
The Complexity of Search: What We Can Learn from Games

Ted Ralphs1

Joint work with Aykut Bulut1, Scott DeNegre3, Menal Güzelsoy2,
Anahita Hassanzadeh1

1COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University
2SAS Institute, Advanced Analytics, Operations Research R & D

3The Chartis Group

CPAIOR, T.J. Watson Research Center, 18 May, 2013

Ralphs, et al. COR@L Lab

Outline

1 Introduction
Motivation
Canonical Example

2 Complexity
Basic Notions
The Polynomial Time Hierarchy

3 Complexity of Search
Multilevel and Multistage Optimization
Value Functions
Dual Functions
The General Principles

4 Parallel Computing

5 Final Remarks

Ralphs, et al. COR@L Lab

Outline

1 Introduction
Motivation
Canonical Example

2 Complexity
Basic Notions
The Polynomial Time Hierarchy

3 Complexity of Search
Multilevel and Multistage Optimization
Value Functions
Dual Functions
The General Principles

4 Parallel Computing

5 Final Remarks

Ralphs, et al. COR@L Lab

Motivation

Ralphs, et al. COR@L Lab

Tree Search

The general class of algorithms we consider are tree search algorithms.
Tree search algorithms systematically search the nodes of an acyclic graph for
certain goal nodes.
Most algorithms for solving NP-complete problems can be interpreted tree
search algorithms.

Roughly speaking, this is because the possible execution paths of any computer
program form a tree structure.
The nodes represent conditionals and the edges represent the resulting branches.

Ralphs, et al. COR@L Lab

A Bit About Games

We consider finite extensive-form games, which are sequential games involving n
players.

Loose Definition

The game is specified on a tree with each node corresponding to a move and
the outgoing arcs specifying possible choices.

The leaves of the tree have associated payoffs.

Each player’s goal is to maximize payoff.

There may be chance players who play randomly according to a probability
distribution and do not have payoffs (stochastic games).

All players are rational and have perfect information.
The problem faced by a player in determining the next move is a
multilevel/multistage optimization problem.
The move must be determined by taking into account the responses of the other
players.

Ralphs, et al. COR@L Lab

Multilevel and Multistage Games

We use the term multilevel for competitive games in which there is no chance
player.
We use the term multistage for cooperative games in which all players receive
the same payoff, but there are chance players.
A subgame is the part of a game that remains after some moves have been made.

Stackelberg Game

A Stackelberg game is a game with two players who make one move each.
The goal is to find a subgame perfect Nash equilibrium, i.e., the move by
each player that ensures that player’s best outcome.

Recourse Game
A cooperative game in which play alternates between cooperating players
and chance players.
The goal is to find a subgame perfect Markov equilibrium, i.e., the move
that ensures the best outcome in a probabilistic sense.

Ralphs, et al. COR@L Lab

Multilevel and Multistage Optimization

A standard mathematical program models a (set of) decision(s) to be made
simultaneously by a single decision-maker (i.e., with a single objective).
Decision problems arising in sequential games and other real-world applications
involve

multiple, independent decision-makers (DMs),
sequential/multi-stage decision processes, and/or
multiple, possibly conflicting objectives.

Modeling frameworks
Multiobjective Programming⇐ multiple objectives, single DM
Mathematical Programming with Recourse⇐ multiple stages, single DM
Multilevel Programming⇐ multiple stages, multiple objectives, multiple DMs

Multilevel programming generalizes standard mathematical programming by
modeling hierarchical decision problems, such as finite extensive-form games.
Such models arises in a remarkably wide array of applications.

Ralphs, et al. COR@L Lab

Connection to Search

Multilevel structure is inherent in many decision problems that occur within
search algorithms.
We would like to make the “most effective” algorithmic choice at each step,
taking into account the effect of the choice on future iterations.
The choice problem is an optimization problem that itself may have a multilevel
structure similar to that of a multi-round game.
Multilevel choice problems arise when the effectiveness or validity of the choice
is evaluated by solving another optimization problem.
The number of levels one chooses to “look ahead” determines the complexity of
the exact version of the problem.
Examples

Constructing a valid inequality for a given class that maximizes degree of violation.
Choosing a branching disjunction that achieves maximal bound improvement.

