / subproblem / update).

@ Each of the methods described has derived default implementations DipAlgoX : public
DipAlgo which are accessible by any application class, allowing full flexibility.

DecompAlgo

DecompAlgoC ‘ ‘ DecompAlgoPC ‘ ‘ DecompAlgoRC ‘ ‘ DecompAlgoUSER

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP - Algorithms

9 The base class DipAlgo provides the shell (init / master / subproblem / update).
@ Each of the methods described has derived default implementations DipAlgoX : public
DipAlgo which are accessible by any application class, allowing full flexibility.

@ New, hybrid or extended methods can be easily derived by overriding the various
subroutines, which are called from the base class. For example,

@ Alternative methods for solving the master LP in DW, such as interior point methods.
@ Add stabilization to the dual updates in LD, as in bundle methods.

@ For LD, replace subgradient with Volume, providing an approximate primal solution.

@ Hybrid methods like using LD to initialize the columns of the DW master.

@ During PC, adding cuts to either master and subproblem.

DecompAlgo

DecompAlgoC ‘ ‘ DecompAlgoPC ‘ ‘ DecompAlgoRC ‘ ‘ DecompAlgoUSER

Galati, Ralphs A Framework for Decomposition in IP

DIP Framework

DIP - Applications

Table: COIN/DIP Applications

Application | Description P’ Cuts Input
SmalllP intro example, tiny IP MILP CGL user
MCF intro BCP to DIP example NetFlow CGL user
MILP random partition into A’, A" MILP CGL mps/Ip
MILPBlock | user-defined blocks for A’ MILP(s) CGL mps/Ip, block
AP3 3-index assignment AP user user
GAP generalized assignment KP(s) CGL user
MAD matrix decomposition MaxClique | CGL user
MMKP multi-dim/choice knapsack MCKP CGL user
MDKP CGL user
TSP traveling salesman problem 1Tree Concorde user
2Match Concorde user
VRP vehicle routing problem mTSP CVRPSEP | user
kTree CVRPSEP | user
g-Route(s) | CVRPSEP | user
ATM cash management (SAS COE) | MILP(s) CGL user

Galati, Ralphs A Framework for Decomposition in IP

Application: ATM Cash Management Problem

Application - ATM Cash Management Problem - Business Problem

SAS Center of Excellence in Operations Research Applications (OR COE)

@ Determine schedule for allocation of cash inventory at branch banks to service ATMs

@ Given historical training data per day/ATM first define polynomial fit for predicted cash
flow need

@ Determine the multipliers for fit to minimize mismatch based on predicted withdrawals
@ Constraints
@ Amount of cash allocated each day

@ For each ATM, limit on number of days cash flow can be less than predicted withdrawal

Galati, Ralphs A Framework for Decomposition in IP

Application: ATM Cash Management Problem

Application - ATM Cash Management Problem - MINLP Formulation

@ Simple looking nonconvex quadratic integer NLP

@ "jt is not interesting for MINLP - it is too easy”
@ Linearize the absolute value, add binaries for count constraints.

@ So far, no MINLP solvers seem to be able to solve this (several die with numerical failures).

min Z |fad‘

a€A,deD

st. ¢l ta + czdya + cfgmayu + cgqta + Cad = ffad VYa € A,d € D
> faa < By vde D
a€A
{d € D| faa < 0}| < Ka Va € A
Za, Ya € [0,1] Va € A
Ug >0 Va € A
Jad € [0, waq) Ya € A,d € D

Galati, Ralphs A Framework for Decomposition in IP

Application: ATM Cash Management Problem

Application - ATM Cash Management Problem - MILP Approx Formulation

o Discretization of z domain {0,0.1,0.2, ..., 1.0}.
@ Linearization of product of binary and continuous, and absolute value.

min Y S+ fa

a€A,deD

s.t. 2y Z CtZat + Czdya, 4= ng Z CtZat + ChgUa + Cad = ;71 - fo Va € A,d e D

teT teT

> wat <1 Vae A
teT
Zat < B Va e A, teT
Zat > Ya Vae A, teT
Zat >%at+Ya—1 Va€eAteT
fa:i < WadVad VaGA,de D
Zf{;rd_f(;d < Bg Vd € D
acA
> Vag < Ka Va € A
deD

Galati, Ralphs A Framework for Decomposition in IP

Application: ATM Cash Management Problem

Application - ATM Cash Management Problem - MILP Approx Formulation

Tat €{0,1} Vae AteT
Zat €1[0,1] Va€e A teT
Vad €{0,1} Va € A, de D
Ya € [0,1] Va € A
Ua >0 Ya € A
Fbo Foa € [0, wad] Va € A,d € D

@ The MILP formulation has a natural block angular structure.

