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What is Decomposition?

Many complex models are built up from simpler structures.

Subsystems linked by system-wide constraints or variables.

Complex combinatorial structures obtained by combining simpler ones.

Decomposition is the process of taking a model and breaking it into smaller parts.

The goal is either to

reformulate the model for easier solution;

reformulate the model to obtain an improved relaxation (bound); or

separate the model into stages or levels (possibly with separate objectives).
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Block Structure

“Classical” decomposition arises from block structure in the constraint matrix.

By relaxing/fixing the linking variables/constraints, we then get a model that is separable.

A separable model consists of multiple smaller submodels that are easier to solve.

The separability lends itself nicely to parallel implementation.
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The Decomposition Principle

Decomposition methods leverage our ability to solve either a relaxation or a restriction.

Methodology is based on the ability to solve a given subproblem repeatedly with varying
inputs.

The goal of solving the subproblem repeatedly is to obtain information about its structure
that can be incorporated into a master problem.

An overarching theme in this tutorial will be that most solution methods for discrete
optimization problems are, in a sense, based on the decomposition principle.

Constraint decomposition

Relax a set of linking constraints to expose structure.

Leverages ability to solve either the optimization or separation problem for a
relaxation (with varying objectives and/or points to be separated).

Variable decomposition

Fix the values of linking variables to to expose the structure.

Leverages ability to solve a restriction (with varying right-hand sides).

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Example: Block Structure (Linking Constraints)

Generalized Assignment Problem (GAP)

min
∑
i∈M

∑
j∈N

cijxij∑
j∈N

wijxij ≤ bi ∀i ∈M∑
i∈M

xij = 1 ∀j ∈ N

xij ∈ {0, 1} ∀i, j ∈M ×N

The problem is to assign m tasks to n machines subject to capacity constraints.

The variable xij is one if task i is assigned to machine j.

The “profit” associated with assigning task i to machine j is cij .

If we relax the requirement that each task be assigned to only one machine, the problem
decomposes into n independent knapsack problems.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Example: Block Structure (Linking Variables)

Facility Location Problem

min

n∑
j=1

cjyj +
m∑
i=1

n∑
j=1

dijxij

s.t.
n∑
j=1

xij = 1 ∀i

xij ≤ yj ∀i, j
xij , yj ∈ {0, 1} ∀i, j

We are given n facility locations and m customers to be serviced from those locations.

There is a fixed cost cj associated with facility j.

There is a cost dij associated with serving customer i from facility j.

We have two sets of binary variables.

yj is 1 if facility j is opened, 0 otherwise.

xij is 1 if customer i is served by facility j, 0 otherwise.

If we fix the set of open facilities, then the problem becomes easy to solve.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Example: Underlying Combinatorial Structure

Traveling Salesman Problem Formulation

x(δ({u})) = 2 ∀u ∈ V
x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E
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Two relaxations

Find a spanning subgraph with |V | edges (P ′ = 1-Tree)

x(δ({0})) = 2
x(E(V )) = |V |
x(E(S)) ≤ |S| − 1 ∀S ⊂ V \ {0}, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E
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Find a 2-matching that satisfies the subtour constraints (P ′ = 2-Matching)

x(δ({u})) = 2 ∀u ∈ V
xe ∈ {0, 1} ∀e ∈ E
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Example: Eliminating Symmetry

In some cases, the identified blocks are identical.

In such cases, the original formulation will often be highly symmetric.

The decomposition eliminates the symmetry by collapsing the identical blocks.

Vehicle Routing Problem (VRP)

min
∑
k∈M

∑
(i,j)∈A

cijxijk∑
k∈M

∑
j∈N

xijk = 1 ∀i ∈ V∑
i∈V

∑
j∈N

dixijk ≤ C ∀k ∈M∑
j∈N

x0jk = 1 ∀k ∈M∑
i∈N

xihk −
∑
j∈N

xhjk = 0 ∀h ∈ V, k ∈M∑
i∈N

xi,n+1,k = 1 ∀k ∈M

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈M

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Basic Setting

Integer Linear Program: Minimize/Maximize a linear objective function over a (discrete)
set of solutions satisfying specified linear constraints.

zIP = min
x∈Zn

{
c>x | Ax ≥ b

}

Convex hull of integer solutions

Linear programming relaxation

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Solving Integer Programs

Implicit enumeration techniques try to enumerate the solution space in an intelligent way.

The most common algorithm of this type is branch and bound.

Suppose F is the set of feasible solutions for a given MILP. We wish to solve minx∈F c
>x.

Divide and Conquer

Consider a partition of F into subsets F1, . . . Fk. Then

min
x∈F

c>x = min
1≤i≤k

{min
x∈Fi

c>x}.

We can then solve the resulting subproblems recursively.

Dividing the original problem into subproblems is called branching.

Taken to the extreme, this scheme is equivalent to complete enumeration.

We avoid complete enumeration primarily by deriving bounds on the value of an optimal
solution to each subproblem.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Branch and Bound

A relaxation of an ILP is an auxiliary mathematical program for which

the feasible region contains the feasible region for the original ILP, and

the objective function value of each solution to the original ILP is not increased.

Relaxations can be used to efficiently get bounds on the value of the original integer program.

Types of Relaxations

Continuous relaxation

Combinatorial relaxation

Lagrangian relaxations

Branch and Bound

Initialize the queue with F . While there are subproblems in the queue, do

1 Remove a subproblem and solve its relaxation.

2 The relaxation is infeasible ⇒ subproblem is infeasible and can be pruned.

3 Solution is feasible for the MILP ⇒ subproblem solved (update upper bound).

4 Solution is not feasible for the MILP ⇒ lower bound.

If the lower bound exceeds the global upper bound, we can prune the node.

Otherwise, we branch and add the resulting subproblems to the queue.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Branching

Branching involves partitioning the feasible region by imposing a valid disjunction such that:

All optimal solutions are in one of the members of the partition.

