DIP and DipPy: A Decomposition-based Modeling System and Solver

TED RALPHS AND JIADONG WANG

Lehigh University

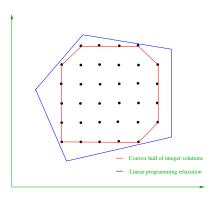
MATTHEW GALATI

MIKE O'SULLIVAN

SAS Institute

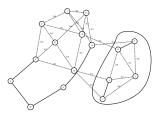
University of Auckland

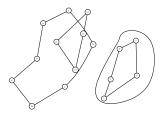
Industrial and Systems Engineering


INFORMS Annual Meeting 2013, Minneapolis, MN, October 7, 2013

Thanks: Work supported in part by the National Science Foundation

Basic Setting


Integer Linear Program: Minimize/Maximize a linear *objective function* over a (discrete) set of *solutions* satisfying specified *linear constraints*.


$$z_{\text{IP}} = \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid Ax \ge b \right\}$$

What is Decomposition?

- Many complex models are built up from simpler structures.
 - Subsystems linked by system-wide constraints or variables.
 - Complex combinatorial structures obtained by combining simpler ones.
- Decomposition is the process of breaking a model into smaller parts.
- The goal is either to
 - reformulate the model for easier solution;
 - reformulate the model to obtain an improved relaxation (bound); or
 - separate the model into stages or levels (possibly with separate objectives).

Block Structure

- "Classical" decomposition arises from *block structure* in the constraints.
- By relaxing/fixing the linking variables/constraints, we get a separable model.
- A separable model consists of smaller submodels that are easier to solve.
- The separability lends itself nicely to parallel implementation.

$$\begin{pmatrix} A_{01} & A_{02} & \cdots & A_{0\kappa} \\ A_1 & & & & \\ & & A_2 & & \\ & & & \ddots & \\ & & & A_{\kappa\kappa} \end{pmatrix} \quad \begin{pmatrix} A_{10} & A_{11} \\ A_{20} & & A_{22} \\ \vdots \\ A_{\gamma 0} & & & A_{\kappa\kappa} \end{pmatrix}$$

$$\begin{pmatrix} A_{00} & A_{01} & A_{02} & \cdots & A_{0\kappa} \\ A_{10} & A_{11} & & & \\ A_{20} & & A_{22} & & \\ \vdots & & & \ddots & \\ A_{\gamma 0} & & & A_{\kappa\kappa} \end{pmatrix}$$

The Decomposition Principle (in MIP)

- Decomposition methods leverage our ability to solve either a relaxation or a restriction.
- Methodology is based on the ability to solve a given <u>subproblem</u> repeatedly with varying inputs.
- The goal of solving the subproblem repeatedly is to obtain information about its structure that can be incorporated into a *master problem*.

Constraint decomposition

- Relax a set of *linking constraints* to expose structure.
- Leverages ability to solve either the optimization or separation problem for a *relaxation* (with varying objectives and/or points to be separated).

Variable decomposition

- Fix the values of *linking variables* to expose the structure.
- Leverages ability to solve a *restriction* (with varying right-hand sides).

Example: Facility Location Problem

- We have n locations and m customers to be served from those locations.
- There is a fixed cost c_j and a capacity W_j associated with facility j.
- There is a cost d_{ij} and demand w_{ij} for serving customer i from facility j.
- We have two sets of binary variables.
 - y_i is 1 if facility j is opened, 0 otherwise.
 - x_{ij} is 1 if customer i is served by facility j, 0 otherwise.

Capacitated Facility Location Problem

$$\begin{aligned} & \text{min} & & \sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij} \\ & \text{s.t.} & & \sum_{j=1}^{n} x_{ij} = 1 & \forall i \\ & & & \sum_{i=1}^{m} w_{ij} x_{ij} \leq W_j y_j & \forall j \\ & & & x_{ij}, y_j \in \{0, 1\} & \forall i, j \end{aligned}$$

DIP/DipPy: Decomposition-based Modeling and Solution

DIP (w/ M. Galati and J. Wang)

DIP is a software framework and stand-alone solver for implementation and use of a variety of decomposition-based algorithms.

- Decomposition-based algorithms have traditionally been difficult to implement and compare.
- DIP abstracts the common, generic elements of these methods.
 - Key: API is in terms of the compact formulation.
 - The framework takes care of reformulation and implementation.
 - DIP is now a fully generic decomposition-based parallel MILP solver.

DipPy (w/ M. O'Sullivan)

- Python-based modeling language.
- User can express decompositions in a "natural" way.
- Allows access to multiple decomposition methods.

⇐ Joke !

CHiPPS (w/Y.Xu)

- CHiPPS is the COIN-OR High Performance Parallel Search.
- CHiPPS is a set of C++ class libraries for implementing tree search algorithms for both sequential and parallel environments.

