# DIP with CHiPPS: Decomposition Methods for Integer Linear Programming

Ted Ralphs<sup>1</sup> Matthew Galati<sup>2</sup>

<sup>1</sup>COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

 $^2$ SAS Institute, Advanced Analytics, Operations Research R & D

University of Bordeaux, 7 June, 2010

# Outline

# Outline

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{\text{IP}} = \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

 $= \min_{x \in \mathbb{R}^n} \left\{ c^+ x \mid A^* x \ge b^*, A^+ x \ge b^* \right\}$ 

$$z_{\mathrm{D}} = \min_{x \in \mathcal{P}'} \left\{ c^{\top} x \mid A'' x \ge b'' \right\}$$

 $z_{
m IP} \geq z_{
m D} \geq z_{
m LP}$ 



$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b''\}$$

- $\bullet$  OPT( $\mathcal{P}, c$ ) and SEP( $\mathcal{P}, x$ ) are "hard"
- ullet OPT $(\mathcal{P}',c)$  and SEP $(\mathcal{P}',x)$  are "easy"
- $\bullet$   $\mathcal{Q}''$  can be represented explicitly (description has polynomial size
- ullet must be represented implicitly (description has exponential size

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{\text{IP}} \quad = \quad \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

 $z_{\mathrm{D}} = \min_{x \in \mathcal{P}'} \left\{ c^{\top} x \mid A'' x \ge b'' \right\}$ 

 $z_{
m IP} \geq z_{
m D} \geq z_{
m LP}$ 



 $\mathcal{Q}' = \{ x \in \mathbb{R}^n \mid A'x \ge b' \}$   $\mathcal{Q}'' = \{ x \in \mathbb{R}^n \mid A''x > b'' \}$ 

$$\bullet$$
 OPT $(\mathcal{P},c)$  and SEP $(\mathcal{P},x)$  are "hard"

$$ullet$$
 OPT $(\mathcal{P}',c)$  and SEP $(\mathcal{P}',x)$  are "easy

$$ullet$$
  $\mathcal{Q}''$  can be represented explicitly (description has polynomial size)

$$\bullet$$
  $\mathcal{P}'$  must be represented implicitly (description has exponential size

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{\text{IP}} = \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{D}} = \min_{x \in \mathcal{P}'} \left\{ c^\top x \mid A'' x \ge b'' \right\}$$



 $z_{
m IP} \geq z_{
m D} \geq z_{
m LP}$ 

$$\bullet$$
 OPT( $\mathcal{P}, c$ ) and SEP( $\mathcal{P}, x$ ) are "hard"

$$ullet$$
 OPT $(\mathcal{P}',c)$  and SEP $(\mathcal{P}',x)$  are "easy

$$\bullet$$
  $\mathcal{Q}''$  can be represented explicitly (description has polynomial size

$$\bullet$$
  $\mathcal{P}'$  must be represented implicitly (description has exponential size

$$\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b'\}$$

$$\mathcal{Q}^{\prime\prime} = \{ x \in \mathbb{R}^n \mid A^{\prime\prime} x \ge b^{\prime\prime} \}$$

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{\text{IP}} = \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{D}} = \min_{x \in \mathcal{P}'} \left\{ c^\top x \mid A'' x \ge b'' \right\}$$

$$z_{\text{IP}} \ge z_{\text{D}} \ge z_{\text{LP}}$$



- $\bullet$  OPT( $\mathcal{P}, c$ ) and SEP( $\mathcal{P}, x$ ) are "hard"
- $\bullet$  OPT( $\mathcal{P}'$ , c) and SEP( $\mathcal{P}'$ , x) are "easy"
- OFI(P,c) and OEI(P,x) are easy
- ullet  $\mathcal{Q}''$  can be represented explicitly (description has polynomial size
- $\bullet$   $\mathcal{P}'$  must be represented implicitly (description has exponential size

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{\text{IP}} = \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A' x \ge b', A'' x \ge b'' \right\}$$

$$z_{\text{D}} = \min_{x \in \mathcal{P}'} \left\{ c^\top x \mid A'' x \ge b'' \right\}$$

$$z_{\text{IP}} \ge z_{\text{D}} \ge z_{\text{LP}}$$



$$ullet$$
  $\operatorname{OPT}(\mathcal{P},c)$  and  $\operatorname{SEP}(\mathcal{P},x)$  are "hard"

$$\bullet$$
 OPT( $\mathcal{P}', c$ ) and SEP( $\mathcal{P}', x$ ) are "easy"

$$\bullet$$
  $Q''$  can be represented explicitly (description has polynomial size)

• 
$$\mathcal{P}'$$
 must be represented implicitly (description has exponential size)

# Example - Traveling Salesman Problem (TSP)

### **Traveling Salesman Problem Formulation**

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$



## Example - Traveling Salesman Problem (TSP)

#### **Traveling Salesman Problem Formulation**

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$



#### Two possible decompositions

Find a spanning subgraph with |V| edges that satisfies the 2-degree constraints ( $\mathcal{P}'=$  1-Tree)

$$\begin{array}{lcl} x(\delta(\{0\})) & = & 2 \\ x(E(V)) & = & |V| \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$



## Example - Traveling Salesman Problem (TSP)

#### **Traveling Salesman Problem Formulation**

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$



#### Two possible decompositions

Find a spanning subgraph with |V| edges that satisfies the 2-degree constraints ( $\mathcal{P}'=$  1-Tree)

$$\begin{array}{lcl} x(\delta(\{0\})) & = & 2 \\ x(E(V)) & = & |V| \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$



Find a 2-matching that satisfies the subtour constraints ( $\mathcal{P}' = 2$ -Matching)

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x_e \in \{0,1\} & & \forall e \in E \end{array}$$



CPM combines an *outer* approximation of  $\mathcal{P}'$  with an explicit description of  $\mathcal{Q}''$ 

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{CP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \, \mid Dx \geq d, A'' x \geq b'' \, \right\}$
- Subproblem:  $SEP(\mathcal{P}', x_{CP})$

$$\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \}$$



CPM combines an *outer* approximation of  $\mathcal{P}'$  with an explicit description of  $\mathcal{Q}''$ 

- $\bullet \ \, \mathsf{Master} \colon \, z_{\mathrm{CP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \, \mid Dx \geq d, A^{\prime\prime} x \geq b^{\prime\prime} \, \right\}$
- Subproblem:  $SEP(\mathcal{P}', x_{CP})$

$$\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \}$$



CPM combines an *outer* approximation of  $\mathcal{P}'$  with an explicit description of  $\mathcal{Q}''$ 

- Master:  $z_{\text{CP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid Dx \ge d, A''x \ge b'' \right\}$
- Subproblem:  $SEP(\mathcal{P}', x_{CP})$

$$\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \}$$



CPM combines an *outer* approximation of  $\mathcal{P}'$  with an explicit description of  $\mathcal{Q}''$ 

- Master:  $z_{\text{CP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid Dx \ge d, A'' x \ge b'' \right\}$
- Subproblem:  $SEP(\mathcal{P}', x_{CP})$

$$\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \ge d \}$$





DW combines an *inner* approximation of  $\mathcal{P}'$  with an explicit description of  $\mathcal{Q}''$ 

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{DW}} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}} \left\{ c^\top \left( \sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ A'' \left( \sum_{s \in \mathcal{E}} s \lambda_s \right) \ge b'', \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{\text{DW}}^{\top} A'')$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge 0 \ \forall s \in \mathcal{E} \right\}$$



**DW** combines an *inner* approximation of  $\mathcal{P}'$  with an explicit description of  $\mathcal{Q}''$ 

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{DW}} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}} \left\{ c^\top \left( \sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ A^{\prime\prime} \left( \sum_{s \in \mathcal{E}} s \lambda_s \right) \geq b^{\prime\prime}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{\text{DW}}^{\top} A'')$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \ \middle| \ x = \sum_{s \in \mathcal{E}} s\lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge 0 \ \forall s \in \mathcal{E} \right\}$$
Exponential number of variables

 $c^{\top}$   $c^{\top} - \hat{a}^{\top} A^{n}$   $(2, 1) \qquad \mathcal{P}_{1}^{1} = \operatorname{conv}(\mathcal{E}_{1}) \subset \mathcal{P}^{I}$ 

**DW** combines an *inner* approximation of  $\mathcal{P}'$  with an explicit description of  $\mathcal{Q}''$ 

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{DW}} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}} \left\{ c^{\top} \left( \sum_{s \in \mathcal{E}} s \lambda_{s} \right) \ \middle| \ A'' \left( \sum_{s \in \mathcal{E}} s \lambda_{s} \right) \ge b'', \sum_{s \in \mathcal{E}} \lambda_{s} = 1 \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{\mathrm{DW}}^{\top} A'')$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge 0 \ \forall s \in \mathcal{E} \right\}$$

#### Exponential number of variables



DW combines an *inner* approximation of  $\mathcal{P}'$  with an explicit description of  $\mathcal{Q}''$ 

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{DW}} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}} \left\{ c^\top \left( \sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ A^{\prime\prime} \left( \sum_{s \in \mathcal{E}} s \lambda_s \right) \geq b^{\prime\prime}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{\mathrm{DW}}^{\top} A'')$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \ge 0 \ \forall s \in \mathcal{E} \right\}$$

#### Exponential number of variables







- $\bullet \ \, \mathsf{Master:} \ \, z_{\mathrm{LD}} = \max\nolimits_{u \in \mathbb{R}_{+}^{m^{\prime\prime}}} \left\{ \min\nolimits_{s \in \mathcal{E}} \left\{ c^{\top} s + u^{\top} (b^{\prime\prime} A^{\prime\prime} s) \right\} \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top} A'')$

$$z_{\mathrm{LD}} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_{+}^{m''}} \left\{ \alpha + b''^{\top} u \ \left| \ \left( c^{\top} - u^{\top} A'' \right) s - \alpha \geq 0 \ \forall s \in \mathcal{E} \right. \right\} = z_{\mathrm{DW}}$$



- $\bullet \ \, \mathsf{Master:} \ \, z_{\mathrm{LD}} = \max\nolimits_{u \in \mathbb{R}_{+}^{m^{\prime\prime}}} \left\{ \min\nolimits_{s \in \mathcal{E}} \left\{ c^{\top} s + u^{\top} (b^{\prime\prime} A^{\prime\prime} s) \right\} \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{\mathrm{LD}}^{\top} A'')$

$$z_{\mathrm{LD}} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_{+}^{m''}} \left\{ \alpha + b''^{\top} u \ \left| \ \left( c^{\top} - u^{\top} A'' \right) s - \alpha \geq 0 \ \forall s \in \mathcal{E} \right. \right\} = z_{\mathrm{DW}}$$



- $\bullet \ \, \mathsf{Master:} \ \, z_{\mathrm{LD}} = \max\nolimits_{u \in \mathbb{R}^{m''}_{\perp}} \left\{ \min\nolimits_{s \in \mathcal{E}} \left\{ c^{\top} s + u^{\top} (b'' A'' s) \right\} \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top} A'')$

$$z_{\mathrm{LD}} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_{+}^{m^{\prime\prime}}} \left\{ \alpha + b^{\prime\prime\top} u \ \left| \ \left( c^{\top} - u^{\top} A^{\prime\prime} \right) s - \alpha \geq 0 \ \forall s \in \mathcal{E} \right. \right\} = z_{\mathrm{DW}}$$



- $\bullet \ \ \mathsf{Master:} \ z_{\mathrm{LD}} = \max\nolimits_{u \in \mathbb{R}_{\perp}^{m''}} \left\{ \min\nolimits_{s \in \mathcal{E}} \left\{ c^{\top} s + u^{\top} (b'' A'' s) \right\} \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top} A'')$

$$z_{\mathrm{LD}} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_{+}^{m^{\prime\prime}}} \left\{ \alpha + b^{\prime\prime\top} u \ \left| \ \left( c^{\top} - u^{\top} A^{\prime\prime} \right) s - \alpha \geq 0 \ \forall s \in \mathcal{E} \right. \right\} = z_{\mathrm{DW}}$$



#### Common Threads

 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \{ c^{\top} x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

$$z_{ ext{CP}} = z_{ ext{DW}} = z_{ ext{LD}} = z_{ ext{D}} = \min_{x \in \mathbb{R}^n} \{c^+x \mid x \in \mathcal{P}' \cap \mathcal{Q}''\} \geq z_{ ext{LP}}$$