The solution to the current relaxation is not in any of the members of the partition.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Branch and Bound Tree
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Constraint Decomposition in Linear Programming

zLP = min
x∈Rn

{
c>x

∣∣ A′x ≥ b′, A′′x ≥ b′′ }
= min

x∈P′

{
c>x

∣∣ A′′x ≥ b′′ }
= min

x∈Rn

{
c>x

∣∣∣ x =
∑
s∈E

sλs,
∑
s∈E

λs = 1,

λs ≥ 0,∀s ∈ E
}

= max
u∈Rm′′+

{
min
s∈E

{
c>s+ u>(b′′ −A′′s)

}}
Q′ = {x ∈ Rn | A′x ≥ b′}

Q′′ = {x ∈ Rn | A′′x ≥ b′′}

Basic Strategy:

The original linear program is “hard” to solve because of its size or other properties.
The matrix A′ has structure that makes optimization “easy.”

Block structure

Network structure

With decomposition, we can exploit the structure to obtain better solution methods.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Constraint Decomposition in Integer Programming

Basic Strategy: Leverage our ability to solve the optimization/separation problem for a
relaxation to improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

{
c>x

∣∣ A′x ≥ b′, A′′x ≥ b′′ }
zLP = min

x∈Rn

{
c>x

∣∣ A′x ≥ b′, A′′x ≥ b′′ }
zD = min

x∈P′

{
c>x

∣∣ A′′x ≥ b′′ }
zIP ≥ zD ≥ zLP

P = conv{x ∈ Zn | A′x ≥ b′, A′′x ≥ b′′}

Assumptions:

OPT(P, c) and SEP(P, x) are “hard”

OPT(P ′, c) and SEP(P ′, x) are “easy”

Q′′ can be represented explicitly (description has polynomial size)

P ′ may be represented implicitly (description has exponential size)

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Variable Decomposition in Linear Programming

zLP = min
(x,y)∈Rn

{
c′x+ c′′y

∣∣ A′x+A′′y ≥ b
}

= min
x∈Rn′

{
c′x+ φ(b−A′x)

}
,

where

φ(d) = min c′′y

s.t. A′′y ≥ d

y ∈ Rn
′′

1 2 3 4 5 6 7 8

1

2

3

4

5

φ(x)

x

y

Basic Strategy:

The function φ is the value function of a linear program.

The value function is piecewise linear and convex, but has a description of exponential size.

We iteratively generate a lower approximation by evaluating φ for various values of it
domain (Benders’ Decomposition).

The method is effective when we have an efficient method of evaluating φ.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Variable Decomposition in Integer Programming

zIP = min
(x,y)∈Zn

{
c′x+ c′′y

∣∣ A′x+A′′y ≥ b
}

= min
x∈Rn′

{
c′x+ φ(b−A′x)

}
,

where

φ(d) = min c′′y

s.t. A′′y ≥ d

y ∈ Zn
′′

1 2 3 4 5 6 7 8

1

2

3

4

5
φ(x)

x

y

Basic Strategy:

Here, φ is the value function of an integer program.

In the general case, the function φ is piecewise linear but not convex.

We can still iteratively generate a lower approximation by evaluating φ.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Connections Between Constraint and Variable Decomposition

Constraint and variable decompositions are related.

Fixing all the variables in the linking constraints also yields a decomposition.

In the facility location example, relaxing the constraints that require any assigned facility to
be open yields a constraint decomposition.

In the linear programming case, constraint decomposition is variables decomposition in the
dual.

In the discrete case, the situation is more complex and there is no simple relationship
between constraint and variables decomposition.

A technique known as Lagrangian Decomposition can be used to decompose linking
variables using constraint decomposition.

We make a copy of each original variable in each block.

We impose a constraint that all copies must take the same value.

We relax the new constraint in a Lagrangian fashion.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Lagrangian Decomposition in Integer Programming

Basic Strategy: Leverage our ability to solve the optimization/separation problem for a
relaxation to improve the bound yielded by the LP relaxation.

zIP = min
x∈Zn

{
c>x

∣∣ A′x ≥ b′, A′′x ≥ b′′ }
= min

x′,x′′∈Zn

{
c>x′

∣∣ A′x′ ≥ b′, A′′x′′ ≥ b′′, x′ = x′′
}

zLP = min
x∈Rn

{
c>x

∣∣ A′x ≥ b′, A′′x ≥ b′′ }
zLD = min

{
c>x

∣∣ x ∈ P ′ ∩ P ′′ }
zIP ≥ zLD ≥ zLP

Q′ = {x ∈ Rn | A′x ≥ b′}

Q′′ = {x ∈ Rn | A′′x ≥ b′′}

P′′ = conv{x ∈ Zn | A′′x ≥ b′}

P′ = conv{x ∈ Zn | A′x ≥ b′}

Assumptions:

OPT(P, c) and SEP(P, x) are “hard”

OPT(P ′, c) and OPT(P ′′, x) are “easy”

Ralphs, et. al. Decomposition Methods for Discrete Optimization



Introduction
Basic Principles
Basic Methods

Advanced Methods
Decomposition in Practice

Constraint Decomposition
Variable Decomposition

Outline

1 Introduction

2 Basic Principles
Constraint Decomposition
Variable Decomposition

3 Basic Methods
Constraint Decomposition
Variable Decomposition

4 Advanced Methods
Hybrid Methods
Decomposition and Separation
Decomposition Cuts
Generic Methods

5 Decomposition in Practice
Software
Modeling

6 To Infinity and Beyond...

Ralphs, et. al. Decomposition Methods for Discrete Optimization



Introduction
Basic Principles
Basic Methods

Advanced Methods
Decomposition in Practice

Constraint Decomposition
Variable Decomposition

Cutting Plane Method (CPM)

CPM combines an outer approximation of P ′ with an explicit description of Q′′

Master: zCP = minx∈Rn
{
c>x | Dx ≥ d,A′′x ≥ b′′

}
Subproblem: SEP(P ′, xCP)

P ′ = {x ∈ Rn | Dx ≥ d}

Exponential number of constraints

(2, 1)

P0
O = Q′ ∩ Q′′

x0CP = (2.25, 2.75)

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Cutting Plane Method (CPM)

CPM combines an outer approximation of P ′ with an explicit description of Q′′

Master: zCP = minx∈Rn
{
c>x | Dx ≥ d,A′′x ≥ b′′

}
Subproblem: SEP(P ′, xCP)

P ′ = {x ∈ Rn | Dx ≥ d}

Exponential number of constraints

(2, 1)

