
Making Molehills Out of Mountains:

A Guided Tour of Discrete Optimization

Ted Ralphs

Lehigh University

CSIRO, Melbourne, Australia, 15 December 2011

Thanks: Work supported in part by the National Science Foundation

Outline

1 Introduction

2 What is Optimization?

3 Applications of Optimization

4 Basic Solution Framework

5 Advanced Methods
Decomposition
Parallelization

6 Software

Outline

1 Introduction

2 What is Optimization?

3 Applications of Optimization

4 Basic Solution Framework

5 Advanced Methods
Decomposition
Parallelization

6 Software

Lehigh University

Profile

Small private university.

Founded in 1865 by railroad baron Asa
Packer.

Students
5000 undergraduate students
2000 graduate students

Located in historic Bethlehem, PA

Industrial and Systems Engineering at Lehigh

Profile

IE department established in 1948.

Among the oldest in the U.S.

In Mohler Lab, namesake of former
president and CEO of Hershey Foods.

Department offers two BS programs, five
MS programs, and a Ph.D Program

We have about 160 undergrduate, 175
masters, and 40 Ph.D students.

My Background

B.S. and M.S. in Mathematics from Carnegie Mellon University.

Ph.D from Cornell in Operations Research with major in optimization and minors in
computer science and statistics.

Faculty member at Lehigh for 10 years, director of COR@L Lab.

Research interests
Computational optimization
Parallel/Grid computing
Open source software development

Outline

1 Introduction

2 What is Optimization?

3 Applications of Optimization

4 Basic Solution Framework

5 Advanced Methods
Decomposition
Parallelization

6 Software

What Is Optimization?

Definition

Optimization involves the use of mathematical models to analyze the operations
of large-scale systems and improve their efficiency.

Optimization is everywhere!

Airlines and railways use it to determine schedules.

Logistics companies use it to determine routes.

Mapping software uses it to calculate travel routes.

Cell phone companies use it figure out where to place towers.

Brokerage firms use it to make investment decisions.

Doctors use it to plan medical treatments.

Biologists use it to sequence genomes.

Even nature operates according to principles of optimization.

Mathematical Modeling

To analyze a system, we start with a mathematical model.

Variables are quantities that determine the operating state.

How many widgets should we manufacture?
How many employees should we hire?

Constraints are the specs that determine the allowable operating states.

We only have $100K in operating capital.
We can only purchase raw materials for 10,000 watchamacallits.

Objectives specify the goal(s) of the system.

Maximize profit.
Minimize risk.

A Mathematical Optimization Model

The general form of a mathematical optimization model is

min f(x)

s.t. gi(x)

8

<

:

≤
=
≥

9

=

;

bi

x ∈ X

where X ⊆ R
n is a set that may be discrete.

A mathematical optimization problem is a problem that can be expressed using a
mathematical optimization model (called the formulation).

The form of the functions used to define and the constraints and the form of the set
X determine the appropriate solution method.

In this talk, we consider models with linear functions and for which X = R
n−p × Z

p.

Possible Outcomes

When we say we are going to “solve” mathematical program, we mean to determine

whether it is feasible, and

whether it has an optimal solution.

We may also want to know some other things, such as the status of its “dual” or
about sensitivity.

How Hard Can It Be?

The number of possibilities is typically MUCH TOO LARGE to consider each one
explicitly.

The Traveling Salesman Problem (TSP) is one of the most well-known optimization
problems.

A traveling salesman must visit n cities and then return home.
He wants to minimize the total distance traveled.
How many orderings are there?

A Big Number

12413915592536072670862289047373375038521486354677761457318634!

A Needle in a Haystack

Analyzing these models involves implicitly searching the space of all possible states.

Two avenues for improvement
Smarter: More sophisticated methodology
Stronger: Use a bigger hammer (parallel computing)

Successful application involves a marriage of methodology, software, and hardware.