• Subproblem: Update the approximation of 
$$\mathcal{P}'$$
:  $\mathrm{SEP}(\mathcal{P}',x)$  or  $\mathrm{OPT}(\mathcal{P}',c)$ 



- Price-and-Cut (PC)
- Relax-and-Cut (RC)
- Decompose-and-Cut (DC)



#### Common Threads

 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \{ c^{\top} x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

$$z_{\text{CP}} = z_{\text{DW}} = z_{\text{LD}} = z_{\text{D}} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{\text{LP}}$$



- Master Problem: Update the primal/dual solution information
- Subproblem: Update the approximation of  $\mathcal{P}'$ : SEP $(\mathcal{P}', x)$  or OPT $(\mathcal{P}', c)$



- Price-and-Cut (PC)
  - Relax-and-Cut (RC)
- Decompose-and-Cut (DC)







#### Common Threads

 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

$$z_{\text{CP}} = z_{\text{DW}} = z_{\text{LD}} = z_{\text{D}} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{\text{LP}}$$



- Master Problem: Update the primal/dual solution information
- Subproblem: Update the approximation of  $\mathcal{P}'$ : SEP $(\mathcal{P}', x)$  or OPT $(\mathcal{P}', c)$



- Price-and-Cut (PC)
- Relax-and-Cut (RC)
- Decompose-and-Cut (DC)







PC approximates  $\mathcal{P}$  by building an *inner* approximation of  $\mathcal{P}'$  (as in DW) intersected with an *outer* approximation of  $\mathcal{P}$  (as in CPM)

- $\bullet \ \, \mathsf{Master} \colon \, z_{\mathrm{PC}} = \min\nolimits_{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}} \left\{ c^{\top} \left( \sum_{s \in \mathcal{E}} s \lambda_{s} \right) \, \, \middle| \, \, D \left( \sum_{s \in \mathcal{E}} s \lambda_{s} \right) \geq d, \sum_{s \in \mathcal{E}} \lambda_{s} = 1 \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{PC}^{\top}D)$  or SEP  $(\mathcal{P}, x_{PC})$
- As in CPM, separate  $\hat{x}_{PC} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$  from  $\mathcal{P}$  and add cuts to [D, d].
- Key Idea: Cut generation takes place in the space of the compact formulation, maintaining the structure of the column generation subproblem.



PC approximates  $\mathcal P$  by building an *inner* approximation of  $\mathcal P'$  (as in DW) intersected with an *outer* approximation of  $\mathcal P$  (as in CPM)

- Master:  $z_{\text{PC}} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}} \left\{ c^{\top} \left( \sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ D \left( \sum_{s \in \mathcal{E}} s \lambda_s \right) \ge d, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{PC}^{\top}D)$  or SEP  $(\mathcal{P}, x_{PC})$
- As in CPM, separate  $\hat{x}_{PC} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$  from  $\mathcal{P}$  and add cuts to [D, d].
- Key Idea: Cut generation takes place in the space of the compact formulation, maintaining the structure of the column generation subproblem.



PC approximates  $\mathcal P$  by building an *inner* approximation of  $\mathcal P'$  (as in DW) intersected with an *outer* approximation of  $\mathcal P$  (as in CPM)

- Master:  $z_{\text{PC}} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}} \left\{ c^{\top} \left( \sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ D \left( \sum_{s \in \mathcal{E}} s \lambda_s \right) \ge d, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{PC}^{\top}D)$  or SEP  $(\mathcal{P}, x_{PC})$
- As in CPM, separate  $\hat{x}_{PC} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$  from  $\mathcal{P}$  and add cuts to [D, d].
- Key Idea: Cut generation takes place in the space of the compact formulation, maintaining the structure of the column generation subproblem.



PC approximates  $\mathcal P$  by building an *inner* approximation of  $\mathcal P'$  (as in DW) intersected with an *outer* approximation of  $\mathcal P$  (as in CPM)

- $\bullet \ \, \mathsf{Master} \colon \, z_{\mathrm{PC}} = \min\nolimits_{\lambda \in \mathbb{R}_{+}^{\mathcal{E}}} \, \left\{ c^{\top} \left( \sum_{s \in \mathcal{E}} s \lambda_{s} \right) \, \, \middle| \, \, D \left( \sum_{s \in \mathcal{E}} s \lambda_{s} \right) \geq d, \sum_{s \in \mathcal{E}} \lambda_{s} = 1 \, \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{PC}^{\top}D)$  or SEP  $(\mathcal{P}, x_{PC})$
- As in CPM, separate  $\hat{x}_{PC} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$  from  $\mathcal{P}$  and add cuts to [D, d].
- Key Idea: Cut generation takes place in the space of the compact formulation, maintaining the structure of the column generation subproblem.







- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{LD}} = \max\nolimits_{u \in \mathbb{R}_+^{m''}} \left\{ \min\nolimits_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (d Ds) \right\} \right\}$
- $\bullet \ \, \textbf{Subproblem} \colon \operatorname{OPT}\left(\mathcal{P}', c^\top u_{\operatorname{LD}}^\top D\right) \text{ or } \operatorname{SEP}\left(\mathcal{P}, s\right)$
- In each iteration, separate  $\hat{s} \in \mathcal{E}$ , a solution to the Lagrangian relaxation.
- Advantage: Often easier to separate  $s \in \mathcal{E}$  from  $\mathcal{P}$  than  $\hat{x} \in \mathbb{R}^n$ .



- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{LD}} = \max\nolimits_{u \in \mathbb{R}_+^{m''}} \left\{ \min\nolimits_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (d Ds) \right\} \right\}$
- $\bullet \ \, \textbf{Subproblem} \colon \operatorname{OPT}\left(\mathcal{P}', c^\top u_{\operatorname{LD}}^\top D\right) \text{ or } \operatorname{SEP}\left(\mathcal{P}, s\right)$
- In each iteration, separate  $\hat{s} \in \mathcal{E}$ , a solution to the Lagrangian relaxation.
- Advantage: Often easier to separate  $s \in \mathcal{E}$  from  $\mathcal{P}$  than  $\hat{x} \in \mathbb{R}^n$ .



- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{LD}} = \max\nolimits_{u \in \mathbb{R}_+^{m''}} \left\{ \min\nolimits_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (d Ds) \right\} \right\}$
- $\bullet \ \, \textbf{Subproblem} \colon \operatorname{OPT}\left(\mathcal{P}', c^\top u_{\operatorname{LD}}^\top D\right) \text{ or } \operatorname{SEP}\left(\mathcal{P}, s\right)$
- In each iteration, separate  $\hat{s} \in \mathcal{E}$ , a solution to the Lagrangian relaxation.
- Advantage: Often easier to separate  $s \in \mathcal{E}$  from  $\mathcal{P}$  than  $\hat{x} \in \mathbb{R}^n$ .



- $\bullet \ \, \mathsf{Master:} \ \, z_{\mathrm{LD}} = \max\nolimits_{u \in \mathbb{R}^{m''}_+} \left\{ \min\nolimits_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (d Ds) \right\} \right\}$
- Subproblem: OPT  $(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top} D)$  or SEP  $(\mathcal{P}, s)$
- In each iteration, separate  $\hat{s} \in \mathcal{E}$ , a solution to the Lagrangian relaxation.
- Advantage: Often easier to separate  $s \in \mathcal{E}$  from  $\mathcal{P}$  than  $\hat{x} \in \mathbb{R}^n$ .



## Structured Separation

- In general, OPT(X,c) and SEP(X,x) are polynomially equivalent.
- Observation: Restrictions on input or output can change their complexity.
- Template Paradigm, restricts the *output* of SEP(X,x) to valid inequalities that conform to a certain structure. This class of inequalities forms a polyhedron  $\mathcal{C} \supset X$  (the *closure*).
- ullet For example, let  ${\mathcal P}$  be the convex hull of solutions to the TSP.
  - $\bullet$  SEP $(\mathcal{P},x)$  is  $\mathcal{NP}$ -Complete
  - $\bullet$  SEP $(\mathcal{C},x)$  is polynomially solvable, for  $\mathcal{C}\supset\mathcal{P}$ 
    - P<sup>Subtour</sup>, the Subtour Polytope (separation using Min-Cut), or
    - ullet  $\mathcal{P}^{
      m Blossom}$ , the Blossom Polytope (separation using Letchford, et al. ).
- Structured Separation, restricts the *input* of  $\operatorname{SEP}(X,x)$ , such that x conforms to some structure. For example, if x is restricted to solutions to a combinatorial problem, then separation often becomes much easier.

## Structured Separation

- In general, OPT(X,c) and SEP(X,x) are polynomially equivalent.
- Observation: Restrictions on input or output can change their complexity.
- Template Paradigm, restricts the *output* of SEP(X,x) to valid inequalities that conform to a certain structure. This class of inequalities forms a polyhedron  $\mathcal{C} \supset X$  (the *closure*).
- ullet For example, let  ${\mathcal P}$  be the convex hull of solutions to the TSP.
  - $SEP(\mathcal{P}, x)$  is  $\mathcal{NP}$ -Complete.
  - $\bullet$  SEP $(\mathcal{C},x)$  is polynomially solvable, for  $\mathcal{C}\supset\mathcal{P}$ 
    - $\bullet$   $\mathcal{P}^{\bf Subtour}$  , the Subtour Polytope (separation using Min-Cut), or
    - PBlossom, the Blossom Polytope (separation using Letchford, et al. ).
- Structured Separation, restricts the *input* of SEP(X,x), such that x conforms to some structure. For example, if x is restricted to solutions to a combinatorial problem, then separation often becomes much easier.

## Structured Separation

- In general, OPT(X, c) and SEP(X, x) are polynomially equivalent.
- Observation: Restrictions on input or output can change their complexity.
- Template Paradigm, restricts the *output* of SEP(X,x) to valid inequalities that conform to a certain structure. This class of inequalities forms a polyhedron  $\mathcal{C} \supset X$  (the *closure*).
- For example, let P be the convex hull of solutions to the TSP.
  - SEP $(\mathcal{P}, x)$  is  $\mathcal{NP}$ -Complete.
  - SEP( $\mathcal{C}, x$ ) is polynomially solvable, for  $\mathcal{C} \supset \mathcal{P}$ 
    - $\bullet$   $\mathcal{P}^{\bf Subtour}$  , the Subtour Polytope (separation using Min-Cut), or
    - PBlossom, the Blossom Polytope (separation using Letchford, et al. ).
- Structured Separation, restricts the *input* of SEP(X,x), such that x conforms to some structure. For example, if x is restricted to solutions to a combinatorial problem, then separation often becomes much easier.

Separation of Subtour Inequalities:

$$x(E(S)) \le |S| - 1$$

- $\operatorname{SEP}(\mathcal{P}^{\operatorname{Subtour}}, x)$  for  $x \in \mathbb{R}^n$  can be solved in  $O\left(|E||V| + |V|^2 \log |V|\right)$  (Min-Cut)
- SEP( $\mathcal{P}^{\text{Subtour}}, s$ ) for s a 2-matching, can be solved in O(|V|)
  - Simply determine the connected components  $C_i$ , and set  $S=C_i$  for each component (each gives a violation of 1).



Separation of Subtour Inequalities:

$$x(E(S)) \le |S| - 1$$

- SEP( $\mathcal{P}^{\text{Subtour}}, x$ ) for  $x \in \mathbb{R}^n$  can be solved in  $O(|E||V| + |V|^2 \log |V|)$  (Min-Cut)
- ullet SEP $(\mathcal{P}^{\mathrm{Subtour}},s)$  for s a 2-matching, can be solved in O(|V|)
  - Simply determine the connected components  $C_i$ , and set  $S=C_i$  for each component (each gives a violation of 1).



Separation of Subtour Inequalities:

$$x(E(S)) \le |S| - 1$$

- $\operatorname{SEP}(\mathcal{P}^{\operatorname{Subtour}}, x)$  for  $x \in \mathbb{R}^n$  can be solved in  $O\left(|E||V| + |V|^2 \log |V|\right)$  (Min-Cut)
- ullet SEP( $\mathcal{P}^{\mathrm{Subtour}}, s$ ) for s a 2-matching, can be solved in O(|V|)
  - Simply determine the connected components  $C_i$ , and set  $S=C_i$  for each component (each gives a violation of 1).