Ralphs, et al. COR@L Lab

Outline

1 Introduction
Motivation
Canonical Example

2 Complexity
Basic Notions
The Polynomial Time Hierarchy

3 Complexity of Search
Multilevel and Multistage Optimization
Value Functions
Dual Functions
The General Principles

4 Parallel Computing

5 Final Remarks

Ralphs, et al. COR@L Lab

A Canonical Example: Satisfiability Game

A canonical extensive-form game that illustrates many of the basic principles is
the k-player satisfiability game.

k players determine the value of a set of Boolean variables with each in control of a
specific subset.
In round i, player i determines the values of her variables.
Each player tries to choose values that force a certain end result, given that
subsequent players may be trying to achieve the opposite result.

Examples
k = 1: SAT
k = 2: The first player tries to choose values such that any choice by the second
player will result in satisfaction.
k = 3: The first player tries to choose values such that the second player cannot
choose values that will leave the third player without the ability to find satisfying
values.

Note that the odd players and the even players are essentially “working together”
and the same game can be described with only two players.

Ralphs, et al. COR@L Lab

A Simple SAT Example

This diagram illustrates the search for solutions to the problem as a tree.
The nodes in green represent settings of the truth values that satisfy all the given
clauses; red represents non-satisfying truth values.

With one player, the solution is any path to one of the green nodes.
With two players, the solution is a subtree in which there are no red nodes.

The latter requires knowledge of all leaf nodes (important!).

x1 = FALSE

x3 = FALSE

x2 = FALSE

x2 = FALSE

x1 = TRUE

x2 = TRUE

x2 = TRUE

x3 = TRUE

C1 = FALSE
C2 = FALSE

C1 = TRUE
C2 = x2 | x3

C1 = x1 | x2
C2 = x2 | x3

C1 = TRUE
C2 = TRUE

C1 = x2
C2 = x2 | x3

C1 = TRUE
C2 = TRUE

C1 = TRUE
C2 = x3

C1 = FALSE
C2 = x3

C1 = TRUE
C2 = TRUE

Ralphs, et al. COR@L Lab

More Formally

More formally, we are given a Boolean formula with variables partitioned into k
sets X1, . . . ,Xk.
For k odd, the SAT game can be formulated as

∃X1∀X2∃X3 . . .?Xk (1)

for even k, we have

∀X1∃X2∀X3 . . .?Xk (2)

A more general form of this problem, known as the quantified Boolean formula
problem (QBF) allows an arbitrary sequence of quantifiers.

Ralphs, et al. COR@L Lab

From SAT Game to Multilevel Optimization

For k = 1, SAT can be formulated as the (feasibility) integer program

∃x ∈ {0, 1}n :
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ 1 ∀j ∈ J. (SAT)

(SAT) can be formulated as the optimization problem

max
x∈{0,1}n

∑
i∈C0

0

xi +
∑
i∈C1

0

(1− xi)

s.t.
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ 1 ∀j ∈ J \ {0}

For k = 2, we then have

max
xI1∈{0,1}

I1
min

xI2∈{0,1}
I2

∑
i∈C0

0

xi +
∑
i∈C1

0

(1− xi)

s.t.
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ 1 ∀j ∈ J \ {0}

Ralphs, et al. COR@L Lab

Branch and Bound for Optimization Version of SAT

Consider the earlier example of the SAT game, now as an optimization problem.
In the one player version, the goal is simply to maximize payoff.
The two player game is zero-sum with the first player attempting to maximize
while the second player attempts to minimize.
The complexity of the two-player game comes from the requirement to account
for the payoff at all leaf nodes.

x1 = 0

x3 = 0
x2 = 0

x2 = 0

x1 = 1

x2 = 1

x2 = 1
x3 = 1

0

max 1 + x2
s.t. x2 + x3 ≥ 1

max x1 + x2 ≥ 1
s.t. x2 + x3 ≥ 1

2

max x2
s.t. x2 + x3 ≥ 1 1

max 1
s.t. x3 ≥ 1

0

1

Ralphs, et al. COR@L Lab

How Difficult is the SAT Game?

Fundamentally, we would like to know how difficult it is to solve player one’s
decision problem.
It is well-known that the (single player) satisfiability problem is is in the
complexity class NP-complete.
It is perhaps to be expected that the k-player satisfiability game is in a different
class.

