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The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a
relaxation, we can improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zLP = min
x∈Rn

n

c⊤x
˛

˛ A′x ≥ b′, A′′x ≥ b′′
o

zD = min
x∈P′

n

c⊤x
˛

˛ A′′x ≥ b′′
o

zIP ≥ zD ≥ zLP

P = conv{x ∈ Z
n | A′x ≥ b′, A′′x ≥ b′′}

Assumptions:

OPT(P, c) and SEP(P, x) are “hard”

OPT(P ′, c) and SEP(P ′, x) are “easy”

Q′′ can be represented explicitly (description has polynomial size)

P ′ must be represented implicitly (description has exponential size)
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Example - Traveling Salesman Problem (TSP)

Traveling Salesman Problem Formulation

x(δ({u})) = 2 ∀u ∈ V
x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E
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Two possible decompositions

Find a spanning subgraph with |V | edges that satisfies the 2-degree constraints (P ′ = 1-Tree)

x(δ({0})) = 2
x(E(V )) = |V |
x(E(S)) ≤ |S| − 1 ∀S ⊂ V \ {0}, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E
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Find a 2-matching that satisfies the subtour constraints (P ′ = 2-Matching)

x(δ({u})) = 2 ∀u ∈ V
xe ∈ {0, 1} ∀e ∈ E
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Cutting Plane Method (CPM)

CPM combines an outer approximation of P ′ with an explicit description of Q′′

Master: zCP = minx∈Rn

˘

c⊤x | Dx ≥ d, A′′x ≥ b′′
¯

Subproblem: SEP(P ′, xCP)

P ′ = {x ∈ R
n | Dx ≥ d}

Exponential number of constraints

P0
O

= Q′ ∩ Q′′

x0
CP = (2.25, 2.75)

(2, 1)
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Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = minλ∈R
E
+

˘

c⊤
`P

s∈E sλs
´ ˛

˛ A′′
`P

s∈E sλs
´

≥ b′′,
P

s∈E λs = 1
¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
DWA′′

´

P ′ =

8

<

:

x ∈ R
n

˛

˛

˛

˛

˛

˛

x =
X

s∈E

sλs,
X

s∈E

λs = 1, λs ≥ 0 ∀s ∈ E

9

=

;

Exponential number of variables

Q′′

P0
I

= conv(E0) ⊂ P′

s̃ = (2, 1)

x0
DW = (4.25, 2)

c⊤ − û⊤A”c⊤

(2, 1)
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9

=
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Q′′

P1
I

= conv(E1) ⊂ P′

s̃ = (3, 4)

x1
DW = (2.64, 1.86)

c⊤ − û⊤A”

(2, 1)

c⊤
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Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′

to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈R

m′′
+

˘

mins∈E

˘

c⊤s + u⊤(b′′ − A′′s)
¯¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
LDA′′

´

zLD = max
α∈R,u∈R

m′′
+

n

α + b′′⊤u
˛

˛

˛

“

c⊤ − u⊤A′′
”

s − α ≥ 0 ∀s ∈ E
o

= zDW

(2, 1)

c⊤ − û⊤A′′

Q′′

s̃ = (2, 1)
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c⊤ − û⊤A′′

c⊤ − û⊤A′′
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Common Threads

The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

The decomposition bound is obtained by optimizing over the intersection
of one explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomp-based bounding methods contain two primary steps

Master Problem: Update the primal/dual solution information

Subproblem: Update the approximation of P′: SEP(P′, x) or OPT(P′, c)

Integrated decomposition methods further improve the bound by
considering two implicitly defined polyhedra whose descriptions are
iteratively refined.

Price-and-Cut (PC)

Relax-and-Cut (RC)

Decompose-and-Cut (DC)

Q′′

Q′ ∩Q′′
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Price-and-Cut Method (PC)

PC approximates P by building an inner approximation of P ′ (as in DW) intersected with an
outer approximation of P (as in CPM)

Master: zPC = minλ∈R
E
+

˘

c⊤
`P

s∈E sλs
´ ˛

˛ D
`P

s∈E sλs
´

≥ d,
P

s∈E λs = 1
¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
PCD

´

or SEP (P, xPC)

As in CPM, separate x̂PC =
P

s∈E sλ̂s from P and add cuts to [D, d].

Key Idea: Cut generation takes place in the space of the compact formulation, maintaining
the structure of the column generation subproblem.

(2,1)

P0
O

= Q′′

P0
I

= conv(E0) ⊂ P′

x0
PC = (2.42, 2.25)

{s ∈ E | (λ0
PC)s > 0}
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Key Idea: Cut generation takes place in the space of the compact formulation, maintaining
the structure of the column generation subproblem.