Separation of Comb Inequalities:

$$x(E(H)) + \sum_{i=1}^{k} x(E(T_i)) \le |H| + \sum_{i=1}^{k} (|T_i| - 1) - \lceil k/2 \rceil$$

- $\bullet$   ${\rm SEP}(\mathcal{P}^{\rm Blossom},x),$  for  $x\in\mathbb{R}^n$  can be solved in  $O(|V|^2|E|\log(|V|^2/|E|))$  (Letchford, et al. )
- $\circ$  SEP( $\mathcal{P}^{\text{Blossom}}$ , s) for s a 1-tree can be solved in  $O(|V|^2)$ 
  - Construct candidate handles H from BFS tree traversal and an odd ( $\geq 3$ ) set of edges with one endpoint in H and one in  $V \setminus H$  as candidate teeth (each gives a violation of  $\lceil k/2 \rceil 1$ ).
  - This can also be used as a quick heuristic to separate 1-trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.



Separation of Comb Inequalities:

$$x(E(H)) + \sum_{i=1}^{k} x(E(T_i)) \le |H| + \sum_{i=1}^{k} (|T_i| - 1) - \lceil k/2 \rceil$$

- SEP( $\mathcal{P}^{\mathrm{Blossom}}, x$ ), for  $x \in \mathbb{R}^n$  can be solved in  $O(|V|^2|E|\log(|V|^2/|E|))$  (Letchford, et al. )
- $\bullet$  SEP( $\mathcal{P}^{\text{Blossom}}, s$ ), for s a 1-tree, can be solved in  $O(|V|^2)$ 
  - Construct candidate handles H from BFS tree traversal and an odd ( $\geq 3$ ) set of edges with one endpoint in H and one in  $V \setminus H$  as candidate teeth (each gives a violation of  $\lceil k/2 \rceil 1$ ).
  - This can also be used as a quick heuristic to separate 1-trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.



Separation of Comb Inequalities:

$$x(E(H)) + \sum_{i=1}^{k} x(E(T_i)) \le |H| + \sum_{i=1}^{k} (|T_i| - 1) - \lceil k/2 \rceil$$

- SEP( $\mathcal{P}^{\mathrm{Blossom}}, x$ ), for  $x \in \mathbb{R}^n$  can be solved in  $O(|V|^2|E|\log(|V|^2/|E|))$  (Letchford, et al. )
- SEP( $\mathcal{P}^{\text{Blossom}}, s$ ), for s a 1-tree, can be solved in  $O(|V|^2)$ 
  - Construct candidate handles H from BFS tree traversal and an odd ( $\geq 3$ ) set of edges with one endpoint in H and one in  $V \setminus H$  as candidate teeth (each gives a violation of  $\lceil k/2 \rceil 1$ ).
  - This can also be used as a quick heuristic to separate 1-trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.





- In Relax-and-Cut, solutions to the Lagrangian subproblem  $s \in \mathcal{E}$  typically have some *nice* combinatorial structure.
- Question: Can we take advantage of this in other contexts?
- To improve the bound by adding an inequality, it is necessary and sufficient to cut off the entire face of optimal solutions F to a given LP relaxation.
- This condition is difficult to verify, so we typically use the *necessary condition* that the generated inequality be violated by some member of that face,  $x \in F$ .
  - $\bullet$  In CPM, we solve  $ext{SEP}(\mathcal{P}, x_{ ext{CP}}^t)$ , where  $x_{ ext{CP}}^t \in F^t$ , and  $F^t$  is optimal face over  $\mathcal{P}_O^t \cap \mathcal{Q}''$
  - $\bullet$  In PC, we solve  $ext{SEP}(\mathcal{P}, x_{PC}^t)$ , where  $x_{PC}^t \in \mathcal{F}^t$ , and  $\mathcal{F}^t$  is optimal face over  $\mathcal{P}_t^t \cap \mathcal{P}_C^t$

- In Relax-and-Cut, solutions to the Lagrangian subproblem  $s \in \mathcal{E}$  typically have some *nice* combinatorial structure.
- Question: Can we take advantage of this in other contexts?
- To improve the bound by adding an inequality, it is necessary and sufficient to cut off the
  entire face of optimal solutions F to a given LP relaxation.
- This condition is difficult to verify, so we typically use the *necessary condition* that the generated inequality be violated by some member of that face,  $x \in F$ .
  - In CPM, we solve  $\text{SEP}(\mathcal{P}, x_{\text{CP}}^t)$ , where  $x_{\text{CP}}^t \in F^t$ , and  $F^t$  is optimal face over  $\mathcal{P}_O^t \cap \mathcal{Q}''$
  - ullet In PC, we solve  ${
    m SEP}(\mathcal{P},x_{
    m PC}^*)$ , where  $x_{
    m PC}^*\in F^*$ , and  $F^*$  is optimal face over  $\mathcal{P}_I^*\cap\mathcal{P}_C^*$

- ullet In Relax-and-Cut, solutions to the Lagrangian subproblem  $s\in\mathcal{E}$  typically have some *nice* combinatorial structure.
- Question: Can we take advantage of this in other contexts?
- ullet To improve the bound by adding an inequality, it is necessary and sufficient to cut off the entire face of optimal solutions F to a given LP relaxation.
- This condition is difficult to verify, so we typically use the *necessary condition* that the generated inequality be violated by some member of that face,  $x \in F$ .

- ullet In Relax-and-Cut, solutions to the Lagrangian subproblem  $s\in\mathcal{E}$  typically have some *nice* combinatorial structure.
- Question: Can we take advantage of this in other contexts?
- To *improve the bound* by adding an inequality, it is *necessary and sufficient* to cut off the entire face of optimal solutions *F* to a given LP relaxation.
- This condition is difficult to verify, so we typically use the *necessary condition* that the generated inequality be violated by some member of that face,  $x \in F$ .
  - In CPM, we solve  $SEP(\mathcal{P}, x_{CP}^t)$ , where  $x_{CP}^t \in F^t$ , and  $F^t$  is optimal face over  $\mathcal{P}_Q^t \cap \mathcal{Q}''$

- In Relax-and-Cut, solutions to the Lagrangian subproblem  $s \in \mathcal{E}$  typically have some *nice* combinatorial structure.
- Question: Can we take advantage of this in other contexts?
- To improve the bound by adding an inequality, it is necessary and sufficient to cut off the
  entire face of optimal solutions F to a given LP relaxation.
- This condition is difficult to verify, so we typically use the *necessary condition* that the generated inequality be violated by some member of that face,  $x \in F$ .
  - In CPM, we solve  $SEP(\mathcal{P}, x_{CP}^t)$ , where  $x_{CP}^t \in F^t$ , and  $F^t$  is optimal face over  $\mathcal{P}_O^t \cap \mathcal{Q}''$
  - In PC, we solve  $SEP(\mathcal{P}, x_{PC}^t)$ , where  $x_{PC}^t \in F^t$ , and  $F^t$  is optimal face over  $\mathcal{P}_I^t \cap \mathcal{P}_Q^t$

Consider the following set

$$\mathcal{S}(u,\alpha) = \left\{ s \in \mathcal{E} \mid \left( c^{\top} - u^{\top} A'' \right) s = \alpha \right\}$$

•  $\mathcal{S}(u_{\mathrm{PC}}^t, \alpha_{\mathrm{PC}}^t)$  is the set of extreme points with rc(s) = 0 in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.

# 

- The optimal decomposition is contained in S
- Every improving ineq must violate at least one e.p. in the optimal decompositi
- Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised Price-and-Cut method.

Consider the following set

$$\mathcal{S}(u,\alpha) = \left\{ s \in \mathcal{E} \mid \left( c^{\top} - u^{\top} A^{\prime \prime} \right) s = \alpha \right\}$$

•  $\mathcal{S}(u_{\mathrm{PC}}^t, \alpha_{\mathrm{PC}}^t)$  is the set of extreme points with rc(s) = 0 in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.

#### Theorems

- $\bullet$   $F^t \subseteq conv(\mathcal{S}(u_{PC}^t, \alpha_{PC}^t))$ 
  - ullet Separation of  $\mathcal{S}(u_{ ext{PC}}^t, lpha_{ ext{PC}}^t)$  is also necessary and sufficient
- Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised Price-and-Cut method

Consider the following set

$$\mathcal{S}(u,\alpha) = \left\{ s \in \mathcal{E} \mid \left( c^{\top} - u^{\top} A^{\prime \prime} \right) s = \alpha \right\}$$

•  $\mathcal{S}(u_{\mathrm{PC}}^t, \alpha_{\mathrm{PC}}^t)$  is the set of extreme points with rc(s) = 0 in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.

#### Theorems

- - Separation of  $\mathcal{S}(u_{\mathrm{PC}}^t, \alpha_{\mathrm{PC}}^t)$  is also necessary and sufficient
- - The optimal decomposition is contained in  $\mathcal{S}$

 Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised Price-and-Cut method

Consider the following set

$$\mathcal{S}(u,\alpha) = \left\{ s \in \mathcal{E} \mid \left( c^{\top} - u^{\top} A^{\prime \prime} \right) s = \alpha \right\}$$

•  $\mathcal{S}(u^t_{\mathrm{PC}}, \alpha^t_{\mathrm{PC}})$  is the set of extreme points with rc(s) = 0 in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.

#### Theorems

- - Separation of  $\mathcal{S}(u_{\mathrm{PC}}^t, \alpha_{\mathrm{PC}}^t)$  is also necessary and sufficient
- - The optimal decomposition is contained in S
- $\bullet$   $(a,\beta) \in \mathbb{R}^{(n+1)}$  improving  $\Rightarrow \exists s \in \mathcal{D} = \{s \in \mathcal{E} \mid \lambda_s^t > 0\} \text{ s.t. } a^{\top}s < \beta$ 
  - Every improving ineq must violate at least one e.p. in the optimal decomposition
- Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised Price-and-Cut method.

Consider the following set

$$\mathcal{S}(u,\alpha) = \left\{ s \in \mathcal{E} \mid \left( c^{\top} - u^{\top} A^{\prime \prime} \right) s = \alpha \right\}$$

•  $\mathcal{S}(u^t_{\mathrm{PC}}, \alpha^t_{\mathrm{PC}})$  is the set of extreme points with rc(s) = 0 in the DW-LP master or the set of alternative optimal solutions to the Lagrangian subproblem.

#### Theorems

- - Separation of  $\mathcal{S}(u_{\mathrm{PC}}^t, \alpha_{\mathrm{PC}}^t)$  is also necessary and sufficient
- - The optimal decomposition is contained in S
- $(a, \beta) \in \mathbb{R}^{(n+1)}$  improving  $\Rightarrow \exists s \in \mathcal{D} = \{s \in \mathcal{E} \mid \lambda_s^t > 0\}$  s.t.  $a^{\top} s < \beta$ 
  - · Every improving ineq must violate at least one e.p. in the optimal decomposition
- Theorems 1-3, along with the observation that structured separation can be relatively easy, motivates the following revised Price-and-Cut method.

- Key Idea: Rather than (or in addition to) separating  $\hat{x}_{PC}$ , separate each member of D
- ullet As with RC, often much easier to separate  $s \in \mathcal{E}$  than  $\hat{x}_{\mathrm{PC}} \in \mathbb{R}^n$
- RC only gives us one member of  $\mathcal E$  to separate, while PC gives us a set, one of which mus be violated by any inequality violated by  $\hat x_{\rm PC}$
- Provides an alternative necessary (but not sufficient) condition to find an improving inequality which is very easy to implement and understand.



- ullet Key Idea: Rather than (or in addition to) separating  $\hat{x}_{PC}$ , separate each member of D
- As with RC, often much easier to separate  $s \in \mathcal{E}$  than  $\hat{x}_{PC} \in \mathbb{R}^n$
- RC only gives us one member of  $\mathcal{E}$  to separate, while PC gives us a set, one of which must be violated by any inequality violated by  $\hat{x}_{PC}$
- Provides an alternative necessary (but not sufficient) condition to find an improving inequality which is very easy to implement and understand.