The kth player to move is faced with a satisfiability problem.
The (k − 1)th player is faced with a 2-player subgame in which she must take into
account the move of the kth player.
And so on . . .

Each player’s decision problem appears to be exponentially more difficult than
the succeeding player’s problem.
This complexity is captured formally in the hierarchy of complexity classes
known as the polynomial time hierarchy.

Ralphs, et al. COR@L Lab

Outline

1 Introduction
Motivation
Canonical Example

2 Complexity
Basic Notions
The Polynomial Time Hierarchy

3 Complexity of Search
Multilevel and Multistage Optimization
Value Functions
Dual Functions
The General Principles

4 Parallel Computing

5 Final Remarks

Ralphs, et al. COR@L Lab

Complexity: Basic Notions

The formal complexity framework traditionally employed in discrete
optimization applies to decision problems (Garey and Johnson, 1979).
The formal model of computation is a deterministic Turing machine (DTM).

A DTM specifies an algorithm computing the value of a Boolean function.

The DTM executes a program, reading the input from a tape.

We equate a given DTM with the program it executes.

The output is YES or NO.

A YES answer is returned if the machine reaches an accepting state.

A problem is specified in the form of a language, defined to be the subset of the
possible inputs over a given alphabet (Γ) that are expected to output YES.
A DTM that produces the correct output for inputs w.r.t. a given language is said
to recognize the language.
Informally, we can then say that the DTM represents an “algorithm that solves
the given problem correctly.”

Ralphs, et al. COR@L Lab

Non-deterministic Turing Machines

The possible execution paths of a DTM can be thought of as forming a tree.
For problems that are efficiently solvable, we know how to construct an
execution path that is guaranteed to end in an accepting state.
For more difficult problems, some enumeration is needed.
A non-deterministic Turing machine (NDTM) can be thought of as a Turing
machine with an infinite number of parallel processors.
An NDTM follows all possible execution paths simultaneously.
It returns YES if an accepting state is reached on any path.
The running time of an NDTM is the minimum running time (length) of any
execution paths that end in an accepting state.
The “running time” is the minimum time required to verify that some path (given
as input) leads to an accepting state.

Ralphs, et al. COR@L Lab

Back to SAT

x1 = 0

x3 = 0
x2 = 0

x2 = 0

x1 = 1

x2 = 1

x2 = 1
x3 = 1

0

max 1 + x2
s.t. x2 + x3 ≥ 1

max x1 + x2 ≥ 1
s.t. x2 + x3 ≥ 1

2

max x2
s.t. x2 + x3 ≥ 1 1

max 1
s.t. x3 ≥ 1

0

1

Ralphs, et al. COR@L Lab

Primitive Complexity Classes

Languages can be grouped into classes based on the best worst-case running
time of any TM that recognizes the language.

The class P is the set of all languages for which there exists a DTM that
recognizes the language in time polynomial in the length of the input.

The class NP is the set of all languages for which there exists an NDTM that
recognizes the language in time polynomial in the length of the input.

The class coNP is the set of languages whose complements are in NP.

Additional classes can be formed hierarchically by the use of oracles.

A language L1 can be reduced to a language L2 if there is an output-preserving
polynomial transformation of members of L1 to members of L2.
A language L is said to be complete for a class if all languages in the class can be
reduced to L.
We are primarily talking here about time complexity, though space complexity
must ultimately also be considered.

Ralphs, et al. COR@L Lab

Outline

1 Introduction
Motivation
Canonical Example

2 Complexity
Basic Notions
The Polynomial Time Hierarchy

3 Complexity of Search
Multilevel and Multistage Optimization
Value Functions
Dual Functions
The General Principles

4 Parallel Computing

5 Final Remarks

Ralphs, et al. COR@L Lab

The Polynomial Hierarchy

The polynomial hierarchy is a scheme for classifying multi-level and multi-stage
decision problems. We have

∆p
0 := Σp

0 := Πp
0 := P, (3)

where P is the set of decision problems that can be solved in polynomial time. Higher
levels are defined recursively as:

∆p
k+1 := PΣp

k ,

Σp
k+1 := NPΣp

k , and

Πp
k+1 := coNPΣp

k .

PH is the union of all levels of the hierarchy.