@ Master constraints are just the budget constraint.
@ Subproblem constraints (the rest) - one block for each ATM.

Galati, Ralphs A Framework for Decomposition in IP

Application: ATM Cash Management Problem

Application - ATM Cash Management Problem - in DIP

@ Extremely easy to define this problem in DIP.
@ DipApp::createModels. Just define master constraints and blocks.

@ Master constraints (budget constraints).
@ Subproblem constraints (the rest) - one for each ATM.

9o Data setup: 648 lines of code.

> wc —| ATM_Instance.*
491 ATM.Instance.cpp
157 ATM.Instance.h
648 total

@ Model setup: 1221 lines of code (407 lines are comments).

> wc —| ATM_Dip*.x
951 ATM_DipApp. cpp
197 ATM_DipApp.h
73 ATM_DipParam.h
1221 total
> grep "//" ATM.Dip*.* | wc —I
407

@ Nothing else is necessary to solve this model in DIP!

Galati, Ralphs A Framework for Decompositi

Application: ATM Cash Management Problem

Galati, Ralphs

A Framework for Decomposi

s
5 25 | 1 1.76 OPT 7 0.76 OPT 467
5 25 | 2 3.18 OPT 21 1.41 OPT 804
5 25 | 3 4.52 OPT 24 0.43 OPT 147
5 25 | 4 2.89 OPT 26 1.51 OPT 714
5 25 | 5 5.12 OPT 8 0.15 OPT 32
5 50 | 1 T | 3.88% 331 T o 64081
5 50 | 2 T | 0.20% 458 88.46 OPT 38341
5 50 | 3 29.40 OPT 46 8.10 OPT 3576
5 50 | 4 2.49 OPT 3 4.16 OPT 1317
5 50 | 5 T | 1.08% 448 57.50 OPT 32443
10 50 | 1 T [0.22% 487 T [3.79% 76376
10 50 | 2 109.47 OPT 99 T) 58130
10 50 | 3 T | 0.11% 403 T) 41236
10 50 | 4 6.03 OPT 1 T | 1.92% 93891
10 50 | 5 7.02 OPT 3 T | 0.17% | 158470
10 | 100 | 1 T | 1.80% 38 T 0o 13581
10 | 100 | 2 T | 1.90% 101 T o) 9486
10 | 100 | 3 T | 1.57% 112 T 0 9080
10 | 100 | 4 T | 3.44% 19 T 0 10766
10 | 100 | 5 T | 1.15% 35 T) 11807
20 | 100 | 1 T | 0.02% 7 T 00 8786
20 | 100 | 2 T [1.12% 26 T 0 3773
20 | 100 | 3 T | 0.22% 164 T) 5878
20 | 100 | 4 T | 0.64% 306 T) 7613
20 | 100 | 5 T | 0.11% 538 T o) 4775

Application: ATM Cash Management Problem

Computational Results - ATM Cash Ma ment Problem (1 hr)