P1
O = P0

O ∩ {x ∈ Rn | 3x1 − x2 ≥ 5}

x1CP = (2.42, 2.25)
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Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = minλ∈RE+

{
c>
(∑

s∈E sλs
) ∣∣ A′′ (∑s∈E sλs

)
≥ b′′,

∑
s∈E λs = 1

}
Subproblem: OPT

(
P ′, c> − u>DWA′′

)

P ′ =

x ∈ Rn
∣∣∣∣∣∣ x =

∑
s∈E

sλs,
∑
s∈E

λs = 1, λs ≥ 0 ∀s ∈ E


Exponential number of variables

(2, 1)

Q′′

P0
I = conv(E0) ⊂ P′

s̃ = (2, 1)

x0DW = (4.25, 2)

c> − û>A”c>

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = minλ∈RE+

{
c>
(∑

s∈E sλs
) ∣∣ A′′ (∑s∈E sλs

)
≥ b′′,

∑
s∈E λs = 1

}
Subproblem: OPT

(
P ′, c> − u>DWA′′

)

P ′ =

x ∈ Rn
∣∣∣∣∣∣ x =

∑
s∈E

sλs,
∑
s∈E

λs = 1, λs ≥ 0 ∀s ∈ E


Exponential number of variables

c>

Q′′
P1
I = conv(E1) ⊂ P′

s̃ = (3, 4)

x1DW = (2.64, 1.86)

c> − û>A”

(2, 1)
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Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = minλ∈RE+

{
c>
(∑

s∈E sλs
) ∣∣ A′′ (∑s∈E sλs

)
≥ b′′,

∑
s∈E λs = 1

}
Subproblem: OPT

(
P ′, c> − u>DWA′′

)

P ′ =

x ∈ Rn
∣∣∣∣∣∣ x =

∑
s∈E

sλs,
∑
s∈E

λs = 1, λs ≥ 0 ∀s ∈ E


Exponential number of variables

c>

Q′′
P2
I = conv(E2) ⊂ P′

x2DW = (2.42, 2.25)

c> − û>A”

(2, 1)
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Dantzig-Wolfe Method (DW)

DW combines an inner approximation of P ′ with an explicit description of Q′′

Master: zDW = minλ∈RE+

{
c>
(∑

s∈E sλs
) ∣∣ A′′ (∑s∈E sλs

)
≥ b′′,

∑
s∈E λs = 1

}
Subproblem: OPT

(
P ′, c> − u>DWA′′

)

P ′ =

x ∈ Rn
∣∣∣∣∣∣ x =

∑
s∈E

sλs,
∑
s∈E

λs = 1, λs ≥ 0 ∀s ∈ E


Exponential number of variables

c> − û>A”c>

c> − û>A”

c> − û>A”

(2, 1) (2, 1) (2, 1)

Q′′ Q′′
P1
I = conv(E1) ⊂ P′ P2

I = conv(E2) ⊂ P′P0
I = conv(E0) ⊂ P′

s̃ = (3, 4)s̃ = (2, 1)

x0DW = (4.25, 2) x1DW = (2.64, 1.86) x2DW = (2.42, 2.25)

Q′′
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Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′
to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′+

{
mins∈E

{
c>s+ u>(b′′ −A′′s)

}}
Subproblem: OPT

(
P ′, c> − u>LDA

′′)

zLD = max
α∈R,u∈Rm′′+

{
α+ b′′>u

∣∣∣ (c> − u>A′′) s− α ≥ 0 ∀s ∈ E
}

= zDW

s̃ = (2, 1)

(2, 1)

c> − û>A′′

Q′′

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′
to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′+

{
mins∈E

{
c>s+ u>(b′′ −A′′s)

}}
Subproblem: OPT

(
P ′, c> − u>LDA

′′)

zLD = max
α∈R,u∈Rm′′+

{
α+ b′′>u

∣∣∣ (c> − u>A′′) s− α ≥ 0 ∀s ∈ E
}

= zDW

s̃ = (3, 4)

(2, 1)

Q′′

c> − û>A′′
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Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′
to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′+

{
mins∈E

{
c>s+ u>(b′′ −A′′s)

}}
Subproblem: OPT

(
P ′, c> − u>LDA

′′)

zLD = max
α∈R,u∈Rm′′+

{
α+ b′′>u

∣∣∣ (c> − u>A′′) s− α ≥ 0 ∀s ∈ E
}

= zDW

s̃ = (2, 1)

(2, 1)

c> − û>A′′

Q′′
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Lagrangian Method (LD)

LD iteratively produces single extreme points of P ′ and uses their violation of constraints of Q′′
to converge to the same optimal face of P ′ as CPM and DW.

Master: zLD = max
u∈Rm′′+

{
mins∈E

{
c>s+ u>(b′′ −A′′s)

}}
Subproblem: OPT

(
P ′, c> − u>LDA

′′)

zLD = max
α∈R,u∈Rm′′+

{
α+ b′′>u

∣∣∣ (c> − u>A′′) s− α ≥ 0 ∀s ∈ E
}

= zDW

c>

(2, 1) (2, 1) (2, 1)

Q′′

c> − û>A′′

c> − û>A′′
c> − û>A′′

s̃ = (3, 4)

Q′′

s̃ = (2, 1)

Q′′

s̃ = (2, 1)
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Common Threads

The LP bound is obtained by optimizing over the intersection of two
explicitly defined polyhedra.

zLP = min
x∈Rn

{
c>x

∣∣ x ∈ Q′ ∩Q′′ }

The constraint decomposition bound is obtained by optimizing over the
intersection of one explicitly defined polyhedron and one implicitly defined
polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{
c>x

∣∣ x ∈ P ′ ∩Q′′ } ≥ zLP

Traditional constraint decomposition-based bounding methods contain two
primary steps

Master Problem: Update the primal/dual solution information

Subproblem: Update the approximation of P′: SEP(P′, x) or OPT(P′, c)

Q′′

Q′ ∩ Q′′

Q′′

Q′ ∩ Q′′

P′ ∩ Q′′

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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When to Apply Constraint Decomposition

Typical scenarios in which constraint decomposition is effective.

The problem has block structure that makes solution of the subproblem very efficient
and/or parallelizable.

The subproblem has a substantial integrality gap, but we know an efficient algorithm for
solving it.