Outline

1 Introduction

2 What is Optimization?

3 Applications of Optimization

4 Basic Solution Framework

5 Advanced Methods
Decomposition
Parallelization

6 Software

Applications: Traveling Salesman Problem

The TSP is one of the most well-known and well-studied optimization can be used to
model numerous real-world problems

Routing and scheduling

Manufacture of integrated circuits

Gene sequencing

Design of sonet rings

Applications: Location, Routing, and Scheduling

Vehicle routing is a well-studied generalization of the TSP.

Problem data

A set of customers with known demands for a single commodity.

A fleet of identical trucks with fixed capacity.

A single fixed depot.

Travel times between pairs of locations.

Vehicle Routing Problem (VRP)

The problem is to

assign customers to trucks such that capacity is not exceeded and

sequence the customers assigned to each truck

such that the total travel time is minimized.

More complex models can involve additional decisions

Where to locate warehouses in order to allow efficient routes to be designed.

How to do scheduling of deliveries over a multi-day time horizon.

Applications: Location, Routing, and Scheduling Software

Applications: Financial Optimization

Since Markowitz’s pioneering work on portfolio optimization, mathematical models
have been heavily used in financial markets.

Unfortunately, it was the use of optimization to create financial derivatives that in
part lead to the recent world financial crisis.

Optimization models are driving the investment decisions of many institutional
investors these days.

rm−r0/sm

sm

R0

Rm

po
rt

fo
lio

 r
et

ur
n

ca
ptia

l m
arke

t li
ne

portfolio risk (std dev.)

effic
ient fro

ntier

market portfolio

Applications: Biology, Healthcare, Medicine

Optimization is being used increasingly in the healthcare industry.

Hospital operations

Design of treatment plans

Determination of risk factors for disease

Drug discovery

Computational biology

In some cases, optimization is being used prescriptively to determine the course of
medical treatment.

The most successful example of this has been in cancer radiation therapy.

Optimization techniques are also used to solve classification problems associated
with identifying risk factor for disease.

Optimization holds promise as a future method for drug discovery.

Applications: Network Design and Analysis

A wide range of optimization models apply to the design and anlysis of networks (power,
telecommunications, highway, distribution, etc.) with the goal of improving

Survivability/Robustness

Latency

Congestion

Speed

Applications: Nash and Stackelberg Games

Many game theoretic models can be formulated as optimization problems involving
multiple decision makers.

In a Nash game, the players are treated as equals and take simultaneous action.

Computationally, one often wishes to find a Nash equilibrium, in which the action of
each player is optimal, given the actions of all other players.

In a Stackelberg game, there is a dominant player, called the leader, who acts first
and other players react.

In this case, one is concerned with determining the leader’s decision, given the
assumption that the followers will react optimally.

This can often be modeled as a bilevel program.

Applications: Competition and Markets

Hierarchical decision systems

Government agencies

Large corporations with multiple subsidiaries

Markets with a single “market-maker.”

Decision problems with recourse

Parties in direct conflict

Zero sum games

Interdiction problems

Modeling “robustness”: leader represents external phenomena that cannot be
controlled.

Weather

External market conditions

Controlling optimized systems: follower represents a system that is optimized by its
nature.

Electrical networks

Biological systems

Applications: Combinatorial Auctions

A combinatorial auction is an auction in which participants are allowed to bid on
subsets of available goods.

This accounts for the fact that some items have a greater (or lesser) worth when
combined with other items.

Study of such auctions originated as methods for fairly distributing public goods.

A set of items along with an offered price constitutes a bid.

Given a set of bids, determining an efficient allocation is an optimization problem.

Example: Spectrum auctions

In many countries, the government uses auctions to allocates licenses for
certain frequency spectra by region.

The value of a set of licenses is increased if they are in contiguous regions.