[[[bIpLo] \ [[_CPxil | \ I
[TA[[ID] [s || Time | Gap | Nodes [| Time | Gap | Nodes [|
5 25 | 1 1.83 OPT 7 0.76 OPT 467
5 25 | 2 4.49 OPT 21 1.41 OPT 804
5 25 | 3 6.15 OPT 24 0.42 OPT 147
5 25 | 4 4.25 OPT 26 1.49 OPT 714
5 25 | 5 5.12 OPT 8 0.16 OPT 32
5 50 | 1 639.69 OPT 291 T | 0.10% | 1264574
5 50 | 2 2244.28 OPT 791 87.96 OPT 38341
5 50 | 3 30.27 OPT 46 8.09 OPT 3576
5 50 | 4 2.36 OPT 3 4.13 OPT 1317
5 50 | 5 T | 0.76% 439 57.55 OPT 32443
10 50 | 1 1543.85 OPT 709 T | 0.76% 998624
10 50 | 2 107.89 OPT 99 1507.84 OPT 351879
10 50 | 3 T | 011% 1496 T | 0.81% 667371
10 50 | 4 5.82 OPT 1 1319.00 OPT 433155
10 50 | 5 6.61 OPT 3 365.51 OPT 181013
10 | 100 | 1 T | 1.11% 87 T o] 128155
10 | 100 | 2 T | 1.43% 6017 T o] 116522
10 | 100 | 3 T | 0.95% 334 T o) 118617
10 | 100 | 4 T | 2.50% 126 T o0 108899
10 | 100 | 5 T | 1.11% 179 T 0 167617
20 | 100 | 1 358.38 OPT 8 T] 93519
20 | 100 | 2 T | 0.61% 126 T o0 68863
20 | 100 | 3 T | 0.18% 365 T 0 95981
20 | 100 | 4 T | 0.11% 224 T o] 81836
20 | 100 | 5 T | 0.11% 220 T o) 101917

Galati, Ralphs A Framework for Decomposi in IP

Application: Block Angular MILP

Application - Block Angular MILP (as a Generic Framework)

9 DIP provides a black-box framework for applying Branch-Cut-And-Price to generic MILP.

@ This is the first framework to do this (to my knowledge).
@ Similar efforts are being talked about by F. Vanderbeck BaPCod.

@ Currently, the only input needed is MPS/LP and a block file.

@ Future work will attempt to embed automatic recognition of the block angular structure
using packages from linear algebra like: MONET, hMETIS, Mondriaan.

/Alll Ay A//k\
Alq

Ay

Al

Galati, Ralphs A Framework for Decomposition in IP

Application: Block Angular MILP

Application - Block Angular MILP (applied to Retail Optimization)

SAS Retail Optimization Solution
@ The following problem comes from SAS Retail Optimization.

9 It is related to a multi-tiered supply chain distribution problem where each block represents

a store.
Table: One hour time limit
I [[DIP-PC | I [[DIP-Hyb | I [cPxii | [|
|[Instance [| Time | Gap || Nodes || Time | Gap || Nodes || Time | Gap | Nodes ||
retail3 0.39 OPT 1 10.51 OPT 1 T 2.30% | 2674921
retail27 2.88 OPT 1 12.36 OPT 1 T 0.49% | 1434931
retail4 87.81 OPT 1 100.66 OPT 1 T | 19.57% 991976
retail6 528.91 OPT 1866 176.35 OPT 984 T 0.01% | 2632157
retail31 554.63 OPT 54 1159.46 OPT 495 T 1.61% | 1606911
retail33 T | 99.49% 5318 T | 29.32% 329 T 0.01% 288257

Note: retail33 LowerBound: CPX11 = 492, DIP-PC = 562

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Current Computational Research for Price and Cut

@ Can we implement Gomory cuts in Price and Cut?

@ Similar to Interior Point crossover to Simplex, we can crossover from & to a feasible basis, load
that into the solver and generate tableau cuts.
@ Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Current Computational Research for Price and Cut

@ Can we implement Gomory cuts in Price and Cut?

@ Similar to Interior Point crossover to Simplex, we can crossover from & to a feasible basis, load
that into the solver and generate tableau cuts.
@ Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.

@ Decomp and Cut is expensive but has many potential benefits. What is the trade-off?

@ Generation of initial columns to start Price and Cut. Gives zODW = zcp.
@ If the initial Z is not in P’, Farkas cuts can move the point to the interior.
@ Along the way, we might generate incumbents for z;p.

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Current Computational Research for Price and Cut

@ Can we implement Gomory cuts in Price and Cut?

@ Similar to Interior Point crossover to Simplex, we can crossover from & to a feasible basis, load
that into the solver and generate tableau cuts.
@ Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.

@ Decomp and Cut is expensive but has many potential benefits. What is the trade-off?

@ Generation of initial columns to start Price and Cut. Gives zODW = zcp.
@ If the initial Z is not in P’, Farkas cuts can move the point to the interior.
@ Along the way, we might generate incumbents for z;p.