The original problem is highly symmetric (has identical blocks) and the decomposition
eliminates the symmetry.

Choosing a particular algorithm raises additional issues.

Cutting plane methods are hard to beat if strong cuts are known for the subproblem.

Cutting plane methods also allow a wider variety of cuts to be generated (cuts from the
tableau or from multiple relaxations).

Among traditional decomposition methods, Dantzig-Wolfe is appropriate if cuts for the
master are to be generated or when branching in the original space.

Lagrangian methods offer fast solve times in the master and less overhead, but only
approximate primal solution information.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Variable Decomposition in Linear Programming

zLP = min x+ y

s.t. 25x− 20y ≥ −30
−x− 2y ≥ −10
−2x+ y ≥ −15
2x+ 10y ≥ 15

x, y ∈ R

5

1 2 3 4 5 6 7 8

1

2

3

4

x

y
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Value Function Reformulation

zLP = minx∈R x+ φ(x),

where

φ(x) = min y

s.t. −20y ≥ −30− 25x

−2y ≥ −10 + x

y ≥ −15 + 2x

10y ≥ 15− 2x

y ∈ R 1 2 3 4 5 6 7 8

1

2

3

4

5

φ(x)

x

y
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LP Value Function

Example

φ(d) = min 6x1 + 7x2 + 5x3

s.t. 2x1 − 7x2 + x3 = d

x1, x2, x3 ∈ R+

Ralphs, et. al. Decomposition Methods for Discrete Optimization



Introduction
Basic Principles
Basic Methods

Advanced Methods
Decomposition in Practice

Constraint Decomposition
Variable Decomposition

LP Value Function Structure

LP Value Function

φ(d) = min c>x

s.t. Ax = b

x ∈ Rn+

(LP)

Suppose the dual of (LP) is feasible and bounded.

Then the epigraph of φ is the convex cone{
(b, z)

∣∣∣ z ≥ ν>b, ∀ν ∈ E }
where E is the set of extreme points of the dual of (LP).

Thus, the value function is piecewise linear and convex with each piece corresponding to an
extreme point of the dual.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Benders’ Method for Linear Programs

zLP = min
(x,y)∈Rn

{
c′x+ c′′y

∣∣A′x+A′′y ≥ b
}

= min
x∈Rn′

{
c′x+ φ(b−A′x)

}
= min

x∈Rn′

{
c′x+ z

∣∣ z ≥ ν(b−A′x), ν ∈ E }

Basic Strategy:

Solve the above linear program with a cutting plane method.

We iteratively generate a lower approximation by evaluating φ for various values of x
(Benders’ Decomposition).

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Variable Decomposition in Integer Programming

zIP = min x+ y

s.t. 25x− 20y ≥ −30
−x− 2y ≥ −10
−2x+ y ≥ −15
2x+ 10y ≥ 15

x, y ∈ Z

5

1 2 3 4 5 6 7 8

1

2

3

4

x

y
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Value Function Reformulation

zIP = minx∈Z x+ φ(x),

where

φ(x) = min y

s.t. −20y ≥ −30− 25x

−2y ≥ −10 + x

y ≥ −15 + 2x

10y ≥ 15− 2x

y ∈ Z 1 2 3 4 5 6 7 8

1

2

3

4

5
φ(x)

x

y
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MILP Value Function

Example

φ(d) = min 3x1 +
7

2
x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = d

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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MILP Value Function Structure

MILP Value Function

φ(d) = min c>x

s.t. Ax = b

x ∈ Rn+

(MILP)

The epigraph of the MILP value function is the union of a countable collection of epigraphs
of identical convex cones.

These convex convex are translations of the value function of the continuous restriction.

Ralphs, et. al. Decomposition Methods for Discrete Optimization



Introduction
Basic Principles
Basic Methods

Advanced Methods
Decomposition in Practice

Constraint Decomposition
Variable Decomposition

Benders’ Method for Integer Programs

zLP = min
(x,y)∈Rn

{
c′x+ c′′y

∣∣A′x+A′′y ≥ b
}

= min
x∈Rn′

{
c′x+ φ(b−A′x)

}
≥ min

x∈Rn′

{
c′x+ z

∣∣ z ≥ φD(b−A′x)
}

where φD is a function bounding φ from
below.

Basic Strategy:

Solve the above nonlinear program by iteratively constructing φD.

The approximation can be updated each time we solve the MILP.

The pieces of the approximation come from the branch-and-bound tree resulting from
solution of the MILP for fixed d

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Common Threads

Just as in the case of constraint decomposition, variable decomposition methods contain
two primary steps

Master Problem: Update the primal/dual solution information

Subproblem: Update the approximation of φ by evaluating φ(x).

The motivation for applying variable decomposition methods is a bit different than for
constraint decomposition methods.

Generally, variable decomposition is appropriate when

we have an efficient method for evaluating φ (it has block structure) or

we have a multilevel problem with multiple objectives.

In cases like stochastic programming, the blocks may only differ in their right-hand side, so
there is only one (lower-dimensional) function needed to describe all blocks.

It may also be possible to exploit symmetry in variable decomposition using a strategy
similar to that used in constraint decomposition.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Price-and-Cut Method (PC)

PC approximates P by building an inner approximation of P ′ (as in DW) intersected with an
outer approximation of P (as in CPM)

Master: zPC = minλ∈RE+

{
c>
(∑

s∈E sλs
) ∣∣ D (∑s∈E sλs

)
≥ d,

∑
s∈E λs = 1

}
Subproblem: OPT

(
P ′, c> − u>PCD

)
or SEP (P, xPC)

As in CPM, separate x̂PC =
∑
s∈E sλ̂s from P and add cuts to [D, d].

Key Idea: Cut generation takes place in the space of the compact formulation, maintaining
the structure of the column generation subproblem.

(2,1)

{s ∈ E | (λ0PC)s > 0}

P0
O = Q′′
P0
I = conv(E0) ⊂ P′

x0PC = (2.42, 2.25)

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Price-and-Cut Method (PC)

PC approximates P by building an inner approximation of P ′ (as in DW) intersected with an
outer approximation of P (as in CPM)

Master: zPC = minλ∈RE+

{
c>
(∑

s∈E sλs
) ∣∣ D (∑s∈E sλs

)
≥ d,

∑
s∈E λs = 1

}
Subproblem: OPT

(
P ′, c> − u>PCD

)
or SEP (P, xPC)

As in CPM, separate x̂PC =
∑
s∈E sλ̂s from P and add cuts to [D, d].