CHiPPS Components (Current)

- ALPS (Abstract Library for Parallel Search)
 - is the search-handling layer (parallel and sequential).
 - provides various search strategies based on node priorities.
- BiCePS (Branch, Constrain, and Price Software)
 - is the data-handling layer for relaxation-based optimization.
 - adds notion of variables and constraints.
 - assumes iterative bounding process.
- BLIS (BiCePS Linear Integer Solver)
 - is a concretization of BiCePS.
 - specific to models with linear constraints and objective function.

DIP: Overview of Methods

Cutting Plane Method (CPM)

CPM combines an *outer* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- Master: $z_{\text{CP}} = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid Dx \ge d, A''x \ge b'' \right\}$
- Subproblem: $SEP(\mathcal{P}', x_{CP})$

Dantzig-Wolfe Method (DW)

DW combines an *inner* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- $\bullet \ \, \mathsf{Master} \colon z_{\mathrm{DW}} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{E}}} \left\{ c^\top \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ \middle| \ A'' \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \ge b'', \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- Subproblem: OPT $(\mathcal{P}', c^{\top} u_{\mathrm{DW}}^{\top} A'')$

Lagrangian Method (LD)

LD iteratively produces single extreme points of \mathcal{P}' and uses their violation of constraints of \mathcal{Q}'' to converge to the same optimal face of \mathcal{P}' as CPM and DW.

- $\bullet \ \ \mathsf{Master} \colon z_{\mathrm{LD}} = \max\nolimits_{u \in \mathbb{R}^{m''}_+} \left\{ \min\nolimits_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (b'' A''s) \right\} \right\}$
- Subproblem: OPT $(\mathcal{P}', c^{\top} u_{\text{LD}}^{\top} A'')$

DIP: Common Threads

 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{\rm LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of two polyhedra.

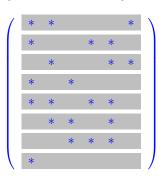
$$z_{\mathrm{CP}} = z_{\mathrm{DW}} = z_{\mathrm{LD}} = z_{\mathrm{D}} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{\mathrm{LP}}$$

- Decomposition-based bounding methods have two main steps
 - Master Problem: Update the primal/dual solution information
 - Subproblem: Update the approximation of \mathcal{P}' : $\mathrm{SEP}(\mathcal{P}',x)$ or $\mathrm{OPT}(\mathcal{P}',c)$
- Integrated decomposition methods further improve the bound.
 - Price-and-Cut (PC)
 - Relax-and-Cut (RC)
 - Decompose-and-Cut (DC)

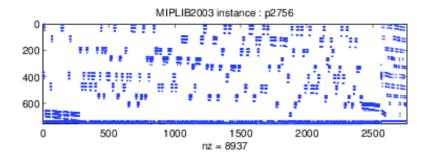
DipPy: Facility Location Example

```
from products import REQUIREMENT, PRODUCTS
from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY
prob = dippy.DipProblem("Facility_Location")
ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]
assign_vars = LpVariable.dicts("x", ASSIGNMENTS, 0, 1, LpBinary)
use_vars = LpVariable.dicts("y", LOCATIONS, 0, 1, LpBinary)
prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)
for j in PRODUCTS:
    prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) == 1
for i in LOCATIONS:
    prob.relaxation[i] += lpSum(assign_vars[(i, j)] * REQUIREMENT[j]
                        for j in PRODUCTS) <= CAPACITY * use_vars[i]</pre>
dippy.Solve(prob, {doPriceCut:1})
```

DipPy: Callbacks

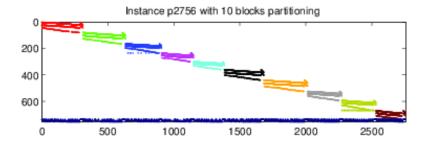

```
def solve_subproblem(prob, index, redCosts, convexDual):
   return knapsack01(obj, weights, CAPACITY)
def knapsack01(obj, weights, capacity):
    return solution
def first_fit(prob):
    return bys
prob.init_vars = first_fit
def choose_branch(prob, sol):
   return ([], down_branch_ub, up_branch_lb, [])
def generate_cuts(prob, sol):
    return new cuts
def heuristics(prob, xhat, cost):
    return sols
dippy.Solve(prob, {'doPriceCut': '1'})
```

Generic Decomposition-based Branch and Bound

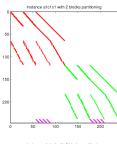

- Traditionally, decomposition-based branch-and-bound methods have required extensive problem-specific customization.
 - Identifying the decomposition (which constraints to relax).
 - Formulating and solving the subproblem.
 - Formulating and solving the master problem.
 - Performing the branching operation.
- However, it is possible to replace these components with generic alternatives.
 - The decomposition can be identified automatically by analyzing the matrix or through a modeling language.
 - The subproblem can be solved with a generic MILP solver.
 - The branching can be done in the original compact formulation.
- The remainder of the talk focuses on the crucial first step.

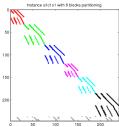
Automatic Structure Detection

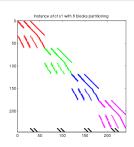
- For problems in which the structure is not given, it may be detected automatically.
- Hypergraph partitioning methods can be used to identify the structure.
- We map each row of the original matrix to a hyperedge and the nonzero elements to nodes in a hypergraph.
- We use a partitioning model/algorithm (hMetis) that identifies a singly-bordered block diagonal matrix with a given number of blocks.