- Key Idea: Rather than (or in addition to) separating  $\hat{x}_{PC}$ , separate each member of D
- As with RC, often much easier to separate  $s \in \mathcal{E}$  than  $\hat{x}_{PC} \in \mathbb{R}^n$
- ullet RC only gives us one member of  $\mathcal E$  to separate, while PC gives us a set, one of which must be violated by any inequality violated by  $\hat x_{\rm PC}$ 
  - Provides an alternative necessary (but not sufficient) condition to find an improving inequality which is very easy to implement and understand.



- Key Idea: Rather than (or in addition to) separating  $\hat{x}_{PC}$ , separate each member of D
- As with RC, often much easier to separate  $s \in \mathcal{E}$  than  $\hat{x}_{PC} \in \mathbb{R}^n$
- RC only gives us one member of  $\mathcal{E}$  to separate, while PC gives us a set, one of which must be violated by any inequality violated by  $\hat{x}_{PC}$
- Provides an alternative necessary (but not sufficient) condition to find an improving inequality which is very easy to implement and understand.



 The violated subtour found by separating the 2-matching also violates the fractional point, but was found at little cost.



 Similarly, the violated blossom found by separating the 1-tree also violates the fractional point, but was found at little cost.

 The violated subtour found by separating the 2-matching also violates the fractional point, but was found at little cost.



• Similarly, the violated blossom found by separating the 1-tree *also* violates the fractional point, but was found at little cost.



$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \mid \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$$

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of  $\mathcal{P}'$ 

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \mid \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$$

- If  $\hat{x}_{\mathrm{CP}}$  lies outside  $\mathcal{P}'$  the decomposition will fail
- By the Farkas Lemma the proof of infeasibility provides a valid and violated inequality

## Decomposition Cuts

$$\begin{array}{lcl} u_{\mathrm{DC}}^t s + \alpha_{\mathrm{DC}}^t & \leq & 0 \; \forall s \in \mathcal{P}' \quad \text{and} \\ u_{\mathrm{DC}}^t \hat{x}_{\mathrm{CP}} + \alpha_{\mathrm{DC}}^t & > & 0 \end{array}$$





$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \mid \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$$

- Original idea proposed by Ralphs for VRF
  - Later used in TSP Concorde by ABCC (non-template cuts)
  - Now being used (in some form) for generic MILP by Gurob
- ullet This tells us that we are missing some facets of  $\mathcal{P}'$  in our current relaxation.
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because it's a feasibility problem an
  - $\hat{x}_i = 0 \Rightarrow s_i = 0$ , can remove constraints not in support, an
  - $\hat{x}_i = 1$  and  $s_i \in \{0,1\} \Rightarrow$  constraint is redundant with convexity constraint
  - Often gets lucky and produces incumbent solutions to original IF

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \mid \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$$

- Original idea proposed by Ralphs for VRP
  - Later used in TSP Concorde by ABCC (non-template cuts)
  - Now being used (in some form) for generic MILP by Gurobi
- This tells us that we are missing some facets of  $\mathcal{P}'$  in our current relaxation.
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because it's a feasibility problem and
  - $\hat{x}_i = 0 \Rightarrow s_i = 0$ , can remove constraints not in support, a
  - $\hat{x}_i = 1$  and  $s_i \in \{0,1\} \Rightarrow$  constraint is redundant with convexity constraint
  - Often gets lucky and produces incumbent solutions to original IP

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \mid \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$$

- Original idea proposed by Ralphs for VRP
  - Later used in TSP Concorde by ABCC (non-template cuts)
  - Now being used (in some form) for generic MILP by Gurobi
- This tells us that we are missing some facets of  $\mathcal{P}'$  in our current relaxation.
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because it's a feasibility problem and
  - $\hat{x}_i = 0 \Rightarrow s_i = 0$ , can remove constraints not in support,
  - $\hat{x}_i = 1$  and  $s_i \in \{0,1\} \Rightarrow$  constraint is redundant with convexity constraint
  - Often gets lucky and produces incumbent solutions to original IP

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \mid \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$$

- Original idea proposed by Ralphs for VRP
  - Later used in TSP Concorde by ABCC (non-template cuts)
  - Now being used (in some form) for generic MILP by Gurobi
- This tells us that we are missing some facets of  $\mathcal{P}'$  in our current relaxation.
- The machinery for solving this already exists (=column generation)

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \mid \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\mathrm{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$$

- Original idea proposed by Ralphs for VRP
  - Later used in TSP Concorde by ABCC (non-template cuts)
  - Now being used (in some form) for generic MILP by Gurobi
- This tells us that we are missing some facets of  $\mathcal{P}'$  in our current relaxation.
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because it's a feasibility problem and
  - $\hat{x}_i = 0 \Rightarrow s_i = 0$ , can remove constraints not in support, and
  - $\hat{x}_i = 1$  and  $s_i \in \{0, 1\} \Rightarrow$  constraint is redundant with convexity constraint
  - Often gets lucky and produces incumbent solutions to original IP

- Add column bounds to [A'',b''] and map back to the compact space  $\hat{x}=\sum_{s\in\mathcal{E}}s\hat{\lambda}_s$
- Variable branching in the compact space is constraint branching in the extended space
- This idea takes care of (most of) the design issues related to branching for inner methods
- Current Limitation: Identical subproblems are currently treated like non-identical

- Add column bounds to [A'',b''] and map back to the compact space  $\hat{x}=\sum_{s\in\mathcal{E}}s\hat{\lambda}_s$
- Variable branching in the compact space is constraint branching in the extended space
- This idea takes care of (most of) the design issues related to branching for inner methods
- Current Limitation: Identical subproblems are currently treated like non-identical.

- Add column bounds to [A'',b''] and map back to the compact space  $\hat{x}=\sum_{s\in\mathcal{E}}s\hat{\lambda}_s$
- Variable branching in the compact space is constraint branching in the extended space
- This idea takes care of (most of) the design issues related to branching for inner methods
- Current Limitation: Identical subproblems are currently treated like non-identical.







- Add column bounds to [A'',b''] and map back to the compact space  $\hat{x}=\sum_{s\in\mathcal{E}}s\hat{\lambda}_s$
- Variable branching in the compact space is constraint branching in the extended space
- This idea takes care of (most of) the design issues related to branching for inner methods
- Current Limitation: Identical subproblems are currently treated like non-identical.







Node 1: 
$$4\lambda_{(4,1)} + 5\lambda_{(5,5)} + 2\lambda_{(2,1)} + 3\lambda_{(3,4)} \le 2$$
  
Node 2:  $4\lambda_{(4,1)} + 5\lambda_{(5,5)} + 2\lambda_{(2,1)} + 3\lambda_{(3,4)} \ge 3$ 

- ullet In general, Lagrangian methods do *not* provide a primal solution  $\lambda$
- ullet Let  ${\cal B}$  define the extreme points found in solving subproblems for  $z_{
  m LD}$
- Build an inner approximation using this set, then proceed as in PC

$$\mathcal{P}_I = \left\{ x \in \mathbb{R}^n \ \middle| \ x = \sum_{s \in \mathcal{B}} s \lambda_s, \sum_{s \in \mathcal{B}} \lambda_s = 1, \lambda_s \ge 0 \ \forall s \in \mathcal{B} \right\}$$

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{B}}} \left\{ c^\top \left( \sum_{s \in \mathcal{B}} s \lambda_s \right) \ \middle| \ A'' \left( \sum_{s \in \mathcal{B}} s \lambda_s \right) \ge b'', \sum_{s \in \mathcal{B}} \lambda_s = 1 \right\}$$

Closely related to volume algorithm and bundle methods

- ullet In general, Lagrangian methods do *not* provide a primal solution  $\lambda$
- ullet Let  ${\cal B}$  define the extreme points found in solving subproblems for  $z_{
  m LD}$
- Build an inner approximation using this set, then proceed as in PC

$$\mathcal{P}_{I} = \left\{ x \in \mathbb{R}^{n} \mid x = \sum_{s \in \mathcal{B}} s \lambda_{s}, \sum_{s \in \mathcal{B}} \lambda_{s} = 1, \lambda_{s} \geq 0 \ \forall s \in \mathcal{B} \right\}$$

$$\min_{\lambda \in \mathbb{R}_+^{\mathcal{B}}} \left\{ c^{\top} \left( \sum_{s \in \mathcal{B}} s \lambda_s \right) \mid A'' \left( \sum_{s \in \mathcal{B}} s \lambda_s \right) \ge b'', \sum_{s \in \mathcal{B}} \lambda_s = 1 \right\}$$

Closely related to volume algorithm and bundle methods

# Branching for Inner Methods (RC)

- ullet In general, Lagrangian methods do *not* provide a primal solution  $\lambda$
- ullet Let  ${\cal B}$  define the extreme points found in solving subproblems for  $z_{
  m LD}$
- Build an inner approximation using this set, then proceed as in PC

$$\mathcal{P}_{I} = \left\{ x \in \mathbb{R}^{n} \mid x = \sum_{s \in \mathcal{B}} s \lambda_{s}, \sum_{s \in \mathcal{B}} \lambda_{s} = 1, \lambda_{s} \geq 0 \ \forall s \in \mathcal{B} \right\}$$

$$\min_{\lambda \in \mathbb{R}_{+}^{\mathcal{B}}} \left\{ c^{\top} \left( \sum_{s \in \mathcal{B}} s \lambda_{s} \right) \mid A'' \left( \sum_{s \in \mathcal{B}} s \lambda_{s} \right) \ge b'', \sum_{s \in \mathcal{B}} \lambda_{s} = 1 \right\}$$

Closely related to volume algorithm and bundle methods

- Separable subproblems (Important!)
  - Identical subproblems (symmetry)
  - Parallel solution of subproblems
  - Automatic detection
- Use of generic MILP solution technology
  - Using the mapping  $\hat{x} = \sum_{s \in F} s \lambda_s$  we can use generic MILP generation in RC/PC context
  - Use generic MILP solver to solve subproblems
  - With automatic block decomposition can allow solution of generic MILPs with no customization
- Initial columns
  - Solve  $OPT(\mathcal{P}', c+r)$  for random perturbations
  - Solve  $OPT(\mathcal{P}_N)$  heuristically
  - Run several iterations of LD or DC collecting extreme points
- Price-and-branch heuristic
  - ullet For block-angular case, at end of each node, solve with  $\lambda \in \mathbb{Z}$
  - Used in root node by Barahona and Jensen ('98), we extend to tree

- Separable subproblems (Important!)
  - Identical subproblems (symmetry)
  - Parallel solution of subproblems
  - Automatic detection

### Use of generic MILP solution technology

- Using the mapping  $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$  we can use generic MILP generation in RC/PC context
- Use generic MILP solver to solve subproblems.
- With automatic block decomposition can allow solution of generic MILPs with no customization!

#### Initial columns

- Solve  $OPT(\mathcal{P}', c+r)$  for random perturbations
  - Solve  $OPT(\mathcal{P}_N)$  heuristically
- Run several iterations of LD or DC collecting extreme points

### Price-and-branch heuristic

- ullet For block-angular case, at end of each node, solve with  $\lambda \in \mathbb{Z}$
- Used in root node by Barahona and Jensen ('98), we extend to tree

- Separable subproblems (Important!)
  - Identical subproblems (symmetry)
  - Parallel solution of subproblems
  - Automatic detection

### Use of generic MILP solution technology

- Using the mapping  $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$  we can use generic MILP generation in RC/PC context
- Use generic MILP solver to solve subproblems.
- With automatic block decomposition can allow solution of generic MILPs with no customization!

### Initial columns

- Solve  $OPT(\mathcal{P}', c+r)$  for random perturbations
- Solve  $OPT(\mathcal{P}_N)$  heuristically
- Run several iterations of LD or DC collecting extreme points

#### Price-and-branch heuristic

- ullet For block-angular case, at end of each node, solve with  $\lambda \in \mathbb{Z}$ 
  - Used in root node by Barahona and Jensen ('98), we extend to tree

- Separable subproblems (Important!)
  - Identical subproblems (symmetry)
  - Parallel solution of subproblems
  - Automatic detection

### Use of generic MILP solution technology

- Using the mapping  $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$  we can use generic MILP generation in RC/PC context
- Use generic MILP solver to solve subproblems.
- With automatic block decomposition can allow solution of generic MILPs with no customization!