Outline

1 Introduction

2 What is Optimization?

3 Applications of Optimization

4 Basic Solution Framework

5 Advanced Methods
Decomposition
Parallelization

6 Software

Discrete Optimization

(Integer) Linear Optimization: Minimize/Maximize a linear objective function over
a (discrete) set of solutions satisfying specified linear constraints.

zIP = min
x∈Zn

+

n

c
⊤

x | Ax ≥ b
o

(MIP)

zLP = min
x∈Rn

+

n

c
⊤

x | Ax ≥ b
o

(LP)

Textbook Example: Facility Location Problem

We are given n potential facility locations and m customers.

There is a fixed cost cj of opening facility j.

There is a cost dij associated with serving customer i from facility j.

We have two sets of binary variables.
yj is 1 if facility j is opened, 0 otherwise.
xij is 1 if customer i is served by facility j, 0 otherwise.

Here is one formulation:

min

n
X

j=1

cjyj +

m
X

i=1

n
X

j=1

dijxij

s.t.

n
X

j=1

xij = 1 ∀i

m
X

i=1

xij ≤ myj ∀j

xij , yj ∈ {0, 1} ∀i, j

Solving Discrete Optimization Problems

In general, convex optimization problems are “easy” to solve.

In essence, this is because convex problems have only one local minimum.

Discrete optimization problems are particularly challenging

the feasible region is nonconvex and

the description of the feasible region, though compact, is implicit.

More computationally useful descriptions of the feasible region can be obtained by
either

Convexification ⇒ iteratively construct an explicit description of the convex
hull of feasible solutions (cutting plane method)

Disjunction ⇒ using a set of judiciously chosen logical disjunctions to represent
the feasible region as a finite union of polyhedra (branch and bound)

In general, both of these approaches lead to descriptions of exponential size (bad).

We typically only need a small part of the description to solve the problem.

Modern state-of-the-art algorithms effectively combine these two techniques.

Implicit Enumeration

Implicit enumeration methods enumerate the solution space in an intelligent way.

The most common algorithm of this type is LP-based branch and bound.

Suppose F is the set of feasible solutions for a given MILP. We wish to solve
minx∈F c⊤x.

Divide and Conquer

Consider a partition of F into subsets F1, . . . Fk. Then

min
x∈F

c
⊤

x = min
1≤i≤k

{min
x∈Fi

c
⊤

x}.

We can then solve the resulting subproblems recursively.

Dividing the original problem into subproblems is called branching.

Taken to the extreme, this scheme is equivalent to complete enumeration.

We avoid complete enumeration primarily by deriving bounds on the value of an
optimal solution to each subproblem by solving a convex relaxation.

Branch and Bound

A relaxation of an ILP is an auxiliary mathematical program for which
the feasible region contains the feasible region for the original ILP, and
the objective function value of each solution to the original ILP is not increased.

Relaxations can be used to efficiently derive bounds on the optimal value.

Types of Relaxations
Convex/Continuous relaxations
Combinatorial relaxations
Lagrangian relaxations

Branch and Bound

Initialize the queue with the root F . While there are subproblems in the queue, do

1 Remove a subproblem and solve its relaxation.

2 The relaxation is infeasible ⇒ subproblem is infeasible and can be pruned.

3 Solution is feasible for the MILP ⇒ subproblem solved (update upper bound).
4 Solution is not feasible for the MILP ⇒ lower bound.

If the lower bound exceeds the global upper bound, we can prune the node.

Otherwise, we branch and add the resulting subproblems to the queue.

The Search Tree

If we picture the subproblems graphically, they form a search tree.
Each subproblem is linked to its parent and eventually to its children.
Eliminating a problem from further consideration is called pruning.
The act of bounding and then branching is called processing.
A subproblem that has not yet been considered is called a candidate for processing.
The set of candidates for processing is called the candidate list.

Throughout the algorithm, we have global upper and lower bounds that are growing
together.

The goal of the algorithm is to schieve equality of these bounds.

Research Question: How do we manage the tradeoff between improving the uppper and
lower bounds.

First Ingredient: Branching

Branching involves partitioning the feasible region using a logical disjunction such that:

All optimal solutions are in one of the members of the partition.

