
Introduction to COIN-OR:
Open Source Software for Optimization

TED RALPHS
ISE Department
COR@L Lab

Lehigh University
ted@lehigh.edu

University of Canterbury, 20 February 2009

Thanks:Work supported in part by the National Science Foundation

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 1 / 49

Outline

1 Introduction to COIN-OR
2 Using CoinAll

The Uncapacitated Facility Location Problem
Cutting Planes

3 Developing a Solver
Theufl Class
COIN Tools
Putting It All Together

4 The CHiPPS Framework
Library Hierarchy
Overview of ALPS
Overview of BiCePS
Overview of BLIS

5 Implementing Applications
ALPS Applications
BiCePS Applications
BLIS Applications

6 Conclusion
T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 2 / 49

The Genesis

An increasing number of papers being written in OR today arecomputationalin
nature or have a computational component.

Historically, the pace of computational research has been relatively slow and the
transfer of knowledge to practitioners has been even slower.

Results of research are generallynot reproducible.

Research codes are buggy, narrowly focused, and lack robustness.

There arefew rewards for publishing softwareoutside of archival journals.

There isno peer review processfor software and referees of computational
papers have little to go on.

Building on previous results is difficult and time-consuming.

Interoperatingwith other software libraries (such as LP solvers) is difficult.

The paradigm encouraged by archival journals does not work well for
computational research.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 3 / 49

The COIN-OR Initiative

To address some of these challenges, theCommon Optimization Interface for
Operations Research Initiativewas launched by IBM at ISMP in 2000.

IBM seeded the repository with four initial projects, has hosted its Web site, and
has provided funding.

The goal was to develop the project and then hand it over to thecommunity.

The project has now grown to be self-sustaining and was spun off as a nonprofit
educational foundation in the U.S. a few years ago.

The name was also changed to theComputational Infrastructure for Operations
Researchto reflect a broader mission.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 4 / 49

What is COIN-OR?

The COIN-OR Foundation
A non-profit foundationpromoting the development and use of interoperable,
open-source software for operations research.
A consortiumof researchers in both industry and academia dedicated to improving
the state of computational research in OR.
A venuefor developing and maintaining standards.
A forum for discussion and interaction between practitioners and researchers.

The COIN-OR Repository
A library of interoperable software tools for building optimizationcodes, as well as
a few stand alone packages.
A venue for peer reviewof OR software tools.
A development platformfor open source projects, including an SVN repository,

Seewww.coin-or.org for more information.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 5 / 49

Our Agenda

Accelerate the pace of researchin computational OR.
Reuse instead of reinvent.
Reduce development time and increase robustness.
Increase interoperability (standards and interfaces).

Provide for software what the open literature provides for theory.
Peer review of software.
Free distribution of ideas.
Adherence to the principles of good scientific research.

Define standards and interfacesthat allow software components to interoperate.

Increase synergybetween various development projects.

Provide robust, open-source tools for practitioners.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 6 / 49

Current Status

The foundation has been up and running for several years and we are growing
quickly!

We currently have 30+ projects and a number in the queue.

The foundation is run by two boards.
A strategic boardto set overall direction
A technical boardto advise on technical issues

The boards are composed of members from both industry and academia, as well
as balanced across disciplines.

Membership in the foundation is available to both individuals and institutions.

The foundation Web site and repository is hosted byINFORMS.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 7 / 49

What is Open Source?

A coding paradigm in which development is done in a cooperative and
distributed fashion.

An economic model used by some “for-profit” software ventures.

This model is followed by a number of well-known software projects.
Linux (Red Hat, etc.)
Netscape/Mozilla(AOL)
Star Office/Open Office(Sun)
Apache

A type of software license (described on the next slide).

To find out more, seewww.opensource.org or the writings of Eric S.
Raymond (The Cathedral and the Bazaar).

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 8 / 49

Open Source Licenses

Strictly speaking, an open source license must satisfy the requirements of the
Open Source Definition.

A license can/should not call itself “open source” until it is approved by the
Open Source Initiative.

Basic properties of an open source license
Access to source code.
The right to redistribute.
The right to modify.

The license may require that modifications also be kept open.

Most of the software in COIN-OR uses theCPL, which is a certified open-source
license that is much less restrictive than the better-knownGPL.

License compatibility is an issue one has to be very careful about.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 9 / 49

Why Open Source?

Increases the pace of development.

Produces more robust code.

Introduces an inherent peer review process.

Creates an informal reward structure.

Creates an impetus for good documentation.

Increases the use and distribution of code.

Prevents obsolescence.

Promotes reuse over reimplementation.