(2,1)

P1
O

= P0
O

∩ {x ∈ R
n | x1 ≥ 3}

P1
I

= conv(E1) ⊂ P′

x1
PC = (3, 1.5)

{s ∈ E | (λ1
PC)s > 0}
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O
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I

= conv(E2) ⊂ P′

x2
PC = (3, 2)

{s ∈ E | (λ2
PC)s > 0}
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Master: zPC = minλ∈R
E
+

˘

c⊤
`P

s∈E sλs
´ ˛

˛ D
`P

s∈E sλs
´

≥ d,
P

s∈E λs = 1
¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
PCD

´

or SEP (P, xPC)

As in CPM, separate x̂PC =
P

s∈E sλ̂s from P and add cuts to [D, d].

Key Idea: Cut generation takes place in the space of the compact formulation, maintaining
the structure of the column generation subproblem.

(2,1) (2,1)(2,1)

P1
O

= P0
O

∩ {x ∈ R
n | x1 ≥ 3}

P1
I

= conv(E1) ⊂ P′

x1
PC = (3, 1.5)

{s ∈ E | (λ1
PC)s > 0}

P2
O

= P1
O

∩ {x ∈ R
n | x2 ≥ 2}

P1
I

= conv(E2) ⊂ P′

x2
PC = (3, 2)

{s ∈ E | (λ2
PC)s > 0}

P0
O

= Q′′

P0
I

= conv(E0) ⊂ P′

x0
PC = (2.42, 2.25)

{s ∈ E | (λ0
PC)s > 0}

c⊤
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Relax-and-Cut Method (RC)

RC approximates P by tracing an inner approximation of P ′ (as in LD) penalizing points outside
of a dynamically generated outer approximation of P (as in CPM)

Master: zLD = max
u∈R

m′′
+

˘

mins∈E

˘

c⊤s + u⊤(d − Ds)
¯¯

Subproblem: OPT
`

P ′, c⊤ − u⊤
LDD

´

or SEP (P, s)

In each iteration, separate ŝ ∈ E, a solution to the Lagrangian relaxation.

Advantage: Often easier to separate s ∈ E from P than x̂ ∈ R
n.

(2, 1)

c⊤ − û⊤D

Q′′

s̃ = (2, 1)
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Structured Separation

In general, OPT(X, c) and SEP(X, x) are polynomially equivalent.

Observation: Restrictions on input or output can change their complexity.

Template Paradigm, restricts the output of SEP(X, x) to valid inequalities that conform to
a certain structure. This class of inequalities forms a polyhedron C ⊃ X (the closure).

For example, let P be the convex hull of solutions to the TSP.

SEP(P, x) is NP-Complete.

SEP(C, x) is polynomially solvable, for C ⊃ P

PSubtour, the Subtour Polytope (separation using Min-Cut), or

PBlossom, the Blossom Polytope (separation using Letchford, et al. ).

Structured Separation, restricts the input of SEP(X, x), such that x conforms to some
structure. For example, if x is restricted to solutions to a combinatorial problem, then
separation often becomes much easier.
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Example - TSP

Separation of Subtour Inequalities:

x(E(S)) ≤ |S| − 1

SEP(PSubtour, x) for x ∈ R
n can be solved in O

`

|E||V | + |V |2 log |V |
´

(Min-Cut)

SEP(PSubtour, s) for s a 2-matching, can be solved in O(|V |)

Simply determine the connected components Ci, and set S = Ci for each component (each gives
a violation of 1).
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Example - TSP

Separation of Comb Inequalities:

x(E(H)) +
k

X

i=1

x(E(Ti)) ≤ |H| +
k

X

i=1

(|Ti| − 1) − ⌈k/2⌉

SEP(PBlossom, x), for x ∈ R
n can be solved in O(|V |2|E| log(|V |2/|E|)) (Letchford, et

al. )

SEP(PBlossom, s), for s a 1-tree, can be solved in O(|V |2)
Construct candidate handles H from BFS tree traversal and an odd (≥ 3) set of edges with one
endpoint in H and one in V \ H as candidate teeth (each gives a violation of ⌈k/2⌉ − 1).

This can also be used as a quick heuristic to separate 1-trees for more general comb structures, for
which there is no known polynomial algorithm for separation of arbitrary vectors.
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Motivation

In Relax-and-Cut, solutions to the Lagrangian subproblem s ∈ E typically have some nice
combinatorial structure.

Question: Can we take advantage of this in other contexts?

To improve the bound by adding an inequality, it is necessary and sufficient to cut off the
entire face of optimal solutions F to a given LP relaxation.

This condition is difficult to verify, so we typically use the necessary condition that the
generated inequality be violated by some member of that face, x ∈ F .

In CPM, we solve SEP(P, xt
CP), where xt

CP ∈ F t, and F t is optimal face over Pt
O ∩ Q′′

In PC, we solve SEP(P, xt
PC), where xt

PC ∈ F t, and F t is optimal face over Pt
I ∩ Pt

O
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Motivation

Consider the following set

S(u, α) =
n

s ∈ E
˛

˛

˛

“

c⊤ − u⊤A′′
”

s = α
o

S(ut
PC, αt

PC) is the set of extreme points with rc(s) = 0 in the DW-LP master or the set
of alternative optimal solutions to the Lagrangian subproblem.