The solution to the current relaxation is not in any of the members of the partition.

Research Question: How do we generate effective branching disjunctions?

Solving MILPs with Branch and Bound

MILP: min
x∈S

cx

S :
Ax ≥ b

x ∈ Z
d × R

n−d,

*

*

*

* *

**

* *

cx=z*

Solving MILPs with Branch and Bound

MILP: min
x∈S

cx

S :
Ax ≥ b

x ∈ Z
d × R

n−d,

LP: min
x∈P

cx

P :
Ax ≥ b

x ∈ R
n,

cx=z

*

*

*

* *

*

**

*

0

z
0

LB = z0

Solving MILPs with Branch and Bound

MILP: min
x∈S

cx

S :
Ax ≥ b

x ∈ Z
d × R

n−d,

LP: min
x∈P

cx

P :
Ax ≥ b

x ∈ R
n,

*

*

*

*

*

*

*

* *

cx=z
0

S1

S2

z
0

LB = z0, x∗ ∈ S1 ∪ S2

Solving MILPs with Branch and Bound

MILP: min
x∈S

cx

S :
Ax ≥ b

x ∈ Z
d × R

n−d,

LP: min
x∈P

cx

P :
Ax ≥ b

x ∈ R
n,

*

*

*

*

*

*

*

*

cx=z

*

cx=z2

1

z
0

1
z

2
z

LB = min(z1, z2)

Solving MILPs with Branch and Bound

MILP: min
x∈S

cx

S :
Ax ≥ b

x ∈ Z
d × R

n−d,

LP: min
x∈P

cx

P :
Ax ≥ b

x ∈ R
n,

*

*

*

*

*

*

*

*

*

z
0

1
z

2
z

inf inf

LB = z2

Solving MILPs with Branch and Bound

MILP: min
x∈S

cx

S :
Ax ≥ b

x ∈ Z
d × R

n−d,

LP: min
x∈P

cx

P :
Ax ≥ b

x ∈ R
n,

*

*

*

*

*

*

*

*

*

cx=z
2

z
0

1
z

2
z

inf inf

LB = z2

Solving MILPs with Branch and Bound

MILP: min
x∈S

cx

S :
Ax ≥ b

x ∈ Z
d × R

n−d,

LP: min
x∈P

cx

P :
Ax ≥ b

x ∈ R
n,

*

*

*

*

*

*

*

*

*

cx=z4

z
0

1
z

2
z

inf inf inf z4

LB = z4 = UB

The Branching Disjunction

Most commonly used branching disjunction is xi ≤ π0 ∨ xi ≥ π0 + 1 for an
i ∈ {1, . . . , d}.

e.g. S1 = {x|x1 ≤ 0}, S2 = {x|x1 ≥ 1}.

This is called Variable Disjunction. Also denoted as: x1 ≤ 0 ∨ x1 ≥ 1.

*

*

* *

*

*

*

*

*

*

*

*

S1 S2

A variable disjunction

The Branching Disjunction

Most commonly used branching disjunction is xi ≤ π0 ∨ xi ≥ π0 + 1 for an
i ∈ {1, . . . , d}.

e.g. S1 = {x|x1 ≤ 0}, S2 = {x|x1 ≥ 1}.

This is called Variable Disjunction. Also denoted as: x1 ≤ 0 ∨ x1 ≥ 1.

Disjunctions like x1 + x2 ≤ 4 ∨ x1 + x2 ≥ 5 are also valid.

A General Disjunction is of the form πx ≤ π0 ∨ πx ≥ π0 + 1, where
(π, π0) ∈ Z

d × 0n−d × Z.

*

*

* *

*

*

*

*

*

*

*

*

S1 S2

A variable disjunction

*

*

* *

*

*

*

*

*

*

*

*

S1

S2

A general disjunction

Second Ingredient: Bounding

The method by which bounds are derived in branch and bound is perhaps the most
crucial element of an effective algorithm.

The stronger the bound, the fewer nodes have to be enumerated.