Makes collaboration much easier!

“Given enough eyeballs, all bugs are shallow” –ESR

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 10 / 49

What Are the Downsides?

Legal issues

Initial effort is high

Ongoing maintenance

Funding issues

Loss of control

Loss of commercial opportunities

...

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 11 / 49

Input Data

The following are the input data needed to describe an instance of the uncapacitated
facility location problem (UFL):

Data

a set of depotsN = {1, ..., n}, a set of clientsM = {1, ..., m},

the unit transportation costcij to service clienti from depotj,

the fixed costfj for using depotj

Variables

xij is the amount of the demand for clienti satisfied from depotj

yj is 1 if the depot is used, 0 otherwise

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 12 / 49

Mathematical Programming Formulation

The following is a mathematical programming formulation ofthe UFL

UFL Formulation

Minimize
∑

i∈M

∑

j∈N

cij xij +
∑

j∈N

fjyj (1)

subject to
∑

j∈N

xij = di ∀i ∈ M, (2)

∑

i∈M

xij ≤ (
∑

i∈M

di)yj ∀j ∈ N, (3)

yj ∈ {0, 1} ∀j ∈ N (4)

0 ≤ xij ≤ di ∀i ∈ M, j ∈ N (5)

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 13 / 49

Dynamically Generated Valid Inequalities

The formulation presented on the last slide can be tightenedby disaggregating
the constraints (3).

xij − djyj ≤ 0, ∀i ∈ M, j ∈ N.

Rather than adding the inequalities to the initial formulation, we can generate
them dynamically.
Given the current LP solution,x∗, y∗, we check whether

x∗ij − djy
∗
j > ǫ, ∀i ∈ M, j ∈ N.

We can also generate inequalities valid for generic MILPs.
If a violation is found, we can iteratively add the constraint to the current LP
relaxation.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 14 / 49

Tightening the Initial Formulation

Here is the basic loop for tightening the initial formulation using the dynamically
generated inequalities from the previous slide.

Solving the LP relaxation

1 Form the initial LP relaxation and solve it to obtain(x̂, ŷ).
2 Iterate

1
Try to generate a valid inequality violated by(x̂, ŷ). If none are violated,
STOP.

2 Optionally, try to generate an improved feasible solution by roundingŷ.

3 Solve the current LP relaxation of the initial formulation to obtain(x̂, ŷ).

4 If (x̂, ŷ) is feasible, STOP. Otherwise, go to Step 1.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 15 / 49

Data Members

C++ Class

class UFL {
private:

OsiSolverInterface * si;
double * trans_cost; //c[i][j] -> c[xindex(i,j)]
double * fixed_cost; //f[j]
double * demand; //d[j]
int M; //number of clients (index on i)
int N; //number of depots (index in j)
double total_demand; //sum{j in N} d[j]
int *integer_vars;

int xindex(int i, int j) {return i*N + j;}
int yindex(int j) {return M*N + j;}

};

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 16 / 49

Methods

C++ Class

class UFL {
public:

UFL(const char* datafile);
~UFL();
void create_initial_model();
double tighten_initial_model(ostream *os = &cout);
void solve_model(ostream *os = &cout);

};

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 17 / 49

Open Solver Interface

Uniform API for a variety of solvers: CBC, CLP, CPLEX, DyLP, FortMP,
GLPK, Mosek, OSL, Soplex, SYMPHONY, the Volume Algorithm,
XPRESS-MP supported to varying degrees.

Read input from MPS or CPLEX LP files or construct instances using COIN-OR
data structures.

Manipulate instances and output to MPS or LP file.

Set solver parameters.

Calls LP solver for LP or MIP LP relaxation.

Manages interaction with dynamic cut and column generators.

Calls MIP solver.

Returns solution and status information.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 18 / 49

Cut Generator Library

A collection of cutting-plane generators and management utilities.

Interacts with OSI to inspect problem instance and solutioninformation and get
violated cuts.

Cuts include:
Combinatorial cuts: AllDifferent, Clique, KnapsackCover, OddHole
Flow cover cuts
Lift-and-project cuts
Mixed integer rounding cuts
General strengthening: DuplicateRows, Preprocessing, Probing, SimpleRounding

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 19 / 49

COIN LP Solver

High-quality, efficient LP solver.

Simplex and barrier algorithms.

QP with barrier algorithm.

Interface through OSI or native API.

Tight integration with CBC (COIN-OR Branch and Cut MIP solver).

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 20 / 49

COIN Branch and Cut

State of the art implementation of branch and cut.

Tight integration with CLP, but can use other LP solvers through OSI.