#### Initial columns

- Solve  $OPT(\mathcal{P}', c+r)$  for random perturbations
- Solve  $\mathrm{OPT}(\mathcal{P}_N)$  heuristically
- Run several iterations of LD or DC collecting extreme points

### Price-and-branch heuristic

- For block-angular case, at end of each node, solve with  $\lambda \in \mathbb{Z}$
- Used in root node by Barahona and Jensen ('98), we extend to tree

# Algorithmic Details and Extensions (cont.)

- Choice of master LP solver
  - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
  - Primal simplex after adding columns (warm-start primal feasible)
  - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
  - Reduce size of master LP, improve efficiency of subproblem processing
- Nested pricing
  - Can solve more constrained versions of subproblem heuristically to get high quality columns

# Algorithmic Details and Extensions (cont.)

- Choice of master LP solver
  - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
  - Primal simplex after adding columns (warm-start primal feasible)
  - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
  - Reduce size of master LP, improve efficiency of subproblem processing
- Nested pricing
  - Can solve more constrained versions of subproblem heuristically to get high quality column

# Algorithmic Details and Extensions (cont.)

- Choice of master LP solver
  - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
  - Primal simplex after adding columns (warm-start primal feasible)
  - Interior-point methods might help with stabilization vs extremal duals
- Compression of master LP and object pools
  - Reduce size of master LP, improve efficiency of subproblem processing
- Nested pricing
  - Can solve more constrained versions of subproblem heuristically to get high quality columns.

## Recent Added Features

- User API for selection of which block to process next (can help alot!)
- Support for enforcing branching in subproblem.
- Sparse solution of subproblems for block decomposition.
- Option to detect and remove columns that are close to parallel.
- Dual stabilization (Wegntes).
- Allow to stop subproblem calculation on gap/time and calculate LB.
- For MILP oracle, now have option to allow multiple columns for each subproblem call.
- Better support for "master-only variables."
- Option to use PC solution as warm-start to CPLEX direct solve—try and finish it off.
- API to provide an initial dual vector.
- Option to NOT compress columns until master gap is tight.

# Outline

### DIP Framework

### **DIP Framework**

DIP (Decomposition for Integer Programming) is an open-source software framework that provides an implementation of various decomposition methods with minimal user responsibility

- Allows direct comparison CPM/DW/LD/PC/RC/DC in one framework
- DIP abstracts the common, generic elements of these methods
- Key: The user defines application-specific components in the space of the compact formulation - greatly simplifying the API
  - Define [A'', b''] and/or [A', b']
  - Provide methods for  $OPT(\mathcal{P}',c)$  and/or  $SEP(\mathcal{P}',x)$
- Framework handles all of the algorithm-specific reformulation



### DIP Framework

### **DIP Framework**

DIP (Decomposition for Integer Programming) is an open-source software framework that provides an implementation of various decomposition methods with minimal user responsibility

- Allows direct comparison CPM/DW/LD/PC/RC/DC in one framework
- DIP abstracts the common, generic elements of these methods
- Key: The user defines application-specific components in the space of the compact formulation - greatly simplifying the API
  - Define [A'', b''] and/or [A', b']
  - Provide methods for  $\mathrm{OPT}(\mathcal{P}',c)$  and/or  $\mathrm{SEP}(\mathcal{P}',x)$
- Framework handles all of the algorithm-specific reformulation



## DIP Framework

### **DIP Framework**

DIP (Decomposition for Integer Programming) is an open-source software framework that provides an implementation of various decomposition methods with minimal user responsibility

- Allows direct comparison CPM/DW/LD/PC/RC/DC in one framework
- DIP abstracts the common, generic elements of these methods
- Key: The user defines application-specific components in the space of the compact formulation - greatly simplifying the API
  - Define [A'', b''] and/or [A', b']
  - Provide methods for  $OPT(\mathcal{P}', c)$  and/or  $SEP(\mathcal{P}', x)$
- Framework handles all of the algorithm-specific reformulation



## DIP Framework: Implementation

# COmputational INfrastructure for Operations Research Have some DIP with your CHiPPs?



- DIP was built around data structures and interfaces provided by COIN-OR
- The DIP framework, written in C++, is accessed through two user interface.
  - Applications Interface: Decompapp
  - Algorithms Interface: DecompAlgo
- DIP provides the bounding method for branch and bound
- ALPS (Abstract Library for Parallel Search) provides the framework for tree search
  - AlpsDecompModel : public AlpsModel
    - a wrapper class that calls (data access) methods from DecompApp
  - AlpsDecompTreeNode : public AlpsTreeNode
    - a wrapper class that calls (algorithmic) methods from DecompAlgo

## DIP Framework: Implementation

# COmputational INfrastructure for Operations Research Have some DIP with your CHiPPs?



- DIP was built around data structures and interfaces provided by COIN-OR
- The DIP framework, written in C++, is accessed through two user interfaces:
  - Applications Interface: DecompApp
  - Algorithms Interface: DecompAlgo
- DIP provides the bounding method for branch and bound
- ALPS (Abstract Library for Parallel Search) provides the framework for tree search
  - AlpsDecompModel : public AlpsModel
    - a wrapper class that calls (data access) methods from DecompApp
  - AlpsDecompTreeNode : public AlpsTreeNode
    - a wrapper class that calls (algorithmic) methods from DecompAlgo

## DIP Framework: Implementation

# COmputational INfrastructure for Operations Research Have some DIP with your CHiPPs?



- DIP was built around data structures and interfaces provided by COIN-OR
- The DIP framework, written in C++, is accessed through two user interfaces:
  - Applications Interface: DecompApp
  - Algorithms Interface: DecompAlgo
- DIP provides the bounding method for branch and bound
- ALPS (Abstract Library for Parallel Search) provides the framework for tree search
  - AlpsDecompModel : public AlpsModel
    - a wrapper class that calls (data access) methods from DecompApp
  - AlpsDecompTreeNode : public AlpsTreeNode
    - a wrapper class that calls (algorithmic) methods from DecompAlgo

- The base class DecompApp provides an interface for user to define the application-specific components of their algorithm
- Define the model(s)
  - setModelObjective(double \* c): define (
  - setModelCore(DecompConstraintSet \* model): define Q''
  - setModelRelaxed(DecompConstraintSet \* model, int block): define Q' [optional]
- ullet solveRelaxed(): define a method for  $\mathrm{OPT}(\mathcal{P}',c)$  [optional, if  $\mathcal{Q}'$ , CBC is built-in]
- generateCuts(): define a method for  $SEP(\mathcal{P}',x)$  [optional, CGL is built-in]
- isUserFeasible(): is  $\hat{x} \in \mathcal{P}$ ? [optional, if  $\mathcal{P} = \text{conv}(\mathcal{P}' \cap \mathcal{Q}'' \cap \mathbb{Z})$
- All other methods have appropriate defaults but are virtual and may be overridden

- The base class DecompApp provides an interface for user to define the application-specific components of their algorithm
- Define the model(s)
  - setModelObjective(double \* c): define c
  - setModelCore(DecompConstraintSet \* model): define Q''
  - setModelRelaxed(DecompConstraintSet \* model, int block): define Q' [optional]
- solveRelaxed(): define a method for  $OPT(\mathcal{P}',c)$  [optional, if  $\mathcal{Q}'$ , CBC is built-in
- ullet generateCuts(): define a method for  $\operatorname{SEP}(\mathcal{P}',x)$  [optional, CGL is built-in
- isUserFeasible(): is  $\hat{x} \in \mathcal{P}$ ? [optional, if  $\mathcal{P} = \text{conv}(\mathcal{P}' \cap \mathcal{Q}'' \cap \mathbb{Z})$ ]
- All other methods have appropriate defaults but are virtual and may be overridden

- The base class DecompApp provides an interface for user to define the application-specific components of their algorithm
- Define the model(s)

```
setModelObjective(double * c): define c
```

- setModelCore(DecompConstraintSet \* model): define Q''
- setModelRelaxed(DecompConstraintSet \* model, int block): define Q' [optional]
- solveRelaxed(): define a method for  $\mathrm{OPT}(\mathcal{P}',c)$  [optional, if  $\mathcal{Q}'$ , CBC is built-in]
- generateCuts(): define a method for  $SEP(\mathcal{P}',x)$  [optional, CGL is built-in]
- isUserFeasible(): is  $\hat{x} \in \mathcal{P}$ ? [optional, if  $\mathcal{P} = \operatorname{conv}(\mathcal{P}' \cap \mathcal{Q}'' \cap \mathbb{Z})$ ]
- All other methods have appropriate defaults but are virtual and may be overridden

- The base class DecompApp provides an interface for user to define the application-specific components of their algorithm
- Define the model(s)
  - setModelObjective(double \* c): define c
  - setModelCore(DecompConstraintSet \* model): define Q"
  - $\bullet$  setModelRelaxed(DecompConstraintSet \* model, int block): define  $\mathcal{Q}'$  [optional]
- solveRelaxed(): define a method for  $OPT(\mathcal{P}',c)$  [optional, if  $\mathcal{Q}'$ , CBC is built-in]
- generateCuts(): define a method for  $\operatorname{SEP}(\mathcal{P}',x)$  [optional, CGL is built-in]
- isUserFeasible(): is  $\hat{x} \in \mathcal{P}$ ? [optional, if  $\mathcal{P} = \operatorname{conv}(\mathcal{P}' \cap \mathcal{Q}'' \cap \mathbb{Z})$ ]
- All other methods have appropriate defaults but are virtual and may be overridden

# DIP Framework: Compare and Contrast to COIN/BCP

```
int main(int argc, char ** argv){
  //create the utility class for parsing parameters
  UtilParameters utilParam(argc, argv);
  bool doCut = utilParam.GetSetting("doCut", true);
  bool doPriceCut = utilParam.GetSetting("doPriceCut", false);
  bool doRelaxCut = utilParam. GetSetting ("doRelaxCut",
                                                           false);
  //create the user application (a DecompApp)
  SILP_DecompApp sip(utilParam);
  //create the CPM/PC/RC algorithm objects (a DecompAlgo)
  DecompAlgo * algo = NULL:
  if(doCut) algo = new DecompAlgoC (&sip , &utilParam);
  if ( do Price Cut ) algo = new DecompAlgoPC(&sip , &utilParam );
  if ( doRelaxCut ) algo = new DecompAlgoRC(&sip , &utilParam );
  //create the driver AlpsDecomp model
  AlpsDecompModel alpsModel(utilParam, algo):
  //solve
  alpsModel.solve();
```

## DIP - Algorithms

- The base class DecompAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described has derived default implementations DecompAlgoX : public DecompAlgo which are accessible by any application class, allowing full flexibility
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example.
  - Alternative methods for solving the master LP in DW, such as interior point methods
  - Add stabilization to the dual updates in LD (stability centers
  - For LD, replace subgradient with volume providing an approximate primal solution
  - Hybrid init methods like using LD or DC to initialize the columns of the DW master
  - During PC, adding cuts to either master and/or subproblem.
  - .



## DIP - Algorithms

- The base class DecompAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described has derived default implementations DecompAlgoX : public DecompAlgo which are accessible by any application class, allowing full flexibility.
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example.
  - Alternative methods for solving the master LP in DW, such as interior point methods
  - Add stabilization to the dual updates in LD (stability centers)
  - For LD, replace subgradient with volume providing an approximate primal solution
  - Hybrid init methods like using LD or DC to initialize the columns of the DW master
  - During PC, adding cuts to either master and/or subproblem.



## DIP - Algorithms

- The base class DecompAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described has derived default implementations DecompAlgoX : public DecompAlgo which are accessible by any application class, allowing full flexibility.
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,
  - Alternative methods for solving the master LP in DW, such as interior point methods
  - Add stabilization to the dual updates in LD (stability centers)
  - For LD, replace subgradient with volume providing an approximate primal solution
  - Hybrid init methods like using LD or DC to initialize the columns of the DW master
  - During PC, adding cuts to either master and/or subproblem.

...