Theorems

1 F t ⊆ conv(S(ut
PC, αt

PC))

Separation of S(ut
PC, αt

PC) is also necessary and sufficient

2 D = {s ∈ E | λt
s > 0} ⊆ S(ut

PC, αt
PC)

The optimal decomposition is contained in S

3 (a, β) ∈ R
(n+1) improving ⇒ ∃s ∈ D = {s ∈ E | λt

s > 0} s.t. a⊤s < β
Every improving ineq must violate at least one e.p. in the optimal decomposition

Theorems 1-3, along with the observation that structured separation can be relatively easy,
motivates the following revised Price-and-Cut method.
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Price-and-Cut (Revisited)

Price-and-Cut (Revisited): As normal, use DW as the bounding method, but use the
decomposition obtained in each iteration to generate improving inequalities, as in RC.

Key Idea: Rather than (or in addition to) separating x̂PC, separate each member of D

As with RC, often much easier to separate s ∈ E than x̂PC ∈ R
n

RC only gives us one member of E to separate, while PC gives us a set, one of which must
be violated by any inequality violated by x̂PC

Provides an alternative necessary (but not sufficient) condition to find an improving
inequality which is very easy to implement and understand.

(2,1)

PO = Q′′

PI = P′

xPC

{s ∈ E | (λPW)s > 0}
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Price-and-Cut (Revisited)

The violated subtour found by separating the 2-matching also violates the fractional point,
but was found at little cost.
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Similarly, the violated blossom found by separating the 1-tree also violates the fractional
point, but was found at little cost.
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Decompose-and-Cut Method (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.’s of P ′

min
λ∈R

E
+,(x+,x−)∈R

n
+

8

<

:

x+ + x−

˛

˛

˛

˛

˛

˛

X

s∈E

sλs + x+ − x− = x̂CP,
X

s∈E

λs = 1

9

=

;
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If x̂CP lies outside P ′ the decomposition will fail

By the Farkas Lemma the proof of infeasibility provides a valid and violated inequality

Decomposition Cuts

ut
DCs + αt

DC ≤ 0 ∀s ∈ P ′ and
ut
DCx̂CP + αt

DC > 0

(2,1)(2,1)

PO = Q′′PO = Q′′

{s ∈ E | (λCP)s > 0}

PI = P′ PI = P′

xCP ∈ P′ xCP /∈ P′
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Decompose-and-Cut Method (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.’s of P ′.

min
λ∈R

E
+,(x+,x−)∈R

n
+

8

<

:

x+ + x−

˛

˛

˛

˛

˛

˛

X

s∈E

sλs + x+ − x− = x̂CP,
X

s∈E

λs = 1

9

=

;

Original idea proposed by Ralphs for VRP

Later used in TSP Concorde by ABCC (non-template cuts)

Now being used (in some form) for generic MILP by Gurobi

This tells us that we are missing some facets of P ′ in our current relaxation.

The machinery for solving this already exists (=column generation)

Much easier than DW problem because it’s a feasibility problem and

x̂i = 0 ⇒ si = 0, can remove constraints not in support, and

x̂i = 1 and si ∈ {0, 1} ⇒ constraint is redundant with convexity constraint

Often gets lucky and produces incumbent solutions to original IP
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Branching for Inner Methods (PC)

Add column bounds to [A′′, b′′] and map back to the compact space x̂ =
P

s∈E sλ̂s

Variable branching in the compact space is constraint branching in the extended space

This idea takes care of (most of) the design issues related to branching for inner methods

Current Limitation: Identical subproblems are currently treated like non-identical.
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Variable branching in the compact space is constraint branching in the extended space

This idea takes care of (most of) the design issues related to branching for inner methods

Current Limitation: Identical subproblems are currently treated like non-identical.

(2,1) (2,1)(2,1)

Node 1 Node 2

Node 4

Node 3

xDW = (2.42, 2.25)

{s ∈ E | (λDW)s > 0}

P I

PO

xDW = (3, 3.75)

P I
P I

PO
PO

xDW = (3, 3)

{s ∈ E | (λDW)s > 0} {s ∈ E | (λDW)s > 0}
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Add column bounds to [A′′, b′′] and map back to the compact space x̂ =
P

s∈E sλ̂s

Variable branching in the compact space is constraint branching in the extended space

This idea takes care of (most of) the design issues related to branching for inner methods
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(2,1) (2,1)(2,1)

Node 1 Node 2

Node 4

Node 3

xDW = (2.42, 2.25)

{s ∈ E | (λDW)s > 0}

P I

PO

xDW = (3, 3.75)

P I
P I

PO
PO

xDW = (3, 3)

{s ∈ E | (λDW)s > 0} {s ∈ E | (λDW)s > 0}

Node 1: 4λ(4,1) + 5λ(5,5) + 2λ(2,1) + 3λ(3,4) ≤ 2
Node 2: 4λ(4,1) + 5λ(5,5) + 2λ(2,1) + 3λ(3,4) ≥ 3

Ralphs, Galati Decomposition Methods for Integer Linear Programming 21/1



Branching for Inner Methods (RC)