The most common method of bounding is to develop an outer approximation of the
convex hull of feasible solutions, yielding a convex relaxation.

This often done by analyzing relaxations arising from disjunctions.

Research question: What is the right tradeoff between methods of generating tight outer

Facility Location Problem (Alternative Formulation)

Here is another formulation for the same problem:

min
n

X

j=1

cjyj +
m

X

i=1

n
X

j=1

dijxij

s.t.

n
X

j=1

xij = 1 ∀i

xij ≤ yj ∀i, j

xij , yj ∈ {0, 1} ∀i, j

Notice that the set of integer solutions contained in each of the polyhedra is the
same (why?).

However, the second polyhedron is strictly included in the first one.

Therefore, the second polyhedron will yield a better lower bound.

The second polyhedron is a better approximation to the convex hull of integer
solutions.

A Common Framework: Disjunctive Optimization

Disjunctions can also be used to generate outer approximations by taking the convex
hull of the union of the polyhedra obtained by imposing the disjunction.

This gives a tighter polyhedral approximation than the original formulation.

The procedure can be iterated to obtain progressive improvements.

Research Question: Given a disjunction, should we use it to to branch or to tighten our
approximation?

Other Supporting Ingredients

There are a number of other ingredients that also play important roles in the
effectiveness of enumeration algorithms in practice:

Preprocessing/Reformulation

Search strategy

Primal heuristics

A Couple Thousand Words

Another Couple Thousand Words

Outline

1 Introduction

2 What is Optimization?

3 Applications of Optimization

4 Basic Solution Framework

5 Advanced Methods
Decomposition
Parallelization

6 Software

Outline

1 Introduction

2 What is Optimization?

3 Applications of Optimization

4 Basic Solution Framework

5 Advanced Methods
Decomposition
Parallelization

6 Software

What is the Goal of Decomposition?

Basic Idea: Exploit knowledge of underlying structural components of model to
improve bound.

Many complex models are built up from multiple underlying substructures.

Susbsystems linked by global constraints.

Complex combinatorial structures obtained by combining simple ones.

We want to exploit knowledge of efficient, customized solution methodology for
substructures.

This can be done in two primary ways (with many variants).

Identify independent subsystems.

Identify subsets of constraints that can be dealt with efficiently.

0
0

1
1

2
2

0.6

3
3

4

0.2

5

0.8

6

0.2

7

4

5

8

6

9

0.8

7

10

0.8

8

11

9

12

0.6

13

10

14

11

15

0.4

0.2

12

0.2

0.2

0.2

13
0.4

0.6
0.8

14

0.6

0.2

0.2

15

0.2

0.2

0.2

0.8

0.6

Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

x(δ({u})) = 2 ∀u ∈ V

x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

x(δ({u})) = 2 ∀u ∈ V

x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Two relaxations

Find a spanning subgraph with |V | edges (P ′ = 1-Tree)

x(δ({0})) = 2
x(E(V)) = |V |
x(E(S)) ≤ |S| − 1 ∀S ⊂ V \ {0}, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

x(δ({u})) = 2 ∀u ∈ V

x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Two relaxations

Find a spanning subgraph with |V | edges (P ′ = 1-Tree)

x(δ({0})) = 2
x(E(V)) = |V |
x(E(S)) ≤ |S| − 1 ∀S ⊂ V \ {0}, 3 ≤ |S| ≤ |V | − 1
xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Find a 2-matching that satisfies the subtour constraints (P ′ = 2-Matching)

x(δ({u})) = 2 ∀u ∈ V

xe ∈ {0, 1} ∀e ∈ E

0

1

2

3

4 5

6

7

8

9

10

11

1213

14

15

Example: Exposing Block Structure

A key original motivation for decomposition is to relax linking constraints, leaving a
separable relaxation.

The key is to identify block structure in the constraint matrix.

The separability lends itself nicely to parallel implementation.