Ralphs, et al. COR@L Lab

Collapsing the Hierarchy

In general, we have

Σp
0 ⊆ Σp

1 ⊆ . . .Σ
p
k ⊆ . . .

Πp
0 ⊆ Πp

1 ⊆ . . .Π
p
k ⊆ . . .

∆p
0 ⊆ ∆p

1 ⊆ . . .∆
p
k ⊆ . . .

It is not known whether any of the inclusions are strict. We do have that

(Σp
k = Σp

k+1)⇒ Σp
k = Σp

j ∀j ≥ k (4)

In particular, if P = NP, then every problem in the PH is solvable in polynomial time.
Similar results hold for the Π and ∆ hierarchies.

Ralphs, et al. COR@L Lab

Complexity of Multilevel Games and Optimization

The satisfiability games with k players is complete for Σp
k .

For the corresponding k-level optimization problem, the optimal value is one if
and only if the first player has a winning strategy.
This means the satisfiability game can be reduced to the (decision) problem of
whether the optimal value ≥ 1?
Thus, the (the decision version of) k-level mixed integer programming is also
complete for Σp

k .
By swapping the “min” and the “max,” we can get a similar decision problem
that is complete for Πp

k .

min
xN1∈{0,1}

N1
max

xN2∈{0,1}
N2

∑
i∈C0

0

xi +
∑
i∈C1

0

(1− xi)

s.t.
∑
i∈C0

j

xi +
∑
i∈C1

j

(1− xi) ≥ 1 ∀j ∈ J \ {0}

The question remains whether the optimal value is ≥ 1, but now we are asking it
with respect to a minimization problem.

Ralphs, et al. COR@L Lab

Outline

1 Introduction
Motivation
Canonical Example

2 Complexity
Basic Notions
The Polynomial Time Hierarchy

3 Complexity of Search
Multilevel and Multistage Optimization
Value Functions
Dual Functions
The General Principles

4 Parallel Computing

5 Final Remarks

Ralphs, et al. COR@L Lab

(Standard) Mixed Integer Linear Programs

In parts of the talk, we will need to consider a (standard) mixed integer linear
program (MILP).
To simplify matters, when we discuss a standard MILP, it will be of the form

MILP

min{c>x | x ∈ P ∩ (Zp × Rn−p)}, (MILP)

where P = {x ∈ Rn
+ | Ax = b}, A ∈ Qm×n, b ∈ Qm, c ∈ Qn.

Ralphs, et al. COR@L Lab

Bilevel (Integer) Linear Programming

Formally, a bilevel linear program is described as follows.
x ∈ X ⊆ Rn1 are the upper-level variables

y ∈ Y ⊆ Rn2 are the lower-level variables

Bilevel (Integer) Linear Program

max
{

c1x + d1y | x ∈ PU ∩ X, y ∈ argmin{d2y | y ∈ PL(x) ∩ Y}
}

(MIBLP)

The upper- and lower-level feasible regions are:

PU =
{

x ∈ R+ | A1x ≤ b1} and

PL(x) =
{

y ∈ R+ | G2y ≥ b2 − A2x
}
.

We consider the general case in which X = Zp1 × Rn1−p1 and Y = Zp2 × Rn2−p2 .

Ralphs, et al. COR@L Lab

Recourse Problems

If d1 = −d2, we can view this as a mathematical program with recourse.
We can reformulate the bilevel program as follows.

min{−c1x + Q(x) | x ∈ PU ∩ X}, (5)

where

Q(x) = min{d1y | y ∈ PL(x) ∩ Y}. (6)

The function Q is known as the value function of the recourse problem.

Ralphs, et al. COR@L Lab

Outline

1 Introduction
Motivation
Canonical Example

2 Complexity
Basic Notions
The Polynomial Time Hierarchy

3 Complexity of Search
Multilevel and Multistage Optimization
Value Functions
Dual Functions
The General Principles

4 Parallel Computing

5 Final Remarks

Ralphs, et al. COR@L Lab

LP Value Function

Example

φLP(b) = min 6x1 + 7x2 + 5x3

s.t. 2x1 − 7x2 + x3 = b

x1, x2, x3 ∈ R+

(Ex.LP)

Ralphs, et al. COR@L Lab

Benders’ Principle (Linear Programming)

zLP = min
(x,y)∈Rn

{
c′x + c′′y

∣∣ A′x + A′′y ≥ b
}

= min
x∈Rn′

{
c′x + φ(b− A′x)

}
,

where

φ(d) = min c′′y

s.t. A′′y ≥ d

y ∈ Rn′′

1 2 3 4 5 6 7 8

1

2

3

4

5

φ(x)

x

y

Basic Strategy:
The function φ is the value function of a linear program.
The value function is piecewise linear and convex.
We iteratively generate a lower approximation by sampling the domain.