9 Nested pricing.

& Choose an oracle with P’ and a restriction P/ C P’. .
@ Price exactly (for bounds) on P’, but generate columns heuristically on P’.

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Current Computational Research for Price and Cut

@ Can we implement Gomory cuts in Price and Cut?

@ Similar to Interior Point crossover to Simplex, we can crossover from & to a feasible basis, load
that into the solver and generate tableau cuts.
@ Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.

@ Decomp and Cut is expensive but has many potential benefits. What is the trade-off?

@ Generation of initial columns to start Price and Cut. Gives zODW = zcp.
@ If the initial Z is not in P’, Farkas cuts can move the point to the interior.
@ Along the way, we might generate incumbents for z;p.

9 Nested pricing.

& Choose an oracle with P’ and a restriction P/ C P’. .
@ Price exactly (for bounds) on P’, but generate columns heuristically on P’.

@ Feasibility pump for Price and Cut.

@ Given s € F', solve an auxiliary MILP feasible to P’ minimizing the L1 norm between s and A”’.

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Current Computational Research for Price and Cut

@ Can we implement Gomory cuts in Price and Cut?
@ Similar to Interior Point crossover to Simplex, we can crossover from & to a feasible basis, load

that into the solver and generate tableau cuts.
@ Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.

@ Decomp and Cut is expensive but has many potential benefits. What is the trade-off?
@ Generation of initial columns to start Price and Cut. Gives zODW = zcp.
@ If the initial Z is not in P’, Farkas cuts can move the point to the interior.
@ Along the way, we might generate incumbents for z;p.

<

Nested pricing.
& Choose an oracle with P’ and a restriction P/ C P’. .
@ Price exactly (for bounds) on P’, but generate columns heuristically on P’.
@ Feasibility pump for Price and Cut.
@ Given s € F', solve an auxiliary MILP feasible to P’ minimizing the L1 norm between s and A”’.

<

For block angular case, solve the master (small model) as an IP at end of each B&B node.
@ Cheap, often produces incumbents.

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Current Computational Research for Price and Cut

@ Can we implement Gomory cuts in Price and Cut?

@ Similar to Interior Point crossover to Simplex, we can crossover from & to a feasible basis, load
that into the solver and generate tableau cuts.
@ Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp.

@ Decomp and Cut is expensive but has many potential benefits. What is the trade-off?

@ Generation of initial columns to start Price and Cut. Gives zODW = zcp.
@ If the initial Z is not in P’, Farkas cuts can move the point to the interior.
@ Along the way, we might generate incumbents for z;p.

<

Nested pricing.

& Choose an oracle with P’ and a restriction P/ C P’. .
@ Price exactly (for bounds) on P’, but generate columns heuristically on P’.

@ Feasibility pump for Price and Cut.
@ Given s € F', solve an auxiliary MILP feasible to P’ minimizing the L1 norm between s and A”’.

<

For block angular case, solve the master (small model) as an IP at end of each B&B node.
@ Cheap, often produces incumbents.

@ Built on top of ALPS - so parallelization of the B&B should be easy to try.

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Summary

¢ Traditional Decomposition Methods approximate P as P/ N Q”.
@ P’ D P may have a large description.

9 Integrated Decomposition Methods approximate P as P;r N Po.
@ Both P; C P’ and Po D P may have a large description.

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Summary

¢ Traditional Decomposition Methods approximate P as P/ N Q”.
@ P’ D P may have a large description.

9 Integrated Decomposition Methods approximate P as P;r N Po.
@ Both P; C P’ and Po D P may have a large description.
9 DIP provides an easy-to-use framework for comparing and developing various
decomposition-based bounding methods.

@ The user only needs to define the components based on the compact formulation (irrespective of
algorithm).

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Summary

¢ Traditional Decomposition Methods approximate P as P/ N Q”.
@ P’ D P may have a large description.

9 Integrated Decomposition Methods approximate P as P;r N Po.
@ Both P; C P’ and Po D P may have a large description.

9 DIP provides an easy-to-use framework for comparing and developing various
decomposition-based bounding methods.
@ The user only needs to define the components based on the compact formulation (irrespective of
algorithm).

@ The interface to ALPS allows us to investigate large-scale problems on distributed networks.