In general, Lagrangian methods do not provide a primal solution λ

Let B define the extreme points found in solving subproblems for zLD

Build an inner approximation using this set, then proceed as in PC

PI =

8

<

:

x ∈ R
n

˛

˛

˛

˛

˛

˛

x =
X

s∈B

sλs,
X

s∈B

λs = 1, λs ≥ 0 ∀s ∈ B

9

=

;

min
λ∈R

B
+

8

<

:

c⊤

0

@

X

s∈B

sλs

1

A

˛

˛

˛

˛

˛

˛

A′′

0

@

X

s∈B

sλs

1

A ≥ b′′,
X

s∈B

λs = 1

9

=

;

Closely related to volume algorithm and bundle methods
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Algorithmic Details and Extensions

Separable subproblems (Important!)

Identical subproblems (symmetry)

Parallel solution of subproblems

Automatic detection

Use of generic MILP solution technology

Using the mapping x̂ =
P

s∈E sλ̂s we can use generic MILP generation in RC/PC context

Use generic MILP solver to solve subproblems.

With automatic block decomposition can allow solution of generic MILPs with no customization!

Initial columns

Solve OPT(P′, c + r) for random perturbations

Solve OPT(PN ) heuristically

Run several iterations of LD or DC collecting extreme points

Price-and-branch heuristic

For block-angular case, at end of each node, solve with λ ∈ Z

Used in root node by Barahona and Jensen (’98), we extend to tree
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Algorithmic Details and Extensions (cont.)

Choice of master LP solver

Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)

Primal simplex after adding columns (warm-start primal feasible)

Interior-point methods might help with stabilization vs extremal duals

Compression of master LP and object pools

Reduce size of master LP, improve efficiency of subproblem processing

Nested pricing

Can solve more constrained versions of subproblem heuristically to get high quality columns.
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Recent Added Features

User API for selection of which block to process next (can help alot!)

Support for enforcing branching in subproblem.

Sparse solution of subproblems for block decomposition.

Option to detect and remove columns that are close to parallel.

Dual stabilization (Wegntes).

Allow to stop subproblem calculation on gap/time and calculate LB.

For MILP oracle, now have option to allow multiple columns for each subproblem call.

Better support for “master-only variables.”

Option to use PC solution as warm-start to CPLEX direct solve—try and finish it off.

API to provide an initial dual vector.

Option to NOT compress columns until master gap is tight.

Ralphs, Galati Decomposition Methods for Integer Linear Programming 25/1



Outline
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DIP Framework

DIP Framework

DIP (Decomposition for Integer Programming) is an open-source software framework that pro-
vides an implementation of various decomposition methods with minimal user responsibility

Allows direct comparison CPM/DW/LD/PC/RC/DC in one framework

DIP abstracts the common, generic elements of these methods

Key: The user defines application-specific components in the space of
the compact formulation - greatly simplifying the API

Define [A′′, b′′] and/or [A′, b′]

Provide methods for OPT(P′, c) and/or SEP(P′, x)

Framework handles all of the algorithm-specific reformulation
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DIP Framework: Implementation

COmputational INfrastructure for Operations Research
Have some DIP with your CHiPPs?

DIP was built around data structures and interfaces provided by COIN-OR

The DIP framework, written in C++, is accessed through two user interfaces:

Applications Interface: DecompApp

Algorithms Interface: DecompAlgo

DIP provides the bounding method for branch and bound

ALPS (Abstract Library for Parallel Search) provides the framework for tree search

AlpsDecompModel : public AlpsModel

a wrapper class that calls (data access) methods from DecompApp

AlpsDecompTreeNode : public AlpsTreeNode

a wrapper class that calls (algorithmic) methods from DecompAlgo
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DIP - Creating an Application

The base class DecompApp provides an interface for user to define the application-specific
components of their algorithm

Define the model(s)

setModelObjective(double * c): define c

setModelCore(DecompConstraintSet * model): define Q′′

setModelRelaxed(DecompConstraintSet * model, int block): define Q′ [optional]

solveRelaxed(): define a method for OPT(P ′, c) [optional, if Q′, CBC is built-in]

generateCuts(): define a method for SEP(P ′, x) [optional, CGL is built-in]

isUserFeasible(): is x̂ ∈ P? [optional, if P = conv(P ′ ∩Q′′ ∩ Z) ]

All other methods have appropriate defaults but are virtual and may be overridden
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DIP Framework: Compare and Contrast to COIN/BCP

i n t main ( i n t argc , char ∗∗ a rgv ){
// c r e a t e the u t i l i t y c l a s s f o r p a r s i n g pa ramete r s
Ut i l P a r ame t e r s u t i lPa ram ( argc , a rgv ) ;
boo l doCut = ut i lPa ram . Ge tSe t t i n g ( ”doCut” , t rue ) ;
boo l doPr i ceCut = ut i lPa ram . Ge tSe t t i n g ( ” doPr i ceCut ” , f a l s e ) ;
boo l doRelaxCut = ut i lPa ram . Ge tSe t t i n g ( ” doRelaxCut ” , f a l s e ) ;