# DIP - Example Applications

| Application | Description                     | $\mathcal{P}'$ | $\mathbf{OPT}(c)$ | SEP(x)   | Input      |
|-------------|---------------------------------|----------------|-------------------|----------|------------|
| AP3         | 3-index assignment              | AP             | Jonker            | user     | user       |
| ATM         | cash management (SAS COE)       | MILP(s)        | CBC               | CGL      | user       |
| GAP         | generalized assignment          | KP(s)          | Pisinger          | CGL      | user       |
| MAD         | matrix decomposition            | MaxClique      | Cliquer           | CGL      | user       |
| MILP        | random partition into $A', A''$ | MILP           | CBC               | CGL      | mps        |
| MILPBlock   | user-defined blocks for $A'$    | MILP(s)        | CBC               | CGL      | mps, block |
| MMKP        | multi-dim/choice knapsack       | MCKP           | Pisinger          | CGL      | user       |
|             |                                 | MDKP           | CBC               | CGL      | user       |
| SILP        | intro example, tiny IP          | MILP           | CBC               | CGL      | user       |
| TSP         | traveling salesman problem      | 1-Tree         | Boost             | Concorde | user       |
|             |                                 | 2-Match        | CBC               | Concorde | user       |
| VRP         | vehicle routing problem         | k-TSP          | Concorde          | CVRPSEP  | user       |
|             |                                 | b-Match        | CBC               | CVRPSEP  | user       |

# Outline

## Quick Introduction to CHiPPS

- CHiPPS stands for COIN-OR High Performance Parallel Search.
- CHiPPS is a set of C++ class libraries for implementing tree search algorithms for both sequential and parallel environments.

### CHiPPS Components (Current)

- ALPS (Abstract Library for Parallel Search)
  - is the search-handling layer (parallel and sequential).
  - provides various search strategies based on node priorities.
- BiCePS (Branch, Constrain, and Price Software)
  - is the data-handling layer for relaxation-based optimization.
  - adds notion of variables and constraints.
  - assumes iterative bounding process.
- BLIS (BiCePS Linear Integer Solver)
  - is a concretization of BiCePS.
  - specific to models with linear constraints and objective function.

## ALPS: Design Goals

- Intuitive object-oriented class structure.
  - AlpsModel
  - AlpsTreeNode
  - AlpsNodeDesc
  - AlpsSolution
  - AlpsParameterSet
- Minimal algorithmic assumptions in the base class.
  - Support for a wide range of problem classes and algorithms.
  - Support for constraint programming.
- Easy for user to develop a custom solver.
- Design for parallel scalability, but operate effective in a sequential environment.
- Explicit support for memory compression techniques (packing/differencing) important for implementing optimization algorithms.

## ALPS: Overview of Features

- The design is based on a very general concept of *knowledge*.
- Knowledge is shared asynchronously through pools and brokers.
- Management overhead is reduced with the master-hub-worker paradigm.
- Overhead is decreased using dynamic task granularity.
- Two static load balancing techniques are used.
- Three dynamic load balancing techniques are employed.
- Uses asynchronous messaging to the highest extent possible.
- A scheduler on each process manages tasks like
  - node processing,
  - load balaning,
  - update search states, and
  - termination checking, etc.

# Knowledge Sharing

- All knowledge to be shared is derived from a single base class and has an associated encoded form.
- Encoded form is used for identification, storage, and communication.
- Knowledge is maintained by one or more knowledge pools.
- The knowledge pools communicate through knowledge brokers.



# Master-Hub-Worker Paradigm



# Alps Class Hierarchy



## Using ALPS: A Knapack Solver

The formulation of the binary knapsack problem is

$$\max\{\sum_{i=1}^{m} p_i x_i : \sum_{i=1}^{m} s_i x_i \le c, x_i \in \{0, 1\}, i = 1, 2, \dots, m\},$$
(1)

We derive the following classes:

- KnapModel (from AlpsModel): Stores the data used to describe the knapsack problem and implements readInstance()
- KnapTreeNode (from AlpsTreeNode): Implements process() (bound) and branch()
- KnapNodeDesc (from AlpsNodeDesc): Stores information about which variables/items
  have been fixed by branching and which are still free.
- KnapSolution (from AlpsSolution) Stores a solution (which items are in the knapsack).

# Using ALPS: A Knapack Solver

Then, supply the main function.

```
int main(int argc, char* argv[])
{
    KnapModel model;

#if defined(SERIAL)
    AlpsKnowledgeBrokerSerial broker(argc, argv, model);
#elif defined(PARALLEL_MPI)
    AlpsKnowledgeBrokerMPI broker(argc, argv, model);
#endif

broker.search();
broker.printResult();
return 0;
}
```

# Outline

# Multi-Choice Multi-Dimensional Knapsack Problem (MMKP)

 SAS Marketing Optimization - improve ROI for marketing campaign offers by targeting higher response rates, improving channel effectiveness, and reduce spending.

$$\max \quad \sum_{i \in N} \sum_{j \in L_i} v_{ij} x_{ij}$$

$$\sum_{i \in N} \sum_{j \in L_i} r_{kij} x_{ij} \leq b_k \quad \forall k \in M$$

$$\sum_{j \in L_i} x_{ij} = 1 \quad \forall i \in N$$

$$x_{ij} \in \{0,1\} \quad \forall i \in N, j \in L_i$$

- Relaxation Multi-Choice Knapsack Problem (MCKP)
  - solver *mcknap* by Pisinger a DP-based branch-and-bound

$$\begin{array}{lcl} \sum\limits_{i \in N} \sum\limits_{j \in L_i} r_{mij} x_{ij} & \leq & b_m \\ \sum\limits_{j \in L_i} x_{ij} & = & 1 & \forall i \in N \\ x_{ij} & \in & \{0,1\} & \forall i \in N, j \in L_i \end{array}$$

# Multi-Choice Multi-Dimensional Knapsack Problem (MMKP)

 SAS Marketing Optimization - improve ROI for marketing campaign offers by targeting higher response rates, improving channel effectiveness, and reduce spending.

$$\max \quad \sum_{i \in N} \sum_{j \in L_i} v_{ij} x_{ij}$$

$$\sum_{i \in N} \sum_{j \in L_i} r_{kij} x_{ij} \leq b_k \quad \forall k \in M$$

$$\sum_{j \in L_i} x_{ij} = 1 \quad \forall i \in N$$

$$x_{ij} \in \{0,1\} \quad \forall i \in N, j \in L_i$$

- Relaxation Multi-Choice Knapsack Problem (MCKP)
  - solver mcknap by Pisinger a DP-based branch-and-bound

$$\begin{array}{lclcl} \sum\limits_{i \in N} \sum\limits_{j \in L_i} r_{mij} x_{ij} & \leq & b_m \\ \sum\limits_{j \in L_i} x_{ij} & = & 1 & \forall i \in N \\ x_{ij} & \in & \{0,1\} & \forall i \in N, j \in L_i \end{array}$$

# MMKP: CPX10.2 vs CPM/PC/DC

|          | CPX10.2 |       | DIP-CPM |          | DIP-PC   |        | DIP-DC |       |
|----------|---------|-------|---------|----------|----------|--------|--------|-------|
| Instance | Time    | Gap   | Time    | Gap      | Time Gap |        | Time   | Gap   |
| 11       | 0.00    | OPT   | 0.02    | OPT      | 0.04     | OPT    | 0.14   | OPT   |
| 110      | Т       | 0.05% | Т       | $\infty$ | Т        | 11.86% | Т      | 0.15% |
| 111      | Т       | 0.03% | Т       | $\infty$ | Т        | 12.25% | Т      | 0.14% |
| I12      | Т       | 0.01% | Т       | $\infty$ | Т        | 7.93%  | Т      | 0.10% |
| I13      | Т       | 0.02% | Т       | $\infty$ | Т        | 11.89% | Т      | 0.12% |
| 12       | 0.01    | OPT   | 0.01    | OPT      | 0.05     | OPT    | 0.05   | OPT   |
| 13       | 1.17    | OPT   | 23.23   | OPT      | Т        | 1.07%  | Т      | 0.75% |
| 14       | 15.71   | OPT   | Т       | $\infty$ | Т        | 5.14%  | Т      | 0.77% |
| 15       | 0.01    | 0.01% | 0.01    | OPT      | 0.13     | OPT    | 0.05   | OPT   |
| 16       | 0.14    | OPT   | 0.07    | OPT      | Т        | 0.28%  | 0.63   | OPT   |
| 17       | Т       | 0.08% | Т       | $\infty$ | Т        | 14.32% | Т      | 0.09% |
| 18       | Т       | 0.09% | Т       | $\infty$ | Т        | 13.36% | Т      | 0.20% |
| 19       | Т       | 0.06% | Т       | $\infty$ | Т        | 10.71% | Т      | 0.19% |
| INST01   | Т       | 0.43% | Т       | $\infty$ | Т        | 9.99%  | Т      | 0.70% |
| INST02   | Т       | 0.09% | Т       | $\infty$ | Т        | 7.39%  | Т      | 0.45% |
| INST03   | Т       | 0.38% | Т       | $\infty$ | Т        | 3.83%  | Т      | 0.85% |
| INST04   | Т       | 0.34% | Т       | $\infty$ | Т        | 7.48%  | Т      | 0.45% |
| INST05   | Т       | 0.18% | Т       | $\infty$ | Т        | 10.23% | Т      | 0.62% |
| INST06   | Т       | 0.21% | Т       | $\infty$ | Т        | 9.82%  | Т      | 0.38% |
| INST07   | Т       | 0.36% | Т       | $\infty$ | Т        | 15.75% | Т      | 0.62% |
| INST08   | Т       | 0.25% | Т       | $\infty$ | Т        | 11.55% | Т      | 0.46% |
| INST09   | Т       | 0.21% | Т       | $\infty$ | Т        | 15.24% | Т      | 0.40% |
| INST11   | Т       | 0.22% | Т       | $\infty$ | Т        | 7.96%  | Т      | 0.39% |
| INST12   | Т       | 0.18% | Т       | $\infty$ | Т        | 7.90%  | Т      | 0.42% |
| INST13   | Т       | 0.08% | Т       | $\infty$ | Т        | 2.97%  | Т      | 0.14% |
| INST14   | Т       | 0.05% | Т       | $\infty$ | Т        | 3.89%  | Т      | 0.09% |
| INST15   | Т       | 0.04% | Т       | $\infty$ | Т        | 3.43%  | Т      | 0.10% |
| INST16   | Т       | 0.06% | Т       | $\infty$ | Т        | 2.19%  | Т      | 0.06% |
| INST17   | Т       | 0.03% | Т       | $\infty$ | Т        | 2.09%  | Т      | 0.09% |
| INST18   | Т       | 0.03% | Т       | $\infty$ | Т        | 4.43%  | Т      | 0.06% |
| INST19   | Т       | 0.03% | Т       | $\infty$ | Т        | 3.13%  | Т      | 0.04% |
| INST20   | Т       | 0.03% | Т       | $\infty$ | Т        | 3.05%  | Т      | 0.04% |



|           | CPX10.2 | DIP-CPM | DIP-PC | DIP-DC |
|-----------|---------|---------|--------|--------|
| Optimal   | 5       | 5       | 3      | 4      |
| ≤ 1% Gap  | 32      | 5       | 4      | 32     |
| ≤ 10% Gap | 32      | 5       | 22     | 32     |