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Summary

¢ Traditional Decomposition Methods approximate P as P/ N Q”.
@ P’ D P may have a large description.

9 Integrated Decomposition Methods approximate P as P;r N Po.
@ Both P; C P’ and Po D P may have a large description.

9 DIP provides an easy-to-use framework for comparing and developing various
decomposition-based bounding methods.
@ The user only needs to define the components based on the compact formulation (irrespective of
algorithm).

@ The interface to ALPS allows us to investigate large-scale problems on distributed networks.

9@ The code is open-source, currently released under CPL and available through the COIN-OR
project repository www.coin-or.org.

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Summary

¢ Traditional Decomposition Methods approximate P as P/ N Q”.
@ P’ D P may have a large description.

9 Integrated Decomposition Methods approximate P as P;r N Po.
@ Both P; C P’ and Po D P may have a large description.

9 DIP provides an easy-to-use framework for comparing and developing various
decomposition-based bounding methods.

@ The user only needs to define the components based on the compact formulation (irrespective of
algorithm).
@ The interface to ALPS allows us to investigate large-scale problems on distributed networks.

9@ The code is open-source, currently released under CPL and available through the COIN-OR
project repository www.coin-or.org.

@ Related publications:

@ T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming,
Mathematical Programming 106 (2006), 261

@ T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and
Practice, John Karlof, ed. (2005), 57

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Example - TSP

@ Separation of Subtour Inequalities:
z(E(S)) < [5] -1
@ SEP(z,Subtour), for x € R™ can be solved in O(|V|*) (Min-Cut)

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Example - TSP

@ Separation of Subtour Inequalities:
z(E(S)) < [5] -1

@ SEP(s,Subtour), for s a 2-matching, can be solved in O(|V])

@ Simply determine the connected components C;, and set S = C; for each component (each gives
a violation of 1).

Work in Progress

Example - TSP

@ Separation of Subtour Inequalities:

2(B(S)) < 18] - 1
@ SEP(z,Subtour), for x € R™ can be solved in O(|V|*) (Min-Cut)
@ SEP(s,Subtour), for s a 2-matching, can be solved in O(|V])

@ Simply determine the connected components C;, and set S = C; for each component (each gives
a violation of 1).

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Example - TSP

9 Separation of Comb Inequalities:

k

k
o(E(H)) + > x(E(Ty)) < |H|+ > (T — 1) — [k/2]
=1

=1

o SEP(x, Blossoms), for x € R™ can be solved in O(|V|?) (Padberg-Rao)

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Example - TSP

9 Separation of Comb Inequalities:

k

k
2(E(H)) + Y «(B(T;)) < |H|+ Y _(ITi| = 1) - [k/2]

=1 =1

@ SEP(s, Blossoms), for s a 1-Tree, can be solved in O(|V|?)
@ Construct candidate handles H from BFS tree traversal and an odd (>= 3) set of edges with one
endpoint in H and one in V \ H as candidate teeth (each gives a violation of [k/2] — 1).

@ This can also be used as a quick heuristic to separate 1-Trees for more general comb structures, for
which there is no known polynomial algorithm for separation of arbitrary vectors.

Galati, Ralphs A Framework for Decomposition in IP

Work in Progress

Example - TSP

9 Separation of Comb Inequalities:

k

k
2(E(H)) + Y «(B(T;)) < |H|+ Y _(ITi| = 1) - [k/2]

=1 =1

o SEP(x, Blossoms), for x € R™ can be solved in O(|V|?) (Padberg-Rao)

@ SEP(s, Blossoms), for s a 1-Tree, can be solved in O(|V|?)
@ Construct candidate handles H from BFS tree traversal and an odd (>= 3) set of edges with one
endpoint in H and one in V \ H as candidate teeth (each gives a violation of [k/2] — 1).

@ This can also be used as a quick heuristic to separate 1-Trees for more general comb structures, for
which there is no known polynomial algorithm for separation of arbitrary vectors.

Galati, Ralphs A Framework for Decomposition in IP

	Traditional Decomposition Methods
	Integrated Decomposition Methods
	Decompose and Cut
	DIP Framework
	Application: ATM Cash Management Problem
	Application: Block Angular MILP
	Work in Progress