// c r e a t e the u s e r a p p l i c a t i o n ( a DecompApp)
SILP DecompApp s i p ( u t i lPa ram ) ;

// c r e a t e the CPM/PC/RC a l g o r i t hm ob j e c t s ( a DecompAlgo )
DecompAlgo ∗ a l go = NULL ;
i f ( doCut ) a l go = new DecompAlgoC (& s ip , &ut i lPa ram ) ;
i f ( doPr i ceCut ) a l go = new DecompAlgoPC(&s ip , &ut i lPa ram ) ;
i f ( doRelaxCut ) a l go = new DecompAlgoRC(&s ip , &ut i lPa ram ) ;

// c r e a t e the d r i v e r AlpsDecomp model
AlpsDecompModel a lpsMode l ( ut i lParam , a l go ) ;

// s o l v e
a lpsMode l . s o l v e ( ) ;

}
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DIP - Algorithms

The base class DecompAlgo provides the shell (init / master / subproblem / update).

Each of the methods described has derived default implementations DecompAlgoX :

public DecompAlgo which are accessible by any application class, allowing full flexibility.

New, hybrid or extended methods can be easily derived by overriding the various
subroutines, which are called from the base class. For example,

Alternative methods for solving the master LP in DW, such as interior point methods

Add stabilization to the dual updates in LD (stability centers)

For LD, replace subgradient with volume providing an approximate primal solution

Hybrid init methods like using LD or DC to initialize the columns of the DW master

During PC, adding cuts to either master and/or subproblem.

...

DecompAlgoDC

DecompAlgo

DecompAlgoC DecompAlgoPC DecompAlgoRC
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DIP - Example Applications

Application Description P ′ OPT(c) SEP(x) Input
AP3 3-index assignment AP Jonker user user
ATM cash management (SAS COE) MILP(s) CBC CGL user
GAP generalized assignment KP(s) Pisinger CGL user
MAD matrix decomposition MaxClique Cliquer CGL user
MILP random partition into A′, A′′ MILP CBC CGL mps
MILPBlock user-defined blocks for A′ MILP(s) CBC CGL mps, block
MMKP multi-dim/choice knapsack MCKP Pisinger CGL user

MDKP CBC CGL user
SILP intro example, tiny IP MILP CBC CGL user
TSP traveling salesman problem 1-Tree Boost Concorde user

2-Match CBC Concorde user
VRP vehicle routing problem k-TSP Concorde CVRPSEP user

b-Match CBC CVRPSEP user
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Quick Introduction to CHiPPS

CHiPPS stands for COIN-OR High Performance Parallel Search.

CHiPPS is a set of C++ class libraries for implementing tree search algorithms for both
sequential and parallel environments.

CHiPPS Components (Current)

ALPS (Abstract Library for Parallel Search)

is the search-handling layer (parallel and sequential).
provides various search strategies based on node priorities.

BiCePS (Branch, Constrain, and Price Software)

is the data-handling layer for relaxation-based optimization.
adds notion of variables and constraints.
assumes iterative bounding process.

BLIS (BiCePS Linear Integer Solver)

is a concretization of BiCePS.
specific to models with linear constraints and objective function.
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ALPS: Design Goals

Intuitive object-oriented class structure.
AlpsModel
AlpsTreeNode
AlpsNodeDesc
AlpsSolution
AlpsParameterSet

Minimal algorithmic assumptions in the base class.
Support for a wide range of problem classes and algorithms.
Support for constraint programming.

Easy for user to develop a custom solver.

Design for parallel scalability, but operate effective in a sequential environment.

Explicit support for memory compression techniques (packing/differencing) important for
implementing optimization algorithms.
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ALPS: Overview of Features

The design is based on a very general concept of knowledge.

Knowledge is shared asynchronously through pools and brokers.

Management overhead is reduced with the master-hub-worker paradigm.

Overhead is decreased using dynamic task granularity.

Two static load balancing techniques are used.

Three dynamic load balancing techniques are employed.

Uses asynchronous messaging to the highest extent possible.

A scheduler on each process manages tasks like
node processing,
load balaning,
update search states, and
termination checking, etc.
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Knowledge Sharing

All knowledge to be shared is derived from a single base class and has an associated
encoded form.

Encoded form is used for identification, storage, and communication.

Knowledge is maintained by one or more knowledge pools.

The knowledge pools communicate through knowledge brokers.

Ralphs, Galati Decomposition Methods for Integer Linear Programming 37/1



Master-Hub-Worker Paradigm

Master WorkersHubs
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Alps Class Hierarchy
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Using ALPS: A Knapack Solver

The formulation of the binary knapsack problem is

max{
m

X

i=1

pixi :
m

X

i=1

sixi ≤ c, xi ∈ {0, 1}, i = 1, 2, . . . , m}, (1)

We derive the following classes:

KnapModel (from AlpsModel) : Stores the data used to describe the knapsack problem and
implements readInstance()

KnapTreeNode (from AlpsTreeNode) : Implements process() (bound) and branch()

KnapNodeDesc (from AlpsNodeDesc) : Stores information about which variables/items
have been fixed by branching and which are still free.