0

B

B

B

B

B

@

A′′
1 A′′

2 · · · A′′
κ

A′
1

A′
2

. . .

A′
κ

1

C

C

C

C

C

A

Example: Exposing Block Structure

A key original motivation for decomposition is to relax linking constraints, leaving a
separable relaxation.

The key is to identify block structure in the constraint matrix.

The separability lends itself nicely to parallel implementation.

0

B

B

B

B

B

@

A′′
1 A′′

2 · · · A′′
κ

A′
1

A′
2

. . .

A′
κ

1

C

C

C

C

C

A

Example: Exposing Block Structure

A motivation for decomposition is to expose independent subsystems.

The key is to identify block structure in the constraint matrix.

The separability lends itself nicely to parallel implementation.

Generalized Assignment Problem (GAP)

The problem is to assign m tasks to n machines subject to capacity
constraints.

An IP formulation of this problem is

min
X

i∈M

X

j∈N

cijxij

X

j∈N

wijxij ≤ bi ∀i ∈ M

X

i∈M

xij = 1 ∀j ∈ N

xij ∈ {0, 1} ∀i, j ∈ M × N

The variable xij is one if task i is assigned to machine j.

The “profit” associated with assigning task i to machine j is cij .

How Do We Exploit the Decomposition?

We can explot the decompositions in a number of ways.

We exploit our knowledge of underlying structure to get better bounds, primarily by
taking advantage of our knowledge of a structured relaxation.

Decomposition-Based Bounding Methods

Lagrangian Relaxation: Solve the relaxation using a specialized algorithm with
an objective function that imposes a penalty on the violation of the relaxed
constraints.

Dantzig-Wolfe Decomposition: Reformulate the problem as one of taking
combinations of the solutions to a relaxation.

Cutting Plane Method: Use knowledge of the structure of the relaxation to
generate good outer approximations of the feasible region of the original
problem.

The above methods can be combined in a unified fraemwork to yield a rich set of
bounding methods.

We can also exploit existing block structure
To break the problem up into smaller chunks that can be solved in parallel using a
standard MILP solver.
To reformulate in a simpler way by exploiting identical blocks.

Outline

1 Introduction

2 What is Optimization?

3 Applications of Optimization

4 Basic Solution Framework

5 Advanced Methods
Decomposition
Parallelization

6 Software

What Will Future Architectures Look Like?

Moore’s Law has now moved from clock speeds to numbers of cores.

To take advantage of the capabilities of new hardware, effective parallelization will
be the key.

It seems clear that the next generation(s) of hardware will be clusters (of clusters) of
machines with multiple multi-core chips.

The result will be a memory hierarchy of ever-increasing complexity.

Cache memory

Main memory (local to core)

Main memory (attached to other
cores)

Local disk

Co-located distributed memory

Remotely located distributed memory

How do we efficiently this complex hierarchy?

Measuring Performance of a Parallel System

Parallel System: Parallel algorithm + parallel architecture.

Scalability: How well a parallel system takes advantage of increased computing
resources.

Terms

Sequential runtime: Ts

Parallel runtime: Tp

Parallel overhead: To = NTp − Ts

Speedup: S = Ts/Tp

Efficiency: E = S/N

Standard analysis considers change in efficiency on a fixed test set as number of
processors is increased.

This analysis is difficult to employ in practice, but the principle is clear.

Parallel Overhead

The amount of parallel overhead determines the scalability.

“Knowledge sharing” is the main driver of efficiency.

Major Components of Parallel Overhead in Tree Search

Communication Overhead

Idle Time

Handshaking/Synchronization

Task Starvation

Memory Contention

Ramp Up Time

Ramp Down Time

Performance of Redundant Work

The main challenge is for the data to be in the right place at the right time.

A supercomputer is a machine for turning a compute-bound problem into an
I/O-bound problem. –Ken Barker

Sources of Parallelism in Branch and Bound

Parallelization of tree search seems easy in principle...but in practice, it is not!

Tree parallelism: Process different part of the tree simultaneously.