Ralphs, et al. COR@L Lab

MILP Value Function

Now we consider the MILP value function φ : Rm → R ∪ {±∞}

φ(b) = min c>x

s.t. Ax = b

x ∈ Zr
+ × Rn−r

+

(MILP)

We define
S(b) = {x ∈ Zr

+ × Rn−r
+ | Ax = b}.

B = {b ∈ Rm | S(b) 6= ∅}.

Ralphs, et al. COR@L Lab

Example: MILP Value Function

The value function of a MILP is non-convex and discontinuous piecewise polyhedral.

Example

φ(d) = min 3x1 +
7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = d

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+

Ralphs, et al. COR@L Lab

Example: MILP Value Function

Example

φ(b) = min x1 −
3
4

x2 +
3
4

x3

s.t.
5
4

x1 − x2 +
1
2

x3 = b

x1, x2 ∈ Z+, x3 ∈ R+

(Ex2.MILP)

Ralphs, et al. COR@L Lab

Benders’ Principle (Integer Programming)

zIP = min
(x,y)∈Zn

{
c′x + c′′y

∣∣ A′x + A′′y ≥ b
}

= min
x∈Rn′

{
c′x + φ(b− A′x)

}
,

where

φ(d) = min c′′y

s.t. A′′y ≥ d

y ∈ Zn′′

1 2 3 4 5 6 7 8

1

2

3

4

5
φ(x)

x

y

Basic Strategy:
Here, φ is the value function of an integer program.
In the general case, the function φ is piecewise linear but not convex.
Here, we also iteratively generate a lower approximation by evaluating φ.

Ralphs, et al. COR@L Lab

Outline

1 Introduction
Motivation
Canonical Example

2 Complexity
Basic Notions
The Polynomial Time Hierarchy

3 Complexity of Search
Multilevel and Multistage Optimization
Value Functions
Dual Functions
The General Principles

4 Parallel Computing

5 Final Remarks

Ralphs, et al. COR@L Lab

Dual Functions

A dual function ϕ : Rm → R ∪ {±∞} is and function such that

ϕ(b) ≤ φ(b) ∀b ∈ Λ

For a particular value of b̂, the dual problem is

φD = max{ϕ(b̂) : ϕ(b) ≤ φ(b) ∀b ∈ Rm, ϕ : Rm → R ∪ {±∞}}

Ralphs, et al. COR@L Lab

Dual Functions from Branch-and-Bound

Let T be set of the terminating nodes of the tree. Then in a terminating node t ∈ T we
solve:

min c>x

s.t. Ax = b,

lt ≤ x ≤ ut, x ≥ 0

(7)

The dual at node t:

max {πtb + πtlt + π̄tut}
s.t. πtA + πt + π̄t ≤ c>

π ≥ 0, π̄ ≤ 0

(8)

We obtain the following strong dual function:

min
t∈T
{πtb + πtlt + π̄tut} (9)

Ralphs, et al. COR@L Lab

MILP Duals from Branch-and-Bound

Figure: Dual Functions from B&B for right hand sides 1, 2.125, 3.5

Ralphs, et al. COR@L Lab

MILP Duals from Branch-and-Bound

Ralphs, et al. COR@L Lab

Example

Consider

min f (x) = min − 3x1 − 4x2 +

2∑
s=1

0.5Q(x, s)

s.t. x1 + x2 ≤ 5
x ∈ Z+

(10)

where

Q(x, s) = min 3y1 +
7
2

y2 + 3y3 + 6y4 + 7y5

s.t. 6y1 + 5y2 − 4y3 + 2y4 − 7y5 = h(s)− 2x1 −
1
2

x2

y1, y2, y3 ∈ Z+, y4, y5 ∈ R+

(11)

with h(s) ∈ {−4, 10}.