KnapSolution (from AlpsSolution) Stores a solution (which items are in the knapsack).
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Using ALPS: A Knapack Solver

Then, supply the main function.

int main(int argc, char* argv[])
{

KnapModel model;

#if defined(SERIAL)
AlpsKnowledgeBrokerSerial broker(argc, argv, model);

#elif defined(PARALLEL_MPI)
AlpsKnowledgeBrokerMPI broker(argc, argv, model);

#endif

broker.search();
broker.printResult();
return 0;

}
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Multi-Choice Multi-Dimensional Knapsack Problem (MMKP)

SAS Marketing Optimization - improve ROI for marketing campaign offers by targeting
higher response rates, improving channel effectiveness, and reduce spending.

max
X

i∈N

X

j∈Li

vijxij

X

i∈N

X

j∈Li

rkijxij ≤ bk ∀k ∈ M

X

j∈Li

xij = 1 ∀i ∈ N

xij ∈ {0, 1} ∀i ∈ N, j ∈ Li

Relaxation - Multi-Choice Knapsack Problem (MCKP)

solver mcknap by Pisinger a DP-based branch-and-bound

X

i∈N

X

j∈Li

rmijxij ≤ bm

X

j∈Li

xij = 1 ∀i ∈ N

xij ∈ {0, 1} ∀i ∈ N, j ∈ Li
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MMKP: CPX10.2 vs CPM/PC/DC

CPX10.2 DIP-CPM DIP-PC DIP-DC
Instance Time Gap Time Gap Time Gap Time Gap
I1 0.00 OPT 0.02 OPT 0.04 OPT 0.14 OPT
I10 T 0.05% T ∞ T 11.86% T 0.15%
I11 T 0.03% T ∞ T 12.25% T 0.14%
I12 T 0.01% T ∞ T 7.93% T 0.10%
I13 T 0.02% T ∞ T 11.89% T 0.12%
I2 0.01 OPT 0.01 OPT 0.05 OPT 0.05 OPT
I3 1.17 OPT 23.23 OPT T 1.07% T 0.75%
I4 15.71 OPT T ∞ T 5.14% T 0.77%
I5 0.01 0.01% 0.01 OPT 0.13 OPT 0.05 OPT
I6 0.14 OPT 0.07 OPT T 0.28% 0.63 OPT
I7 T 0.08% T ∞ T 14.32% T 0.09%
I8 T 0.09% T ∞ T 13.36% T 0.20%
I9 T 0.06% T ∞ T 10.71% T 0.19%
INST01 T 0.43% T ∞ T 9.99% T 0.70%
INST02 T 0.09% T ∞ T 7.39% T 0.45%
INST03 T 0.38% T ∞ T 3.83% T 0.85%
INST04 T 0.34% T ∞ T 7.48% T 0.45%
INST05 T 0.18% T ∞ T 10.23% T 0.62%
INST06 T 0.21% T ∞ T 9.82% T 0.38%
INST07 T 0.36% T ∞ T 15.75% T 0.62%
INST08 T 0.25% T ∞ T 11.55% T 0.46%
INST09 T 0.21% T ∞ T 15.24% T 0.40%
INST11 T 0.22% T ∞ T 7.96% T 0.39%
INST12 T 0.18% T ∞ T 7.90% T 0.42%
INST13 T 0.08% T ∞ T 2.97% T 0.14%
INST14 T 0.05% T ∞ T 3.89% T 0.09%
INST15 T 0.04% T ∞ T 3.43% T 0.10%
INST16 T 0.06% T ∞ T 2.19% T 0.06%
INST17 T 0.03% T ∞ T 2.09% T 0.09%
INST18 T 0.03% T ∞ T 4.43% T 0.06%
INST19 T 0.03% T ∞ T 3.13% T 0.04%
INST20 T 0.03% T ∞ T 3.05% T 0.04%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  4  16  64  256  1024  4096  16384

MMKP: Relative Gap

cpx10
cpm

pc
dc

CPX10.2 DIP-CPM DIP-PC DIP-DC
Optimal 5 5 3 4
≤ 1% Gap 32 5 4 32
≤ 10% Gap 32 5 22 32

CGL: missing Gub Covers
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MMKP: Nested Pricing

Nested Relaxations:

Multi-Choice 2-D Knapsack Problem (MC2KP): PMC2KP
p ⊂ PMCKP ∀p ∈ M \ {m}

X

i∈N

X

j∈Li

rpijxij ≤ bp

X

i∈N

X

j∈Li

rmijxij ≤ bm

X

j∈Li

xij = 1 ∀i ∈ N

xij ∈ {0, 1} ∀i ∈ N, j ∈ Li

Multi-Choice Multi-Dimensional Knapsack Problem (MMKP): P ⊂ PMCKP
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MMKP: PC vs PC Nested with MC2KP and MMKP