Key Idea: Cut generation takes place in the space of the compact formulation, maintaining
the structure of the column generation subproblem.

(2,1)

{s ∈ E | (λ1PC)s > 0}

P1
O = P0

O ∩ {x ∈ Rn | x1 ≥ 3}

P1
I = conv(E1) ⊂ P′

x1PC = (3, 1.5)

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Price-and-Cut Method (PC)

PC approximates P by building an inner approximation of P ′ (as in DW) intersected with an
outer approximation of P (as in CPM)

Master: zPC = minλ∈RE+

{
c>
(∑

s∈E sλs
) ∣∣ D (∑s∈E sλs

)
≥ d,

∑
s∈E λs = 1

}
Subproblem: OPT

(
P ′, c> − u>PCD

)
or SEP (P, xPC)

As in CPM, separate x̂PC =
∑
s∈E sλ̂s from P and add cuts to [D, d].

Key Idea: Cut generation takes place in the space of the compact formulation, maintaining
the structure of the column generation subproblem.

(2,1)

{s ∈ E | (λ2PC)s > 0}

P2
O = P1

O ∩ {x ∈ Rn | x2 ≥ 2}

P1
I = conv(E2) ⊂ P′

x2PC = (3, 2)

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Price-and-Cut Method (PC)

PC approximates P by building an inner approximation of P ′ (as in DW) intersected with an
outer approximation of P (as in CPM)

Master: zPC = minλ∈RE+

{
c>
(∑

s∈E sλs
) ∣∣ D (∑s∈E sλs

)
≥ d,

∑
s∈E λs = 1

}
Subproblem: OPT

(
P ′, c> − u>PCD

)
or SEP (P, xPC)

As in CPM, separate x̂PC =
∑
s∈E sλ̂s from P and add cuts to [D, d].

Key Idea: Cut generation takes place in the space of the compact formulation, maintaining
the structure of the column generation subproblem.

(2,1) (2,1)(2,1)

c>

P1
O = P0

O ∩ {x ∈ Rn | x1 ≥ 3}

P1
I = conv(E1) ⊂ P′

x1PC = (3, 1.5)

{s ∈ E | (λ1PC)s > 0}

P2
O = P1

O ∩ {x ∈ Rn | x2 ≥ 2}

P1
I = conv(E2) ⊂ P′

x2PC = (3, 2)

{s ∈ E | (λ2PC)s > 0}

P0
O = Q′′
P0
I = conv(E0) ⊂ P′

x0PC = (2.42, 2.25)

{s ∈ E | (λ0PC)s > 0}

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Relax-and-Cut Method (RC)

RC approximates P by tracing an inner approximation of P ′ (as in LD) penalizing points outside
of a dynamically generated outer approximation of P (as in CPM)

Master: zLD = max
u∈Rm′′+

{
mins∈E

{
c>s+ u>(d−Ds)

}}
Subproblem: OPT

(
P ′, c> − u>LDD

)
or SEP (P, s)

In each iteration, separate ŝ ∈ E, a solution to the Lagrangian relaxation.

Advantage: Often easier to separate s ∈ E from P than x̂ ∈ Rn.

s̃ = (2, 1)

(2, 1)

c> − û>D

Q′′

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Relax-and-Cut Method (RC)

RC approximates P by tracing an inner approximation of P ′ (as in LD) penalizing points outside
of a dynamically generated outer approximation of P (as in CPM)

Master: zLD = max
u∈Rm′′+

{
mins∈E

{
c>s+ u>(d−Ds)

}}
Subproblem: OPT

(
P ′, c> − u>LDD

)
or SEP (P, s)

In each iteration, separate ŝ ∈ E, a solution to the Lagrangian relaxation.

Advantage: Often easier to separate s ∈ E from P than x̂ ∈ Rn.

s̃ = (3, 4)

(2, 1)

c> − û>D

Q′′
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Relax-and-Cut Method (RC)

RC approximates P by tracing an inner approximation of P ′ (as in LD) penalizing points outside
of a dynamically generated outer approximation of P (as in CPM)

Master: zLD = max
u∈Rm′′+

{
mins∈E

{
c>s+ u>(d−Ds)

}}
Subproblem: OPT

(
P ′, c> − u>LDD

)
or SEP (P, s)

In each iteration, separate ŝ ∈ E, a solution to the Lagrangian relaxation.

Advantage: Often easier to separate s ∈ E from P than x̂ ∈ Rn.

s̃ = (2, 1)

(2, 1)

c> − û>D

Q′′
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Relax-and-Cut Method (RC)

RC approximates P by tracing an inner approximation of P ′ (as in LD) penalizing points outside
of a dynamically generated outer approximation of P (as in CPM)

Master: zLD = max
u∈Rm′′+

{
mins∈E

{
c>s+ u>(d−Ds)

}}
Subproblem: OPT

(
P ′, c> − u>LDD

)
or SEP (P, s)

In each iteration, separate ŝ ∈ E, a solution to the Lagrangian relaxation.

Advantage: Often easier to separate s ∈ E from P than x̂ ∈ Rn.

s̃ = (2, 1)

c>

(2, 1) (2, 1) (2, 1)

c> − û>D

c> − û>D c> − û>D

Q′′Q′′ Q′′
s̃ = (2, 1) s̃ = (3, 4)
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Structured Separation

In general, OPT(X, c) and SEP(X,x) are polynomially equivalent.

Observation: Restrictions on input or output can change their complexity.

The Template Paradigm, restricts the output of SEP(X,x) to valid inequalities that
conform to a certain structure. This class of inequalities forms a polyhedron C ⊃ X (the
closure).

For example, let P be the convex hull of solutions to the TSP.

SEP(P, x) is NP-Complete.

SEP(C, x) is polynomially solvable, for C ⊃ P

PSubtour, the Subtour Polytope (separation using Min-Cut), or

PBlossom, the Blossom Polytope (separation using Letchford, et al. ).