CGL: missing Gub Covers

# MMKP: CPX10.2 vs CPM/PC/DC

|          | CPX10.2 |       | DIP-CPM |          |      | P-PC   | DIP-DC |       |
|----------|---------|-------|---------|----------|------|--------|--------|-------|
| Instance | Time    | Gap   | Time    | Gap      | Time | Gap    | Time   | Gap   |
| 11       | 0.00    | OPT   | 0.02    | OPT      | 0.04 | OPT    | 0.14   | OPT   |
| 110      | Т       | 0.05% | Т       | $\infty$ | Т    | 11.86% | Т      | 0.15% |
| I11      | Т       | 0.03% | Т       | $\infty$ | Т    | 12.25% | Т      | 0.14% |
| I12      | Т       | 0.01% | Т       | $\infty$ | Т    | 7.93%  | Т      | 0.10% |
| 113      | Т       | 0.02% | Т       | $\infty$ | Т    | 11.89% | Т      | 0.12% |
| 12       | 0.01    | OPT   | 0.01    | OPT      | 0.05 | OPT    | 0.05   | OPT   |
| 13       | 1.17    | OPT   | 23.23   | OPT      | Т    | 1.07%  | Т      | 0.75% |
| 14       | 15.71   | OPT   | Т       | $\infty$ | Т    | 5.14%  | Т      | 0.77% |
| 15       | 0.01    | 0.01% | 0.01    | OPT      | 0.13 | OPT    | 0.05   | OPT   |
| 16       | 0.14    | OPT   | 0.07    | OPT      | Т    | 0.28%  | 0.63   | OPT   |
| 17       | Т       | 0.08% | Т       | $\infty$ | Т    | 14.32% | Т      | 0.09% |
| 18       | Т       | 0.09% | Т       | $\infty$ | Т    | 13.36% | Т      | 0.20% |
| 19       | Т       | 0.06% | Т       | $\infty$ | Т    | 10.71% | Т      | 0.19% |
| INST01   | Т       | 0.43% | Т       | $\infty$ | Т    | 9.99%  | Т      | 0.70% |
| INST02   | Т       | 0.09% | Т       | $\infty$ | Т    | 7.39%  | Т      | 0.45% |
| INST03   | Т       | 0.38% | Т       | $\infty$ | Т    | 3.83%  | Т      | 0.85% |
| INST04   | Т       | 0.34% | Т       | $\infty$ | Т    | 7.48%  | Т      | 0.45% |
| INST05   | Т       | 0.18% | Т       | $\infty$ | Т    | 10.23% | Т      | 0.62% |
| INST06   | Т       | 0.21% | Т       | $\infty$ | Т    | 9.82%  | Т      | 0.38% |
| INST07   | Т       | 0.36% | Т       | $\infty$ | Т    | 15.75% | Т      | 0.62% |
| INST08   | Т       | 0.25% | Т       | $\infty$ | Т    | 11.55% | Т      | 0.46% |
| INST09   | Т       | 0.21% | Т       | $\infty$ | Т    | 15.24% | Т      | 0.40% |
| INST11   | Т       | 0.22% | Т       | $\infty$ | Т    | 7.96%  | Т      | 0.39% |
| INST12   | Т       | 0.18% | Т       | $\infty$ | Т    | 7.90%  | Т      | 0.42% |
| INST13   | Т       | 0.08% | Т       | $\infty$ | Т    | 2.97%  | Т      | 0.14% |
| INST14   | Т       | 0.05% | Т       | $\infty$ | Т    | 3.89%  | Т      | 0.09% |
| INST15   | Т       | 0.04% | Т       | $\infty$ | Т    | 3.43%  | Т      | 0.10% |
| INST16   | Т       | 0.06% | Т       | $\infty$ | Т    | 2.19%  | Т      | 0.06% |
| INST17   | Т       | 0.03% | Т       | $\infty$ | Т    | 2.09%  | Т      | 0.09% |
| INST18   | Т       | 0.03% | Т       | $\infty$ | Т    | 4.43%  | Т      | 0.06% |
| INST19   | Т       | 0.03% | Т       | $\infty$ | Т    | 3.13%  | Т      | 0.04% |
| INST20   | Т       | 0.03% | Т       | $\infty$ | Т    | 3.05%  | Т      | 0.04% |



|           | CPX10.2 | DIP-CPM | DIP-PC | DIP-DC |
|-----------|---------|---------|--------|--------|
| Optimal   | 5       | 5       | 3      | 4      |
| ≤ 1% Gap  | 32      | 5       | 4      | 32     |
| ≤ 10% Gap | 32      | 5       | 22     | 32     |

CGL: missing Gub Covers

## MMKP: Nested Pricing

- Nested Relaxations:
  - $\bullet \; \; \mathsf{Multi-Choice} \; \mathsf{2-D} \; \mathsf{Knapsack} \; \mathsf{Problem} \; (\mathsf{MC2KP}) : \; \mathcal{P}_p^{\mathsf{MC2KP}} \subset \mathcal{P}^{\mathsf{MCKP}} \; \forall p \in M \setminus \{m\}$

$$\begin{array}{lcl} \sum\limits_{i \in N} \sum\limits_{j \in L_i} r_{pij} x_{ij} & \leq & b_p \\ \sum\limits_{i \in N} \sum\limits_{j \in L_i} r_{mij} x_{ij} & \leq & b_m \\ \sum\limits_{j \in L_i} x_{ij} & = & 1 & \forall i \in N \\ x_{ij} & \in & \{0,1\} & \forall i \in N, j \in L_i \end{array}$$

• Multi-Choice Multi-Dimensional Knapsack Problem (MMKP):  $\mathcal{P} \subset \mathcal{P}^{\text{MCKP}}$ 

### MMKP: Nested Pricing

- Nested Relaxations:
  - $\bullet \; \; \mathsf{Multi\text{-}Choice} \; \mathsf{2\text{-}D} \; \; \mathsf{Knapsack} \; \mathsf{Problem} \; (\mathsf{MC2KP}) \colon \mathcal{P}_p^{\mathrm{MC2KP}} \subset \mathcal{P}^{\mathrm{MCKP}} \; \forall p \in M \setminus \{m\}$

$$\begin{array}{lcl} \sum\limits_{i \in N} \sum\limits_{j \in L_i} r_{pij} x_{ij} & \leq & b_p \\ \sum\limits_{i \in N} \sum\limits_{j \in L_i} r_{mij} x_{ij} & \leq & b_m \\ \sum\limits_{j \in L_i} x_{ij} & = & 1 & \forall i \in N \\ x_{ij} & \in & \{0,1\} & \forall i \in N, j \in L_i \end{array}$$

• Multi-Choice Multi-Dimensional Knapsack Problem (MMKP):  $\mathcal{P} \subset \mathcal{P}^{\mathrm{MCKP}}$ 

# MMKP: PC vs PC Nested with MC2KP and MMKP

|          | DIP-PC |        | DIP-F  | PC-M2  | DIP-PC-MM |       |  |
|----------|--------|--------|--------|--------|-----------|-------|--|
| Instance | Time   | Gap    | Time   | Gap    | Time      | Gap   |  |
| 11       | 0.04   | OPT    | 0.16   | OPT    | 0.08      | OPT   |  |
| 110      | Т      | 11.86% | Т      | 6.99%  | Т         | 0.63% |  |
| 111      | Т      | 12.25% | Т      | 11.15% | Т         | 0.60% |  |
| 112      | Т      | 7.93%  | Т      | 11.41% | Т         | 0.79% |  |
| I13      | Т      | 11.89% | T      | 13.65% | Т         | 0.52% |  |
| 12       | 0.05   | OPT    | 0.45   | OPT    | 0.14      | OPT   |  |
| 13       | Т      | 1.07%  | T      | 1.18%  | Т         | 1.10% |  |
| 14       | Т      | 5.14%  | Т      | 3.18%  | Т         | 1.23% |  |
| 15       | 0.13   | OPT    | 0.14   | OPT    | 0.07      | OPT   |  |
| 16       | Т      | 0.28%  | 483.53 | OPT    | Т         | 0.25% |  |
| 17       | Т      | 14.32% | Т      | 4.85%  | Т         | 0.97% |  |
| 18       | Т      | 13.36% | Т      | 9.79%  | Т         | 0.67% |  |
| 19       | Т      | 10.71% | T      | 10.57% | Т         | 0.73% |  |
| INST01   | Т      | 9.99%  | Т      | 5.97%  | Т         | 1.86% |  |
| INST02   | Т      | 7.39%  | Т      | 7.29%  | Т         | 1.74% |  |
| INST03   | Т      | 3.83%  | Т      | 11.93% | Т         | 1.61% |  |
| INST04   | Т      | 7.48%  | Т      | 7.04%  | Т         | 1.56% |  |
| INST05   | Т      | 10.23% | Т      | 8.84%  | Т         | 1.11% |  |
| INST06   | Т      | 9.82%  | Т      | 9.77%  | Т         | 1.39% |  |
| INST07   | Т      | 15.75% | Т      | 8.78%  | Т         | 1.23% |  |
| INST08   | Т      | 11.55% | Т      | 8.50%  | Т         | 1.37% |  |
| INST09   | Т      | 15.24% | Т      | 8.48%  | Т         | 0.89% |  |
| INST11   | Т      | 7.96%  | Т      | 8.72%  | Т         | 1.13% |  |
| INST12   | Т      | 7.90%  | T      | 6.72%  | Т         | 1.03% |  |
| INST13   | Т      | 2.97%  | T      | 3.06%  | Т         | 0.76% |  |
| INST14   | Т      | 3.89%  | Т      | 3.67%  | Т         | 0.52% |  |
| INST15   | Т      | 3.43%  | Т      | 2.81%  | Т         | 0.78% |  |
| INST16   | T      | 2.19%  | Т      | 3.01%  | Т         | 0.50% |  |
| INST17   | Т      | 2.09%  | Т      | 2.16%  | Т         | 0.39% |  |
| INST18   | Т      | 4.43%  | Т      | 2.60%  | Т         | 0.41% |  |
| INST19   | Т      | 3.13%  | Т      | 3.97%  | Т         | 0.46% |  |
| INST20   | Т      | 3.05%  | Т      | 4.06%  | T         | 0.94% |  |



|           | DIP-PC | DIP-PC-M2 | DIP-PC-MM |
|-----------|--------|-----------|-----------|
| Optimal   | 3      | 4         | 3         |
| ≤ 1% Gap  | 4      | 4         | 20        |
| ≤ 10% Gap | 22     | 27        | 32        |

# MMKP: CPX10.2 vs CPM/PC/DC/PC-M2/PC-MM





- Determine schedule for allocation of cash inventory at branch banks to service ATMs
- Define a polynomial fit for predicted cash flow need per day/ATM
- Predictive model factors include
  - days of the weel
  - weeks of the month
  - holidays
  - salary disbursement days
  - location of the branches
- Cash allocation plans finalized at beginning of month deviations from plan are costly
- Goal: Determine multipliers for fit to minimize mismatch based on predicted withdrawal
- Constraints:
  - Regulatory agencies enforce a minimum cash reserve ratio at branch banks (per day)
  - For each ATM, limit on number of days cash-out based on predictive model (customer satisfaction)

- Determine schedule for allocation of cash inventory at branch banks to service ATMs
- Define a polynomial fit for predicted cash flow need per day/ATM
- Predictive model factors include:
  - days of the week
  - weeks of the month
  - holidays
  - salary disbursement days
  - location of the branches
- Cash allocation plans finalized at beginning of month deviations from plan are costly
- Goal: Determine multipliers for fit to minimize mismatch based on predicted withdrawals
- Constraints:
  - Regulatory agencies enforce a minimum cash reserve ratio at branch banks (per day)
  - For each ATM, limit on number of days cash-out based on predictive model (customer satisfaction)

- Determine schedule for allocation of cash inventory at branch banks to service ATMs
- Define a polynomial fit for predicted cash flow need per day/ATM
- Predictive model factors include:
  - days of the week
  - weeks of the month
  - holidays
  - salary disbursement days
  - location of the branches
- Cash allocation plans finalized at beginning of month deviations from plan are costly
- Goal: Determine multipliers for fit to minimize mismatch based on predicted withdrawals
- Constraints:
  - Regulatory agencies enforce a minimum cash reserve ratio at branch banks (per day)
  - For each ATM, limit on number of days cash-out based on predictive model (customer satisfaction

- Determine schedule for allocation of cash inventory at branch banks to service ATMs
- Define a polynomial fit for predicted cash flow need per day/ATM
- Predictive model factors include:
  - days of the week
  - weeks of the month
  - holidays
  - salary disbursement days
  - location of the branches
- Cash allocation plans finalized at beginning of month deviations from plan are costly
- Goal: Determine multipliers for fit to minimize mismatch based on predicted withdrawals
- Constraints:
  - Regulatory agencies enforce a minimum cash reserve ratio at branch banks (per day)
  - For each ATM, limit on number of days cash-out based on predictive model (customer satisfaction)

### ATM Cash Management Problem - MINLP Formulation

- Simple looking nonconvex quadratic integer NLP.
- Linearize the absolute value, add binaries for count constraints.
- So far, no MINLP solvers seem to be able to solve this (several die with numerical failures).