DIP-PC DIP-PC-M2 DIP-PC-MM
Instance Time Gap Time Gap Time Gap
I1 0.04 OPT 0.16 OPT 0.08 OPT
I10 T 11.86% T 6.99% T 0.63%
I11 T 12.25% T 11.15% T 0.60%
I12 T 7.93% T 11.41% T 0.79%
I13 T 11.89% T 13.65% T 0.52%
I2 0.05 OPT 0.45 OPT 0.14 OPT
I3 T 1.07% T 1.18% T 1.10%
I4 T 5.14% T 3.18% T 1.23%
I5 0.13 OPT 0.14 OPT 0.07 OPT
I6 T 0.28% 483.53 OPT T 0.25%
I7 T 14.32% T 4.85% T 0.97%
I8 T 13.36% T 9.79% T 0.67%
I9 T 10.71% T 10.57% T 0.73%
INST01 T 9.99% T 5.97% T 1.86%
INST02 T 7.39% T 7.29% T 1.74%
INST03 T 3.83% T 11.93% T 1.61%
INST04 T 7.48% T 7.04% T 1.56%
INST05 T 10.23% T 8.84% T 1.11%
INST06 T 9.82% T 9.77% T 1.39%
INST07 T 15.75% T 8.78% T 1.23%
INST08 T 11.55% T 8.50% T 1.37%
INST09 T 15.24% T 8.48% T 0.89%
INST11 T 7.96% T 8.72% T 1.13%
INST12 T 7.90% T 6.72% T 1.03%
INST13 T 2.97% T 3.06% T 0.76%
INST14 T 3.89% T 3.67% T 0.52%
INST15 T 3.43% T 2.81% T 0.78%
INST16 T 2.19% T 3.01% T 0.50%
INST17 T 2.09% T 2.16% T 0.39%
INST18 T 4.43% T 2.60% T 0.41%
INST19 T 3.13% T 3.97% T 0.46%
INST20 T 3.05% T 4.06% T 0.94%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  4  16  64  256  1024

MMKP: Relative Gap

pc
pc-m2
pc-mm

DIP-PC DIP-PC-M2 DIP-PC-MM
Optimal 3 4 3
≤ 1% Gap 4 4 20
≤ 10% Gap 22 27 32
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MMKP: CPX10.2 vs CPM/PC/DC/PC-M2/PC-MM
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ATM Cash Management Problem - Business Problem

SAS Center of Excellence in Operations Research Applications (OR COE)

Determine schedule for allocation of cash inventory at branch banks to service ATMs

Define a polynomial fit for predicted cash flow need per day/ATM

Predictive model factors include:

days of the week

weeks of the month

holidays

salary disbursement days

location of the branches

Cash allocation plans finalized at beginning of month - deviations from plan are costly

Goal: Determine multipliers for fit to minimize mismatch based on predicted withdrawals

Constraints:

Regulatory agencies enforce a minimum cash reserve ratio at branch banks (per day)

For each ATM, limit on number of days cash-out based on predictive model (customer satisfaction)
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ATM Cash Management Problem - MINLP Formulation

Simple looking nonconvex quadratic integer NLP.

Linearize the absolute value, add binaries for count constraints.

So far, no MINLP solvers seem to be able to solve this (several die with numerical failures).

min
X

a∈A

X

d∈D

|fad|

s.t. cx
adxa + cy

adya + cxy
adxaya + cu

adua + cad − wad = fad ∀a ∈ A, d ∈ D
X

a∈A

(fad + wad) ≤ Bd ∀d ∈ D

|{d ∈ D | fad < 0}| ≤ Ka ∀a ∈ A

xa, ya ∈ [0, 1] ∀a ∈ A

ua ≥ 0 ∀a ∈ A

fad ≥ − wad ∀a ∈ A, d ∈ D
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Application - ATM Cash Management Problem - MILP Approx Formulation

Discretization of x domain {0, 0.1, 0.2, ..., 1.0}.

Linearization of product of binary and continuous, and absolute value.

min
X

a∈A

X

d∈D

“

f+
ad + f−

ad

”

s.t. cx
ad

X

t∈T

ctxat + cy
adya + cxy

ad

X

t∈T

ctzat + cu
adua − wad = f+

ad − f−
ad ∀a ∈ A, d ∈ D

X

t∈T

xat ≤ 1 ∀a ∈ A

zat ≤ xat ∀a ∈ A, t ∈ T

zat ≤ ya ∀a ∈ A, t ∈ T

zat ≥ xat + ya − 1 ∀a ∈ A, t ∈ T

f−
ad ≤ wadvad ∀a ∈ A, d ∈ D
X

a∈A

(f+
ad − f−

ad + wad) ≤ Bd ∀d ∈ D

X

d∈D

vad ≤ Ka ∀a ∈ A
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ATM Cash Management Problem - MILP Approx Formulation

xat ∈ {0, 1} ∀a ∈ A, t ∈ T

zat ≥ 0 ∀a ∈ A, t ∈ T

vad ∈ {0, 1} ∀a ∈ A, d ∈ D

ya ∈ [0, 1] ∀a ∈ A

ua ≥ 0 ∀a ∈ A

f+
ad, f−

ad ∈ [0, wad] ∀a ∈ A, d ∈ D

The MILP formulation has a natural block-angular structure.
Master constraints are just the budget constraint.
Subproblem constraints (the rest) - one block for each ATM.
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ATM: CPX11 vs PC/PC+