Uses CGL to generate cutting planes.

Interface through OSI or native API.

Many customization options.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 21 / 49

Theinitialize_solver()Method

Initializing the LP solver

#if defined(COIN_USE_CLP)

#include "OsiClpSolverInterface.hpp"
typedef OsiClpSolverInterface OsiXxxSolverInterface;

#elif defined(COIN_USE_CPX)

#include "OsiCpxSolverInterface.hpp"
typedef OsiCpxSolverInterface OsiXxxSolverInterface;

#endif

OsiSolverInterface* UFL::initialize_solver() {
OsiXxxSolverInterface* si =

new OsiXxxSolverInterface();
return si;

}
T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 22 / 49

Thecreate_initial_model()Method

Creating Rim Vectors

CoinIotaN(integer_vars, N, M * N);
CoinFillN(col_lb, n_cols, 0.0);

int i, j, index;

for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) {

index = xindex(i,j);
objective[index] = trans_cost[index];
col_ub[index] = demand[i];

}
}
CoinFillN(col_ub + (M*N), N, 1.0);
CoinDisjointCopyN(fixed_cost, N, objective + (M * N));

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 23 / 49

Thecreate_initial_model()Method

Creating the Constraint Matrix

CoinPackedMatrix * matrix =
new CoinPackedMatrix(false,0,0);

matrix->setDimensions(0, n_cols);
for (i=0; i < M; i++) { //demand constraints:

CoinPackedVector row;
for (j=0; j < N; j++) row.insert(xindex(i,j),1.0);
matrix->appendRow(row);

}

for (j=0; j < N; j++) { //linking constraints:
CoinPackedVector row;
row.insert(yindex(j), -1.0 * total_demand);
for (i=0; i < M; i++) row.insert(xindex(i,j),1.0);
matrix->appendRow(row);

}

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 24 / 49

Loading and Solving the LP Relaxation

Loading the Problem in the Solver

si->loadProblem(*matrix, col_lb, col_ub,
objective, row_lb, row_ub);

Solving the Initial LP Relaxation

si->initialSolve();

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 25 / 49

Thetighten_initial_model()Method

Tightening the Relaxation—Custom Cuts

const double* sol = si->getColSolution();
int newcuts = 0, i, j, xind, yind;
for (i = 0; i < M; i++) {

for (j = 0; j < N; j++) {
xind = xindex(i,j); yind = yindex(j);

if (sol[xind] - (demand[i] * sol[yind]) >
tolerance) { // violated constraint

CoinPackedVector cut;
cut.insert(xind, 1.0);
cut.insert(yind, -1.0 * demand[i]);
si->addRow(cut, -1.0 * si->getInfinity(), 0.0);
newcuts++;

}
}

}

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 26 / 49

Thetighten_initial_model()Method

Tightening the Relaxation—CGL Cuts

OsiCuts cutlist;
si->setInteger(integer_vars, N);
CglGomory * gomory = new CglGomory;
gomory->setLimit(100);
gomory->generateCuts(*si, cutlist);
CglKnapsackCover * knapsack = new CglKnapsackCover;
knapsack->generateCuts(*si, cutlist);
CglSimpleRounding * rounding = new CglSimpleRounding;
rounding->generateCuts(*si, cutlist);
CglOddHole * oddhole = new CglOddHole;
oddhole->generateCuts(*si, cutlist);
CglProbing * probe = new CglProbing;
probe->generateCuts(*si, cutlist);
si->applyCuts(cutlist);

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 27 / 49

Thesolve_model() Method

Calling the Solver (Built-In MIP)

si->setInteger(integer_vars, N);

si->branchAndBound();
if (si->isProvenOptimal()) {

const double * solution = si->getColSolution();
const double * objCoeff = si->getObjCoefficients();
print_solution(solution, objCoeff, os);

}
else

cerr << "B&B failed to find optimal" << endl;
return;

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 28 / 49

Thesolve_model() Method

Calling the Solver (CLP Requires Separate MIP)

CbcModel model(*si);
model.branchAndBound();
if (model.isProvenOptimal()) {

const double * solution = model.getColSolution();
const double * objCoeff = model.getObjCoefficients();
print_solution(solution, objCoeff, os);

}
else

cerr << "B&B failed to find optimal" << endl;
return;

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 29 / 49

Quick Introduction to CHiPPS

CHiPPS stands for COIN-OR High Performance Parallel Search.

CHiPPS is a set of C++ class libraries for implementingparallel or serial tree
searchalgorithms.

What Differentiates CHiPPS?

Intuitive interface and open source implementation.