Ralphs, et al. COR@L Lab

Example

Iteration 1

Step 0

F = ∅
k = 1.
Solve

min f (x) = min − 3x1 − 4x2

s.t. x1 + x2 ≤ 5
x1, x2 ∈ Z+

f 0 = 20, x∗1 = 0, x∗2 = 5, β1 = 5
2

Ralphs, et al. COR@L Lab

Example

Step 1
Solve the second stage problem for each scenario. That is, with
h(1)− β1 = −6.5 and h(2)− β1 = 7.5.
The respective dual functions are

F1
s=1(β) = min{−β − 1, 0.5β + 10} and

F1
s=2(β) = min{3β − 15,−0.75β + 14.5}.

Then, F(β) = max{F1
s=1,F

1
s=2}.

Step 2
Solve the master problem

f 1 = min − 3x1 − 4x2 + 0.5(Fs(−4− β) + Fs(10− β))

s.t. x1 + x2 ≤ 5

2x1 +
1
2

x2 = β

x1, x2 ∈ Z+

The solution to the master problem is f 1 = −16.75 with β1 = 7.
Ralphs, et al. COR@L Lab

Example

Ralphs, et al. COR@L Lab

Example

Iteration 2
Step 1

Solve the second stage problem with right hand sides: −11 and 3.
The respective dual functions are: F2

s=1(β) = min{−β − 2, 0.5β + 15} and
F2

s=2(β) = min{3β,−β + 8.5, 0.7β + 5.8}.

Since F(−11) + F(3) < F2
s=1(−11) + F2

s=2(3), we continue:
Update F(β) = max{F1

s=1,F
1
s=2,F

2
s=1,F

2
s=2}.

Step 2

Solve the updated master problem. We obtain f 2 = −14.5 with β2 = 4.

Ralphs, et al. COR@L Lab

Example

Ralphs, et al. COR@L Lab

Example

Iteration 3
Step 1

Solve the second stage problem with right hand sides: −8 and 6.
The respective dual functions are:
F3

s=1(β) = −0.75β and F3
s=2(β) = 0.5β.

F(−8) + F(6) = F3
s=1(−8) + F3

s=2(6) = 9, the approximation is exact and the
optimal solution to the problem is f 3 = −14.5 and β3 = 4.

Ralphs, et al. COR@L Lab

Example

Ralphs, et al. COR@L Lab

Outline

1 Introduction
Motivation
Canonical Example

2 Complexity
Basic Notions
The Polynomial Time Hierarchy

3 Complexity of Search
Multilevel and Multistage Optimization
Value Functions
Dual Functions
The General Principles

4 Parallel Computing

5 Final Remarks

Ralphs, et al. COR@L Lab

The Value Function in Branch and Bound

Note that the value function and Benders’ Principle is implicit in standard branch
and bound for a single-level problem.
Each time we branch, we change the bound of one of the variables in each child.
This can be interpreted as either fixing the value of a variable or imposing a new
bound.
Either of these operations create a subproblem with a modified right-hand side,
just as in the Benders’ Algorithm.
This subproblem has a value function that is a “shifted” version of the value
function of the original problem.
The branch-and-bound algorithm is implicitly constructing an approximation of
the value function.
The algorithm terminates when the approximation is strong at the right-hand side
of interest.
In a sense, branch and bound is a dynamic and recursive version of Benders’
Algorithm.

Ralphs, et al. COR@L Lab

Feasibility Problems

Consider a tree search algorithm for solving a feasibility problem.
Although intended to find the optimal solution, branch and bound can also be
used in the search for feasible solutions.
In principle, we only need to find a single path in the tree to a single feasible
node.
When there are many feasible nodes, this is a simple task; otherwise, it may not
be.

The key is to avoid paths that cannot contain any feasible solution.
This amounts to proving infeasibility of certain subproblems.
This is the primary challenge.

Ralphs, et al. COR@L Lab

How Do We Guide the Search?

Multilevel problems are more difficult essentially because we are forced to
explore more of the solution space.
To exploit the lower complexity of feasibility problems, we must be able to
efficiently stay on the “right path”.
In branch and cut, the search is guided primarily by the objective function.
In related work, we have proposed branching rules that are guided by feasibility
(such as maximum volume cutoff).
Note again that this is primarily motivated by proving infeasibility, which is
required to avoid going down blind alleys.
However, the choice problems for these rules are difficult to solve.
Our ability to improve the efficiency of feasibility search is limited by our ability
to solve these choice problems.