Structured Separation, restricts the input of SEP(X,x), such that x conforms to some
structure. For example, if x is restricted to solutions to a combinatorial problem, then
separation often becomes much easier.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Structured Separation: Example

Separation of Comb Inequalities:

x(E(H)) +
k∑
i=1

x(E(Ti)) ≤ |H|+
k∑
i=1

(|Ti| − 1)− dk/2e

SEP(PBlossom, s), for s a 1-tree, can be solved in O(|V |2)
Construct candidate handles H from BFS tree traversal and an odd (≥ 3) set of edges with one
endpoint in H and one in V \H as candidate teeth (each gives a violation of dk/2e − 1).

This can also be used as a quick heuristic to separate 1-trees for more general comb structures, for
which there is no known polynomial algorithm for separation of arbitrary vectors.
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Price-and-Cut (Revisited)

Price-and-Cut (Revisited): As normal, use DW as the bounding method, but use the
decomposition obtained in each iteration to generate improving inequalities, as in RC.

Key Idea: Rather than (or in addition to) separating x̂PC, separate each member of D

As with RC, often much easier to separate s ∈ E than x̂PC ∈ Rn

RC only gives us one member of E to separate, while PC gives us a set, one of which must
be violated by any inequality violated by x̂PC

Provides an alternative necessary (but not sufficient) condition to find an improving
inequality which is very easy to implement and understand.

(2,1)

PO = Q′′

PI = P′

xPC

{s ∈ E | (λPW)s > 0}
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Price-and-Cut (Revisited)

The violated subtour found by separating the 2-matching also violates the fractional point,
but was found at little cost.
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Similarly, the violated blossom found by separating the 1-tree also violates the fractional
point, but was found at little cost.
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Price-and-Cut (Revisited)

The violated subtour found by separating the 2-matching also violates the fractional point,
but was found at little cost.
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Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.’s of P ′

min
λ∈RE+,(x

+,x−)∈Rn+

x+ + x−

∣∣∣∣∣∣
∑
s∈E

sλs + x+ − x− = x̂CP,
∑
s∈E

λs = 1



Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.’s of P ′

min
λ∈RE+,(x

+,x−)∈Rn+

x+ + x−

∣∣∣∣∣∣
∑
s∈E

sλs + x+ − x− = x̂CP,
∑
s∈E

λs = 1



If x̂CP lies outside P ′ the decomposition will fail

By the Farkas Lemma the proof of infeasibility provides a valid and violated inequality

Decomposition Cuts

utDCs+ αtDC ≤ 0 ∀s ∈ P ′ and
utDCx̂CP + αtDC > 0

(2,1) (2,1)

PO = Q′′PO = Q′′

{s ∈ E | (λCP)s > 0}

PI = P′ PI = P′

xCP ∈ P′ xCP /∈ P′

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.’s of P ′.

min
λ∈RE+,(x

+,x−)∈Rn+

x+ + x−

∣∣∣∣∣∣
∑
s∈E

sλs + x+ − x− = x̂CP,
∑
s∈E

λs = 1


Originally proposed as a method to solve the VRP with TSP as relaxation.

Essentially, we are transforming an optimization algorithm into a separation algorithm.

The machinery for solving this already exists (=column generation)

Much easier than DW problem because it’s a feasibility problem and

x̂i = 0⇒ si = 0, can remove constraints not in support, and

x̂i = 1 and si ∈ {0, 1} ⇒ constraint is redundant with convexity constraint

Often gets lucky and produces incumbent solutions to original IP

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Generic Constraint Decomposition

Traditionally, decomposition-based branch-and-bound methods have required extensive
problem-specific customization.

identifying the decomposition (which constraints to relax);

formulating and solving the subproblem (either optimization or separation over P′);

formulating and solving the master problem; and

performing the branching operation.

However, it is possible to replace these components with generic alternatives.

The decomposition can be identified automatically by analyzing the matrix or through a
modeling language.

The subproblem can be solved with a generic MILP solver.

The branching can be done in the original compact space.

The remainder of this talk focuses on our recent efforts to develop a completely generic
decomposition-based MILP solver.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Working in the Compact Space

The key to the implementation of this unified framework is that we always maintain a
representation of the problem in the compact space.

This allows us to employ most of the usual techniques used in LP-based branch and bound
without modification, even in this more general setting.

There are some challenges related to this approach that we are still working on.

Gomory cuts

Preprocessing

Identical subproblems

Strong branching

Allowing the user to express all methods in the compact space is extremely powerful when
it comes to modeling language support.

It is important to note that DIP currently assumes the existence of a formulation in the
compact space.

We are working on relaxing this assumption, but this means the loss of the fully generic
implementation of some techniques.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Automatic Structure Detection

For unstructured problems, block structure may be detected automatically.

This is done using hypergraph partitioning methods.

We map each row of the original matrix to a hyperedge and the nonzero elements to nodes
in a hypergraph.

Hypergraph partitioning results in identification of the blocks in a singly-bordered block
diagonal matrix. 

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗


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Hidden Block Structure

Detected block structure for p2756 instance
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Detected block structure for p2756 instance

Ralphs, et. al. Decomposition Methods for Discrete Optimization



Introduction
Basic Principles
Basic Methods

Advanced Methods
Decomposition in Practice

Hybrid Methods
Decomposition and Separation
Decomposition Cuts
Generic Methods

Generic Branching

By default, we branch on variables in the compact space.

In PC, this is done by mapping back to the compact space x̂ =
∑
s∈E sλ̂s.

Variable branching in the compact space is constraint branching in the extended space

This idea makes it possible define generic branching procedures.

(2,1) (2,1)(2,1)

{s ∈ E | (λDW)s > 0}

Node 1 Node 2

Node 4

Node 3

xDW = (2.42, 2.25)

{s ∈ E | (λDW)s > 0}

PI

PO

xDW = (3, 3.75)

PI PI

PO PO

xDW = (3, 3)

{s ∈ E | (λDW)s > 0}

Node 1: 4λ(4,1) + 5λ(5,5) + 2λ(2,1) + 3λ(3,4) ≤ 2
Node 2: 4λ(4,1) + 5λ(5,5) + 2λ(2,1) + 3λ(3,4) ≥ 3

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Branching for Lagrangian Method

In general, Lagrangian methods do not provide a primal solution λ

Let B define the extreme points found in solving subproblems for zLD

Build an inner approximation using this set, then proceed as in PC

PI =

x ∈ Rn
∣∣∣∣∣∣ x =

∑
s∈B

sλs,
∑
s∈B

λs = 1, λs ≥ 0 ∀s ∈ B



min
λ∈RB+

c>
∑
s∈B

sλs

 ∣∣∣∣∣∣ A′′
∑
s∈B

sλs

 ≥ b′′,∑
s∈B

λs = 1


Closely related to volume algorithm and bundle methods
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Decomposition Software

There have been a number of efforts to create frameworks supporting the implementation of
decomposition-based branch and bound.