Decomposition: Apply a decomposition approach in order to parallelize the bounding
procedure.

Task parallelism

Special procedures for the ramp-up/ramp-down phases

Parallelize primal heuristics

Parallelize cut generation

Process multiple trees simultaneously

Basic Parallelization Approaches

Local/shared memory computation (SYMPHONY)

Work on one local copy of the tree and use threads to process multiple
“chains” simultaneously.

Pro: Implementation (load balancing) is much easier.

Con: Expensive and limited computational resources.

Distributed memory computation (CHiPPS)

Partition the tree and process subtrees asynchronously.

Pro: No limit to hardware access, inexpesive.

Con: Efficiency requires load balancing.

To take advantage of modern hardware, a hybrid approach is required.

Partition the tree and process subtrees in a distributed fashion.

Locally, subtrees are processed in parallel using the shared memory approach.

With this approach, we hope to do much of the parallel computation at the local
level.

A Couple Thousand Words

Another Couple Thousand Words

Outline

1 Introduction

2 What is Optimization?

3 Applications of Optimization

4 Basic Solution Framework

5 Advanced Methods
Decomposition
Parallelization

6 Software

What is COIN-OR?

The COIN-OR Foundation

A non-profit foundation promoting the development and use of interoperable,
open-source software for operations research.

A consortium of researchers in both industry and academia dedicated to
improving the state of computational research in OR.

A venue for developing and maintaining standards.

A forum for discussion and interaction between practitioners and researchers.

The COIN-OR Repository

A collection of interoperable software tools for building optimization codes,
as well as a few stand alone packages.

A venue for peer review of OR software tools.

A development platform for open source projects, including a wide range of
project management tools.

See www.coin-or.org for more information.

What You Can Do With COIN

We currently have 40+ projects and more are being added all the time.

Most projects are now licensed under the EPL (very permissive).

COIN has solvers for most common optimization problem classes.

Linear programming

Nonlinear programming

Mixed integer linear programming

Mixed integer nonlinear programming (convex and nonconvex)

Stochastic linear programming

Semidefinite programming

Graph problems

Combinatorial problems (VRP, TSP, SPP, etc.)

COIN has various utilities for reading/building/manipulating/preprocessing
optimization models and getting them into solvers.

COIN has overarching frameworks that support implementation of broad algorithm
classes.

Parallel search

Branch and cut (and price)

Decomposition-based algorithms

Brief Overview of SYMPHONY

SYMPHONY is an open-source software package for solving and analyzing
mixed-integer linear programs (MILPs).

SYMPHONY can be used in three distinct modes.

Black box solver: From the command line or shell.

Callable library: From a C/C++ code.

Framework: Develop a customized solver or callable library.

Advanced features

Warm starting

Sensitivity analysis

Bicriteria solve

Parallel execution

What’s Available

Available at projects.coin-or.org/SYMPHONY.

An extensive user’s manual on-line and in PDF.

A tutorial illustrating the development of a custom solver.

Configuration and compilation files

Examples and Applications

SYMPHONY Solvers

Generic MILP

Multicriteria MILP

Multicriteria Knapsack

Traveling Salesman Problem

Vehicle Routing Problem

Mixed Postman Problem

Set Partitioning Problem

Matching Problem

Network Routing

CHiPPS

CHiPPS stands for COIN-OR High Performance Parallel Search.

CHiPPS is a set of C++ class libraries for implementing tree search algorithms for
both sequential and parallel environments.

The basic goal is to generalize notions from SYMPHONY and enable large-scale
computation.

Available at projects.coin-or.org/CHiPPS

CHiPPS Components

ALPS (Abstract Library for Parallel Search)

is the search-handling layer (parallel and sequential).
provides various search strategies based on node priorities.

BiCePS (Branch, Constrain, and Price Software)

is the data-handling layer for relaxation-based optimization.
adds notion of variables and constraints.
assumes iterative bounding process.