$$\begin{aligned} & \min \sum_{a \in A} \sum_{d \in D} |f_{ad}| \\ & \text{s.t. } c_{ad}^x x_a + c_{ad}^y y_a + c_{ad}^x x_a y_a + c_{ad}^u u_a + c_{ad} - w_{ad} & = f_{ad} & \forall a \in A, d \in D \\ & \sum_{a \in A} (f_{ad} + w_{ad}) & \leq B_d & \forall d \in D \\ & |\{d \in D \mid f_{ad} < 0\}| & \leq K_a & \forall a \in A \\ & x_a, y_a & \in [0, 1] & \forall a \in A \\ & u_a & \geq 0 & \forall a \in A \\ & f_{ad} & \geq -w_{ad} & \forall a \in A, d \in D \end{aligned}$$

# Application - ATM Cash Management Problem - MILP Approx Formulation

- Discretization of x domain  $\{0, 0.1, 0.2, ..., 1.0\}$ .
- Linearization of product of binary and continuous, and absolute value.

$$\begin{aligned} \min \sum_{a \in A} \sum_{d \in D} \left( f_{ad}^+ + f_{ad}^- \right) \\ \text{s.t.} \quad c_{ad}^x \sum_{t \in T} c_t x_{at} + c_{ad}^y y_a + c_{ad}^{xy} \sum_{t \in T} c_t z_{at} + c_{ad}^u u_a - w_{ad} &= f_{ad}^+ - f_{ad}^- & \forall a \in A, d \in D \\ \sum_{t \in T} x_{at} & \leq 1 & \forall a \in A \\ z_{at} & \leq x_{at} & \forall a \in A, t \in T \\ z_{at} & \leq y_a & \forall a \in A, t \in T \\ z_{at} & \geq x_{at} + y_a - 1 & \forall a \in A, t \in T \\ f_{ad}^- & \leq w_{ad} v_{ad} & \forall a \in A, d \in D \\ \sum_{a \in A} (f_{ad}^+ - f_{ad}^- + w_{ad}) & \leq B_d & \forall d \in D \\ \sum_{a \in A} v_{ad} & \leq K_a & \forall a \in A \end{aligned}$$

# ATM Cash Management Problem - MILP Approx Formulation

| $x_{at}$             | $\in \{0,1\}$     | $\forall a \in A, t \in T$ |
|----------------------|-------------------|----------------------------|
| $z_{at}$             | $\geq 0$          | $\forall a \in A, t \in T$ |
| $v_{ad}$             | $\in \{0,1\}$     | $\forall a \in A, d \in D$ |
| $y_a$                | $\in [0, 1]$      | $\forall a \in A$          |
| $u_a$                | $\geq 0$          | $\forall a \in A$          |
| $f_{ad}^+, f_{ad}^-$ | $\in [0, w_{ad}]$ | $\forall a \in A, d \in D$ |

- The MILP formulation has a natural block-angular structure.
  - Master constraints are just the budget constraint.
  - Subproblem constraints (the rest) one block for each ATM.

# ATM: CPX11 vs PC/PC+

|        |              |   |         | CPX11    |         |        | DIP-PC   |       | DIP-PC+ |      |       |
|--------|--------------|---|---------|----------|---------|--------|----------|-------|---------|------|-------|
| A      | D            | s | Time    | Gap      | Nodes   | Time   | Gap      | Nodes | Time    | Gap  | Nodes |
| 5      | 25           | 1 | 0.76    | OPT      | 467     | 1.62   | OPT      | 6     | 1.96    | OPT  | 6     |
| 5      | 25           | 2 | 1.41    | OPT      | 804     | 1.95   | OPT      | 9     | 1.57    | OPT  | 7     |
| - 5    | 25           | 3 | 0.42    | OPT      | 147     | 7.38   | OPT      | 32    | 8.03    | OPT  | 32    |
| - 5    | 25           | 4 | 1.49    | OPT      | 714     | 2.74   | OPT      | 14    | 2.45    | OPT  | 13    |
| - 5    | 25           | 5 | 0.16    | OPT      | 32      | 0.98   | OPT      | 7     | 0.95    | OPT  | 6     |
| 5      | 50           | 1 | Т       | 0.10     | 1264574 | 162.74 | OPT      | 127   | 164.46  | OPT  | 131   |
| - 5    | 50           | 2 | 87.96   | OPT      | 38341   | 183.28 | OPT      | 273   | 263.24  | OPT  | 275   |
| - 5    | 50           | 3 | 8.09    | OPT      | 3576    | 17.58  | OPT      | 36    | 22.28   | OPT  | 35    |
| - 5    | 50           | 4 | 4.13    | OPT      | 1317    | 3.13   | OPT      | 3     | 3.17    | OPT  | 3     |
| 5      | 50           | 5 | 57.55   | OPT      | 32443   | 91.30  | OPT      | 145   | 141.29  | OPT  | 147   |
| 10     | 50           | 1 | Т       | 0.76     | 998624  | 297.65 | OPT      | 301   | 234.47  | OPT  | 156   |
| 10     | 50           | 2 | 1507.84 | OPT      | 351879  | 28.84  | OPT      | 29    | 52.99   | OPT  | 29    |
| 10     | 50           | 3 | Т       | 0.81     | 667371  | 64.72  | OPT      | 64    | 49.20   | OPT  | 47    |
| 10     | 50           | 4 | 1319.00 | OPT      | 433155  | 7.97   | OPT      | 1     | 5.00    | OPT  | 1     |
| 10     | 50           | 5 | 365.51  | OPT      | 181013  | 12.49  | OPT      | 3     | 5.18    | OPT  | 3     |
| 10     | 100          | 1 | Т       | $\infty$ | 128155  | Т      | $\infty$ | 20590 | Т       | 0.11 | 13190 |
| 10     | 100          | 2 | Т       | $\infty$ | 116522  | Т      | $\infty$ | 60554 | 2437.43 | OPT  | 135   |
| 10     | 100          | 3 | Т       | $\infty$ | 118617  | Т      | $\infty$ | 52902 | Т       | 0.20 | 40793 |
| 10     | 100          | 4 | Т       | $\infty$ | 108899  | T      | $\infty$ | 47931 | Т       | 1.51 | 59477 |
| 10     | 100          | 5 | Т       | $\infty$ | 167617  | Т      | $\infty$ | 40283 | Т       | 0.38 | 26490 |
| 20     | 100          | 1 | Т       | $\infty$ | 93519   | 379.75 | OPT      | 9     | 544.49  | OPT  | 9     |
| 20     | 100          | 2 | Т       | $\infty$ | 68863   | Т      | 16.44    | 14240 | Т       | 0.26 | 25756 |
| 20     | 100          | 3 | Т       | $\infty$ | 95981   | Т      | 15.37    | 41495 | Т       | 0.12 | 3834  |
| 20     | 100          | 4 | Т       | $\infty$ | 81836   | Т      | 0.39     | 7554  | Т       | 0.08 | 7918  |
| 20     | 100          | 5 | Т       | $\infty$ | 101917  | 635.59 | OPT      | 21    | 608.68  | OPT  | 19    |
| Opti   |              |   |         | 12       |         |        | 17       |       |         | 18   |       |
|        | <b>6 Gap</b> |   |         | 15       |         |        | 18       |       |         | 25   |       |
| _ ≤ 10 | % Gap        | ) |         | 15       |         |        | 18       |       |         | 25   |       |

# ATM: CPX11 vs PC/PC+





# MILPBlock - Block-Angular MILP (as a Generic Solver)

- Consulting work led to numerous MILPs that cannot be solved with generic (B&C) solvers
- Often consider a decomposition approach, since a common modeling paradigm is
  - independent departmental policies which are then coupled by some global constraints
- Development time was slow due to problem-specific implementations of methods

$$\begin{pmatrix} A_1'' & A_2'' & \cdots & A_\kappa'' \\ A_1' & & & & \\ & & A_2' & & & \\ & & & \ddots & & \\ & & & & A_\kappa' \end{pmatrix}$$

- MILPBlock provides a black-box solver for applying integrated methods to generic MILP
  - This is the *first* framework to do this (to my knowledge)
  - Similar efforts are being talked about by F. Vanderbeck BaPCod (no cuts)
- Currently, the only input needed is MPS/LP and a block file
- Future work will attempt to embed automatic recognition of the block-angular structure using packages from linear algebra like: MONET, hMETIS, Mondriaan

## MILPBlock - Block-Angular MILP (as a Generic Solver)

- Consulting work led to numerous MILPs that cannot be solved with generic (B&C) solvers
- Often consider a decomposition approach, since a common modeling paradigm is
  - independent departmental policies which are then coupled by some global constraints
- Development time was slow due to problem-specific implementations of methods

$$\begin{pmatrix} A_1'' & A_2'' & \cdots & A_\kappa'' \\ A_1' & & & \\ & & A_2' & & \\ & & & \ddots & \\ & & & & A_\kappa' \end{pmatrix}$$

- MILPBlock provides a black-box solver for applying integrated methods to generic MILP
  - This is the first framework to do this (to my knowledge).
  - Similar efforts are being talked about by F. Vanderbeck BaPCod (no cuts)
- Currently, the only input needed is MPS/LP and a block file
- Future work will attempt to embed automatic recognition of the block-angular structure using packages from linear algebra like: MONET, hMETIS, Mondriaan

# Application - Block-Angular MILP (applied to Retail Optimization)

### SAS Retail Optimization Solution

- Multi-tiered supply chain distribution problem where each block represents a store
- Prototype model developed in SAS/OR's OPTMODEL (algebraic modeling language)

|          |        | CPX11 |         |        | DIP-PC |       |
|----------|--------|-------|---------|--------|--------|-------|
| Instance | Time   | Gap   | Nodes   | Time   | Gap    | Nodes |
| retail27 | Т      | 2.30% | 2674921 | 3.18   | OPT    | 1     |
| retail31 | Т      | 0.49% | 1434931 | 767.36 | OPT    | 41    |
| retail3  | 529.77 | OPT   | 2632157 | 0.54   | OPT    | 1     |
| retail4  | Т      | 1.61% | 1606911 | 116.55 | OPT    | 1     |
| retail6  | 1.12   | OPT   | 803     | 264.59 | OPT    | 303   |

# Outline

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut
  - Similar to Interior Point crossover to Simplex, we can crossover from 
     to a feasible basis, load
    that into the solver and generate tableau cuts
  - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization of branch-and-bound
  - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress)
  - Pricing in block-angular case
  - Nested pricing use idle cores to generate diverse set of columns simultaneously
  - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut
  - Similar to Interior Point crossover to Simplex, we can crossover from 
     to a feasible basis, load
    that into the solver and generate tableau cuts
  - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization of branch-and-bound
  - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress)
  - Pricing in block-angular case
  - Nested pricing use idle cores to generate diverse set of columns simultaneously
  - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut?
  - Similar to Interior Point crossover to Simplex, we can crossover from  $\hat{x}$  to a feasible basis, load that into the solver and generate tableau cuts
  - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck
- Parallelization of branch-and-bound
- More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
  - Pricing in block-angular case
  - Nested pricing use idle cores to generate diverse set of columns simultaneously
  - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut?
  - Similar to Interior Point crossover to Simplex, we can crossover from  $\hat{x}$  to a feasible basis, load that into the solver and generate tableau cuts
  - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization of branch-and-bound
  - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress)
  - Pricing in block-angular case
  - Nested pricing use idle cores to generate diverse set of columns simultaneously
  - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut?
  - Similar to Interior Point crossover to Simplex, we can crossover from  $\hat{x}$  to a feasible basis, load that into the solver and generate tableau cuts
  - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization related to relaxed polyhedra (work-in-progress)
  - Pricing in block-angular case
  - Nested pricing use idle cores to generate diverse set of columns simultaneously
  - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts

- Branch-and-Relax-and-Cut computational focus thus far has been on CPM/DC/PC
- Can we implement Gomory cuts in Price-and-Cut?
  - Similar to Interior Point crossover to Simplex, we can crossover from  $\hat{x}$  to a feasible basis, load that into the solver and generate tableau cuts
  - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization of branch-and-bound
  - More work per node, communication overhead low use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
  - Pricing in block-angular case
  - Nested pricing use idle cores to generate diverse set of columns simultaneously
  - Generation of decomposition cuts for various relaxed polyhedra diversity of cuts