Column Generation Frameworks

ABACUS [Jünger and Thienel(2012)]

SYMPHONY [Ralphs et al.(2012)Ralphs, Ladányi, Güzelsoy, and Mahajan]

COIN/BCP [Ladányi(2012)]

Generic decomposition frameworks

BaPCod [Vanderbeck(2012)]
Dantzig-Wolfe
Automatic reformulation,
Generic cuts
Generic branching

GCG [Gamrath and Lübbecke(2012)]
Dantzig-Wolfe
Automatic hypergraph-based decomposition
Automatic reformulation,
Generic cut generation
Generic branching

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Shameless Self Promotion

The use of decomposition methods in practice is hindered by a
number of serious drawbacks.

Implementation is difficult, usually requiring development of
sophisticated customized codes.

Choosing an algorithmic strategy requires in-depth knowledge of theory
and strategies are difficult to compare empirically.

The powerful techniques modern solvers use to solve integer programs
are difficult to integrate with decomposition-based approaches.

DIP and CHiPPS are two frameworks that together allow for easier
implementation of decomposition approaches.

CHiPPS (COIN High Performance Parallel Search Software) is a
flexible library hierarchy for implementing parallel search algorithms.

DIP (Decomposition for Integer Programs) is a framework for
implementing decomposition-based bounding methods.

DIP with CHiPPS is a full-blown branch-and-cut-and-price framework
in which details of the implementation are hidden from the user.

DIP can be accessed through a modeling language or by providing
a model with notated structure.
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DIP Framework: Implementation

COmputational INfrastructure for Operations Research
Have some DIP with your CHiPPS?

DIP was built around data structures and interfaces provided by COIN-OR

The DIP framework, written in C++, is accessed through two user interfaces:

Applications Interface: DecompApp

Algorithms Interface: DecompAlgo

DIP provides the bounding method for branch and bound

ALPS (Abstract Library for Parallel Search) provides the framework for tree search

AlpsDecompModel : public AlpsModel

a wrapper class that calls (data access) methods from DecompApp

AlpsDecompTreeNode : public AlpsTreeNode

a wrapper class that calls (algorithmic) methods from DecompAlgo

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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DIP Framework: API

The base class DecompApp provides an interface for user to define the application-specific
components of their algorithm

Define the model(s)

setModelObjective(double * c): define c

setModelCore(DecompConstraintSet * model): define Q′′

setModelRelaxed(DecompConstraintSet * model, int block): define Q′ [optional]

solveRelaxed(): define a method for OPT(P′, c) [optional, if Q′, CBC is built-in]

generateCuts(): define a method for SEP(P′, x) [optional, CGL is built-in]

isUserFeasible(): is x̂ ∈ P? [optional, if P = conv(P′ ∩ Q′′ ∩ Z) ]

All methods have appropriate defaults but are virtual and may be overridden.

The base class DecompAlgo provides the shell (init / master / subproblem / update).

Each of the methods described has derived default implementations DecompAlgoX : public
DecompAlgo which are accessible by any application class, allowing full flexibility.

New, hybrid or extended methods can be easily derived by overriding the various subroutines,
which are called from the base class.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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DIP Framework: Feature Overview

One interface to all algorithms: CP, DW, LD, PC, RC

Automatic reformulation allows users to specify methods in the compact (original) space.

Integrate different decomposition methods

Can utilize CGL cuts in all algorithms (separate from original space).

Can utilize structured separation (efficient algorithms that apply only to vectors with special
structure (integer) in various ways).

Can separate from P′ using subproblem solver (DC).

Integerate multiple bounding methods

Column generation based on multiple/nested relaxations can be easily defined and employed.

Bounds based on multiple model/algorithm combinations.

Use of generic MILP solution technology

Using the mapping x̂ =
∑
s∈E sλ̂s we can import any generic MILP technique to the PC/RC

context.

Use generic MILP solver to solve subproblems.

Hooks to define branching methods, heuristics, etc.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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DIP Framework: Feature Overview (cont.)

Performance enhancements

Detection and removal of columns that are close to parallel

Basic dual stabilization (Wentges smoothing)

Redesign (and simplification) of treatment of master-only variables.

Branching can be enforced in subproblem or master (when oracle is MILP)

Ability to stop subproblem calculation on gap/time and calculate LB (can branch early)

For oracles that provide it, allow multiple columns for each subproblem call

Algorithms for generating initial columns

Solve OPT(P′, c+ r) for random perturbations

Solve OPT(PN ) heuristically

Run several iterations of LD or DC collecting extreme points

Choice of master LP solver

Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)

Primal simplex after adding columns (warm-start primal feasible)

Interior-point methods might help with stabilization vs extremal duals

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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DIP Generic Decomposition-based MILP Solver

Many difficult MILPs have a block structure, but this structure is not part of the input
(MPS) or is not exploitable by the solver.

In practice, it is common to have models composed of independent subsystems coupled by
global constraints.

The result may be models that are highly symmetric and difficult to solve using traditional
methods, but would be easy to solve if the structure were known.

A′′1 A′′2 · · · A′′κ
A′1

A′2
. . .

A′κ


MILPBlock provides a black-box solver for applying integrated methods to generic MILP

Input is an MPS/LP and a block file specifying structure.

Optionally, the block file can be automatically generated using the hypergraph partitioning
algorithm of HMetis.

This is the engine underlying DIPPY.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Modeling Systems

In general, there are not many options for expressing block structure directly in a modeling
language.

Part of the reason for this is that there are also not many software frameworks that can
exploit this structure.

One substantial exception is GAMS, which offers the Extended Mathematical Programming
(EMP) Language.