BLIS (BiCePS Linear Integer Solver)

is a concretization of BiCePS.
specific to models with linear constraints and objective function.

DIP

DIP Framework

DIP (Decomposition for Integer Programming) is an open-source software framework for
implementing various decomposition methods.

Built on the CHiPPS tree search engine.

Emphasis on ease-of-use: minimal burden placed on the user.

Allows direct comparison in one framework

DIP abstracts the common, generic elements of these methods

Key: The user defines any necessary methods in the space of the
compact formulation, greatly simplifying the API

All that’s required is to specify what constraints to relax in order
to decompose the problem.

If desired, specialized methods for the relaxation, cut generation,
branching, heuristics can be specified if desired.

DIP handles all of the required reformulations, amppings, etc.

There is a modeling-language front-end that is an extension to
PuLP, a python-based modeling language.

Available at projects.coin-or.org/Dip

DIP Framework: Applications

Application Description P ′
OPT(c) SEP(x) Input

AP3 3-index assignment AP Jonker user user

ATM cash management (SAS COE) MILP(s) CBC CGL user

GAP generalized assignment KP(s) Pisinger CGL user

MAD matrix decomposition MaxClique Cliquer CGL user

MILP random partition into A′, A′′ MILP CBC CGL mps

MILPBlock user-defined blocks for A′ MILP(s) CBC CGL mps, block

MMKP multi-dim/choice knapsack MCKP Pisinger CGL user

MDKP CBC CGL user

SILP intro example, tiny IP MILP CBC CGL user

TSP traveling salesman problem 1-Tree Boost Concorde user

2-Match CBC Concorde user

VRP vehicle routing problem k-TSP Concorde CVRPSEP user

b-Match CBC CVRPSEP user

MILPBlock: Decomposition-based MILP Solver

Many difficult MILPs have a block structure, but this structure is not part of the
input (MPS) or is not exploitable by the solver.

In practice, it is common to have models composed of independent subsystems
coupled by global constraints.

The result may be models that are highly symmetric and difficult to solve using
traditional methods, but would be easy to solve if the structure were known.

0

B

B

B

B

B

@

A′′
1 A′′

2 · · · A′′
κ

A′
1

A′
2

. . .

A′
κ

1

C

C

C

C

C

A

MILPBlock provides a black-box solver for applying integrated methods to generic
MILP

Input is an MPS/LP and a block file specifying structure.

Optionally, the block file can be automatically generated using the hypergraph
partitioning algorithm of HMetis.

Hidden Block Structure

0 500 1000 1500 2000 2500

0

200

400

600

nz = 8937

MIPLIB2003 instance : p2756

Detected block structure for p2756 instance

Hidden Block Structure

0 500 1000 1500 2000 2500

0

200

400

600

Instance p2756 with 10 blocks partitioning

Detected block structure for p2756 instance

Hidden Block Structure

0 50 100 150 200

0

50

100

150

200

nz = 839

MIPLIB2003 instance : a1c1s1

Detected block structure for a1c1s1 instance

Hidden Block Structure

0 50 100 150 200

0

50

100

150

200

Instance a1c1s1 with 10 blocks partitioning

Detected block structure for a1c1s1 instance

MibS

MibS is an open source solver for Bilevel integer programs built on top of the BLIS layer
of CHiPPS. Features include

Branch and Cut for IBLPs
Bounding problems
Bilevel feasibility cuts
Several primal heuristics
Simple preprocessing

Specialized methods (primarily cuts) for specific problem classes
Pure binary at the upper level
Interdiction problems

Standalone heuristics
Greedy method for interdiction problems
Weighted sums method for general problems
Stationary point method for general problems

MibS is available for download at

http://coral.ie.lehigh.edu/projects/MibS

http://coral.ie.lehigh.edu/projects/MibS

Thanks!

That’s It! Questions?

	Introduction
	What is Optimization?
	Applications of Optimization
	Basic Solution Framework
	Advanced Methods
	Decomposition
	Parallelization

	Software