Ralphs, et al. COR@L Lab

Example: Bilevel Structure of the Branching Problem

A typical criteria for selecting a branching disjunction is to maximize the bound
increase resulting from imposing the disjunction.
The problem of selecting the disjunction whose imposition results in the largest
bound improvement has a natural bilevel structure.

The upper-level variables can be used to model the choice of disjunction (we’ll see
an example shortly).
The lower-level problem models the bound computation after the disjunction has
been imposed.

In strong branching, we are solving this problem essentially by enumeration.
The bilevel branching paradigm is to select the branching disjunction directly by
solving a bilevel program.

Ralphs, et al. COR@L Lab

Example: Interdiction Branching

The following is a bilevel programming formulation for the problem of finding a
smallest branching set in interdiction branching:

(BBP) max
∑

c>x
s.t.

c>x ≤ z̄

y ∈ Bn

x ∈ arg maxx c>x
s.t.

xi + yi ≤ 1, i ∈ Na

x ∈ Fa

where F is the feasible region of a given relaxation of the original problem used for
computing the bound.

Ralphs, et al. COR@L Lab

Outline

1 Introduction
Motivation
Canonical Example

2 Complexity
Basic Notions
The Polynomial Time Hierarchy

3 Complexity of Search
Multilevel and Multistage Optimization
Value Functions
Dual Functions
The General Principles

4 Parallel Computing

5 Final Remarks

Ralphs, et al. COR@L Lab

Why do Parallel Algorithms Arise Naturally?

Parallel algorithms are very natural in this setting for a number of reasons.
The possible execution paths of a DTM can be thought of as specifying a tree
(execution involves searching this tree).
Problems in NP are those in which exploration of an exponential number of
paths is unavoidable (in the worst case).
Another way of thinking of problems in NP is as problems that can be solved in
polynomial time given an exponential number of processors.
Problems higher in the hierarchy require even more enumeration and thus
present even more potential for parallelization.
Alternatively, problems lower in the hierarchy are in some sense the most
difficult to parallelize, since they present the greatest potential for wasted effort.

Ralphs, et al. COR@L Lab

Task Partitioning in Search Algorithms

Ralphs, et al. COR@L Lab

Why Isn’t Parallel Computing a Panacea?

Practical algorithms use heuristics to avoid enumeration as much as possible.
We do not know ahead of time what execution paths will be necessary to the
computation.
This makes it very difficult to distribute the computation.
In essence, practical algorithms are designed not to be parallelizable.

Ralphs, et al. COR@L Lab

The Case of Branch and Bound

The execution of branch and bound can be thought of as exploring a particular
search tree.
This tree is essentially the one arising from execution of the corresponding DTM.
Solvers typically endeavor to make this tree as small as possible.
The decision problem at each node is to determine which disjunction to branch
on in order to minimize the resulting subtree.
Thus, the solution process can be viewed as a kind of multilevel game in itself.
As mentioned previously, minimizing the size of the tree actually reduces the
potential for parallelization.

Ralphs, et al. COR@L Lab

Where Do We Go From Here?

Effective parallelization of feasibility search seems to be an extremely difficult
problem to solve.
The key may be in parallelizing solution of the choice problems themselves.
These are optimization problems and thus are, in some sense, more
parallelizable.
This is blind conjecture at this point, however.

Ralphs, et al. COR@L Lab

Conclusions

This has been a presentation of some half-baked ideas about the complexity of
search and the connections to multilevel optimization.
There is much work to be done and many opportunities.
Our aim is not just to develop the theory, but also to put it into practice.

Questions?

Ralphs, et al. COR@L Lab

References I

Garey, M. and D. Johnson 1979. Computers and Intractability: A Guide to the Thoery
of NP-Completeness. W.H. Freeman and Company.

Ralphs, et al. COR@L Lab

	Introduction
	Motivation
	Canonical Example

	Complexity
	Basic Notions
	The Polynomial Time Hierarchy

	Complexity of Search
	Multilevel and Multistage Optimization
	Value Functions
	Dual Functions
	The General Principles

	Parallel Computing
	Final Remarks