With EMP. it is possible to directly express multi-level and multi-stage problems in the
modeling language.

For other modeling languages, it is possible to manually implement decomposition methods
using traditional underlying solvers.

Here, we present a modeling language interface to DIP that provides the ability to express
block structure and exploit it within DIP.
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DipPy

DipPy provides an interface to DIP through the modeling language PuLP.

PuLP is a modeling language that provides functionality similar to other modeling
languages.

It is built on top of Python so you get the full power of that language for free.

PuLP and DipPy are being developed by Stuart Mitchell and Mike O’Sullivan in Auckland
and are part of COIN.

Through DipPy, a user can

Specify the model and the relaxation, including the block structure.

Implement methods (coded in Python) for solving the relaxation, generating cuts, custom
branching.

With DipPy, it is possible to code a customized column-generation method from scratch in
a few hours.

This would have taken months with previously available tools.

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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Example: Generalized Assignment Problem

The problem is to find a minimum cost assignment of n tasks to m machines such that
each task is assigned to one machine subject to capacity restrictions.

A binary variable xij indicates that machine i is assigned to task j. M = 1,. . . ,m and
N=1,. . . ,n.

The cost of assigning machine i to task j is cij

Generalized Assignment Problem (GAP)

min
∑
i∈M

∑
j∈N

cijxij∑
j∈N

wijxij ≤ bi ∀i ∈M∑
i∈M

xij = 1 ∀j ∈ N

xij ∈ {0, 1} ∀i, j ∈M ×N

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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GAP in DipPy

Creating GAP model in DipPy

prob = dippy.DipProblem("GAP", LpMinimize)

# objective

prob += lpSum(assignVars[m][t] * COSTS[m][t] for m, t in MACHINES_TASKS), "min"

# machine capacity (knapsacks , relaxation )

for m in MACHINES:

prob.relaxation[m] +=

lpSum(assignVars[m][t] * RESOURCE_USE[m][t] for t in TASKS) <= CAPACITIES[m]

# assignment

for t in TASKS:

prob += lpSum(assignVars[m][t] for m in MACHINES) == 1

prob.relaxed_solver = relaxed_solver

dippy.Solve(prob)
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Solver for subproblem for GAP in DipPy

def relaxed_solver(prob , machine , redCosts , convexDual ):

# get tasks which have negative reduced

task_idx = [t for t in TASKS if redCosts[assignVars[machine ][t]] < 0]

vars = [assignVars[machine ][t] for t in task_idx]

obj = [-redCosts[assignVars[machine ][t]] for t in task_idx]

weights = [RESOURCE_USE[machine ][t] for t in task_idx]

z, solution = knapsack01(obj , weights , CAPACITIES[machine ])

z = -z

# get sum of original costs of variables in solution

orig_cost = sum(prob.objective.get(vars[idx]) for idx in solution)

var_values = [(vars[idx], 1) for idx in solution]

dv = dippy.DecompVar(var_values , z-convexDual , orig_cost)

# return , list of DecompVar objects

return [dv]
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GAP in DipPy

DipPy Auxiliary Methods

d e f s o l v e s u b p r o b l e m ( prob , index , r e d C o s t s , convexDual ) :
. . .
z , s o l u t i o n = knapsack01 ( obj , w e ig h ts , CAPACITY)
. . .
r e t u r n [ ]

prob . r e l a x e d s o l v e r = s o l v e s u b p r o b l e m
d e f knapsack01 ( obj , w e ig h ts , c a p a c i t y ) :

. . .
r e t u r n c [ n−1][ c a p a c i t y ] , s o l u t i o n

d e f f i r s t f i t ( prob ) :
. . .
r e t u r n bvs

d e f o n e e a c h ( prob ) :
. . .
r e t u r n bvs

prob . i n i t v a r s = f i r s t f i t
d e f c h o o s e a n t i s y m m e t r y b r a n c h ( prob , s o l ) :

. . .
r e t u r n ( [ ] , down branch ub , u p b r a n c h l b , [ ] )

prob . branch method = c h o o s e a n t i s y m m e t r y b r a n c h
d e f g e n e r a t e w e i g h t c u t s ( prob , s o l ) :

. . .
r e t u r n n e w c u t s

prob . g e n e r a t e c u t s = g e n e r a t e w e i g h t c u t s
d e f h e u r i s t i c s ( prob , xhat , c o s t ) :

. . .
r e t u r n s o l s

prob . h e u r i s t i c s = h e u r i s t i c s
d i p p y . S o l v e ( prob , {

’ d o P r i c e C u t ’ : ’ 1 ’ ,
})
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To Infinity and Beyond...

Separable subproblems (Important!)

Identical subproblems (symmetry)

Parallel solution of subproblems

Automatic detection

Cuts and branching?

Use of generic MILP solution technology

Incorporation of advanced branchng techniques (how to do strong branching)

Gomory cuts (crossover?)

Use generic MILP solver to generate multiple columns in each iteration.

Primal Heuristics

For block-angular case, at end of each node, a simplt heuristic is to solve with λ ∈ Z
Used in root node by Barahona and Jensen (’98), we extend to tree

A number of other heuristics have been proposed.

Dual stabilization

Presolve
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To Infinity and Beyond...

Choice of master LP solver

Better automated choice of solver

Interior-point methods might help with stabilization vs extremal duals

Can we use volume or bundle along with an exact LP solver?

Better search strategies

How do we warm start node processing?

How much diving do we do?

Nested pricing and solution methods

Can solve more constrained versions of subproblem heuristically to get high quality columns.

Can we use decomposition recursively?

Branch-and-Relax-and-Cut: Not much done yet

Numerics?
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Where Is All This Going?

Decomposition methods are important in practice (see Mike Trick!), but have proven
difficult to utilize in practice.

There is renewed interest in making these method acessible to general users.
Computational frameworks are being developed that employ these methods “generically.”
Modeling language support is emerging that allows users to express structure that can be exploited.

All of this capability is still early in the development stages.

There will need to be an evolution similar to what happened when generic MILP solvers
generalized problem-specific techniques.

There are LOADS of questions to be answered and research to be done.

THANKS FOR LISTENING!

Ralphs, et. al. Decomposition Methods for Discrete Optimization
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