CPX11 DIP-PC DIP-PC+
|A| |D| s Time Gap Nodes Time Gap Nodes Time Gap Nodes

5 25 1 0.76 OPT 467 1.62 OPT 6 1.96 OPT 6
5 25 2 1.41 OPT 804 1.95 OPT 9 1.57 OPT 7
5 25 3 0.42 OPT 147 7.38 OPT 32 8.03 OPT 32
5 25 4 1.49 OPT 714 2.74 OPT 14 2.45 OPT 13
5 25 5 0.16 OPT 32 0.98 OPT 7 0.95 OPT 6

5 50 1 T 0.10 1264574 162.74 OPT 127 164.46 OPT 131
5 50 2 87.96 OPT 38341 183.28 OPT 273 263.24 OPT 275
5 50 3 8.09 OPT 3576 17.58 OPT 36 22.28 OPT 35
5 50 4 4.13 OPT 1317 3.13 OPT 3 3.17 OPT 3
5 50 5 57.55 OPT 32443 91.30 OPT 145 141.29 OPT 147

10 50 1 T 0.76 998624 297.65 OPT 301 234.47 OPT 156
10 50 2 1507.84 OPT 351879 28.84 OPT 29 52.99 OPT 29
10 50 3 T 0.81 667371 64.72 OPT 64 49.20 OPT 47
10 50 4 1319.00 OPT 433155 7.97 OPT 1 5.00 OPT 1
10 50 5 365.51 OPT 181013 12.49 OPT 3 5.18 OPT 3

10 100 1 T ∞ 128155 T ∞ 20590 T 0.11 13190
10 100 2 T ∞ 116522 T ∞ 60554 2437.43 OPT 135
10 100 3 T ∞ 118617 T ∞ 52902 T 0.20 40793
10 100 4 T ∞ 108899 T ∞ 47931 T 1.51 59477
10 100 5 T ∞ 167617 T ∞ 40283 T 0.38 26490

20 100 1 T ∞ 93519 379.75 OPT 9 544.49 OPT 9
20 100 2 T ∞ 68863 T 16.44 14240 T 0.26 25756
20 100 3 T ∞ 95981 T 15.37 41495 T 0.12 3834
20 100 4 T ∞ 81836 T 0.39 7554 T 0.08 7918
20 100 5 T ∞ 101917 635.59 OPT 21 608.68 OPT 19

Optimal 12 17 18
≤ 1% Gap 15 18 25
≤ 10% Gap 15 18 25
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ATM: CPX11 vs PC/PC+
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MILPBlock - Block-Angular MILP (as a Generic Solver)

Consulting work led to numerous MILPs that cannot be solved with generic (B&C) solvers

Often consider a decomposition approach, since a common modeling paradigm is

independent departmental policies which are then coupled by some global constraints

Development time was slow due to problem-specific implementations of methods
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MILPBlock provides a black-box solver for applying integrated methods to generic MILP

This is the first framework to do this (to my knowledge).

Similar efforts are being talked about by F. Vanderbeck BaPCod (no cuts)

Currently, the only input needed is MPS/LP and a block file

Future work will attempt to embed automatic recognition of the block-angular structure
using packages from linear algebra like: MONET, hMETIS, Mondriaan
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Application - Block-Angular MILP (applied to Retail Optimization)

SAS Retail Optimization Solution

Multi-tiered supply chain distribution problem where each block represents a store

Prototype model developed in SAS/OR’s OPTMODEL (algebraic modeling language)

CPX11 DIP-PC
Instance Time Gap Nodes Time Gap Nodes
retail27 T 2.30% 2674921 3.18 OPT 1
retail31 T 0.49% 1434931 767.36 OPT 41
retail3 529.77 OPT 2632157 0.54 OPT 1
retail4 T 1.61% 1606911 116.55 OPT 1
retail6 1.12 OPT 803 264.59 OPT 303
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Outline
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Future Research

Branch-and-Relax-and-Cut - computational focus thus far has been on CPM/DC/PC

Can we implement Gomory cuts in Price-and-Cut?

Similar to Interior Point crossover to Simplex, we can crossover from x̂ to a feasible basis, load
that into the solver and generate tableau cuts

Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp

Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve

Better support for identical subproblems (using ideas of Vanderbeck)

Parallelization of branch-and-bound

More work per node, communication overhead low - use ALPS

Parallelization related to relaxed polyhedra (work-in-progress):

Pricing in block-angular case

Nested pricing - use idle cores to generate diverse set of columns simultaneously

Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts
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