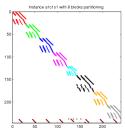


Hidden Block Structure


Detected block structure for p2756 instance


Hidden Block Structure




Detected block structure for p2756 instance

Choosing the Block Number

Quality Measures for Decomposition

- The goal of the partitioning is to have a "good decomposition."
- Generally, we judge goodness in terms of bound and computation time.
- There is a potential tradeoff involving the number of blocks, the number of linking rows, and the distribution of integer variables.
- We want to identify decompositions based on easily identified features.

Potential Features

- The fraction of nonzero elements in the matrix appearing in the coupling rows (α) ,
- The fraction of nonzero elements appearing in the coupling rows that are in integer columns (β),
- The fraction of the nonzero elements in integer columns in the matrix that appear in coupling rows (γ) ,
- The average fraction of the nonzeros in each block that are in integer columns (η) ,
- The standard deviation of the fraction of integer elements elements in the blocks (θ) .

Finding the Structure

- In many cases, there is a "natural" block structure arising from the original model.
- Problems for which decomposition is the "killer approach" often have identical blocks, since this leads to symmetry in the compact formulation.
- We would like to be able to identify this structure automatically.
- One simple strategy is to make a frequency table.

# of Nonzeros	2	11	12	13	24	40	100
# of Rows	2220	20	20	2	1998	100	20

Table: Histogram for atm20-100

# of Nonzeros	2	3	5	6	7	8	9	10	11	13
# of Rows	9	130	221	4	8	8	7	6	2	1

Table: Histogram for glass4

Computational Experiments

- Test set: 23 instances with block structure (but without blocks given) and without block structure.
- Experiments are performed on compute node with two AMD Opteron(tm)
 2GHz 8-core Processors
- Try up to 10 candidate block numbers (in these case, there is a clear "natural" block number).
- Time limit is 1800 seconds.

Computational Results

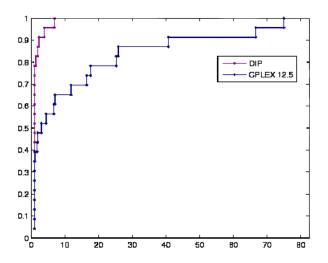


Figure: Structured instances (Wedding planner)

Ralphs, Galati, O'Sullivan, Wang

Computational Results

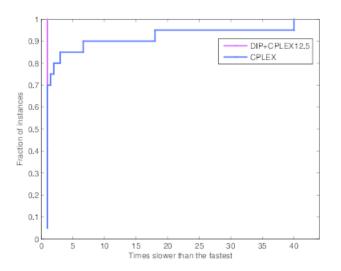
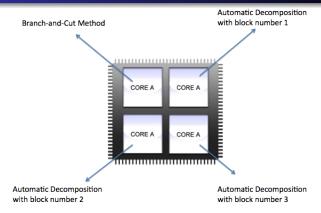



Figure: Unstructured instances

Ralphs, Galati, O'Sullivan, Wang

Generic Decomposition

Exploiting Concurrency

Concurrency can be exploited in multiple ways.

- Solving the subproblems
- Exploring the tree
- Determining the decomposition (or whether to use decomposition)

Computational Results

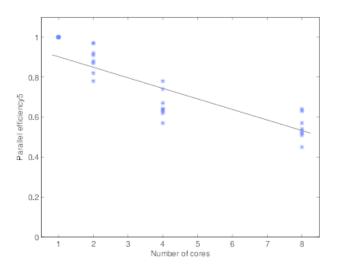


Figure: Parallel efficiency for structured instances (Wedding planner)

Ralphs, Galati, O'Sullivan, Wang

Future work

Where do I start??

- We have only scratched the surface of what is needed to make a true generic decomposition-based solver.
- The implementation needs many improvements in basic components.
- We need a better decision logic for when to use which algorithm.
- We need better support for identical blocks.
- To exploit parallelism, we need the ability to dynamically allocate cores after the initial phase.
- We need more testing on hybrid distributed/shared parallelism.
- Methods that hybridize CP and MIP through the decomposition would be interesting.

Want to help:)?

References I

Gamrath, G. and M. Lübbecke 2012. GCG.

Available from http://scip.zib.de.

Jünger, M. and S. Thienel 2012.

ABACUS.

Available from http://www.coin-or.org/projects/ABACUS.xml.

Ladányi, L. 2012.

Available from http://www.coin-or.org/projects/Bcp.xml.

Ralphs, T., L. Ladányi, M. Güzelsoy, and A. Mahajan 2012. SYMPHONY.

Available from http://www.coin-or.org/projects/SYMPHONY.xml.

References II

Vanderbeck, F. 2012.

BapCod: A generic branch-and-price code.

Available from

http://ralyx.inria.fr/2007/Raweb/realopt/uid31.html.