Very general, base classes make minimal algorithmic assumptions.

Easy to specialize for particular problem classes.

Designed forparallel scalability.

Explicitly supportsdata-intensivealgorithms.

Operates effectively in bothparallel andsequentialenvironments.

To our knowledge, the only other framework for general parallel tree
search algorithms is the Parallel Implicit Graph Search Library (PIGSeL)
by Peter Sanders.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 30 / 49

CHiPPS Library Hierarchy

ALPS (Abstract Library for Parallel Search)

is the search-handling layer (parallel and
sequential).
provides various search strategies.

BiCePS (Branch, Constrain, and Price Software)

is the data-handling layer for
relaxation-based optimization.
adds notion ofvariablesandconstraints.
assumes iterative bounding process.

BLIS (BiCePS Linear Integer Solver)

is a concretization of BiCePS.
specific to models withlinearconstraints
and objective function.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 31 / 49

ALPS: Parallelizing Tree Search Algorithms

The state space for a tree search can be extremely large.

Ostensibly, tree search seems very easy to parallelize.

However, the search graph may not be known a priori and there will be
significant parallel overhead with naive parallelization.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 32 / 49

ALPS: Ideas for Improving Scalability

The design is based on a very general concept ofknowledge.

Knowledge is sharedasynchronouslythroughpoolsandbrokers.

Management overhead is reduced with themaster-hub-workerparadigm.

Overhead is decreased usingdynamic task granularity.

Two static load balancingtechniques are used.

Threedynamic load balancingtechniques are employed.

Useasynchronousmessaging mode

A scheduler on each process manages tasks like
node processing,
load balaning,
update search states, and
termination checking, etc.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 33 / 49

BiCePS: Handling Data Intensive Applications

A differencing scheme is used to store the difference between the descriptions of
a child node and its parent.

Need spend timerecoveringthe explicit description of tree nodes.

Have an option to store a explicit description when a node is at certain depth.

struct BcpsObjectListMod template<class T>
{ struct BcpsFieldListMod

int numRemove; {
int* posRemove; bool relative;
int numAdd; int numModify;
BcpsObject **objects; int *posModify;
BcpsFieldListMod<double> lbHard; T *entries;
BcpsFieldListMod<double> ubHard; };
BcpsFieldListMod<double> lbSoft;
BcpsFieldListMod<double> ubSoft;

};

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 34 / 49

BLIS: A Generic Solver for MILP

MILP

min cTx (6)

s.t. Ax≤ b (7)

xi ∈ Z ∀ i ∈ I (8)

where(A, b) ∈ R
m×(n+1), c ∈ R

n.

Basic Algorithmic Components

Bounding method.

Branching scheme.

Object generators.

Heuristics.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 35 / 49

BLIS: Branching Scheme

BLIS Branching scheme comprise three components:

Object: has feasible region and can be branched on.
Branching Object:

is created from objects that do not lie in they feasible regions or objects that will be
beneficial to the search if branching on them.
contains instructions for how to conduct branching.

Branching method:
specifies how to create a set of candidate branching objects.
has the method to compare objects and choose the best one.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 36 / 49

BLIS: Constraint Generators

BLIS constraint generator:

provides an interface between BLIS and the algorithms in COIN/Cgl.

provides a base class for deriving specific generators.
has the ability to specify rules to control generator:

where to call: root, leaf?
how many to generate?
when to activate or disable?

contains the statistics to guide generating.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 37 / 49

BLIS: Heuristics

BLIS primal heuristic:

defines the functionality to search for solutions.
has the ability to specify rules to control heuristics.

where to call: before root, after bounding, at solution?
how often to call?
when to activate or disable?

collects statistics to guide the heuristic.

provides a base class for deriving specific heuristics.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 38 / 49

ALPS Applications

What kinds of Applications?

Constraint Programming

Artificial Intelligence

Discrete Optimization

Sample Applications (Matt Galati, Scott DeNegre, Yan Xu, and others)

Knapsack Problem,

Axial Assignment Problem,

Steiner Problem in Graphs,

Maxtrix Decomposition,

Portifolio Optimization, and

Mixed-integer Stackelberg Games, etc.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 39 / 49

ALPS Applications: The Two Steps Required

The first step is deriving a few classes to specify the algorithm and model.
AlpsModel
AlpsTreeNode
AlpsNodeDesc
AlpsSolution
AlpsParameterSet

The second step is writing amain function.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 40 / 49

ALPS Application: A Knapack Solver

The formulation of the binary Knapsack problem is

max{
m∑

i=1

pixi :

m∑

i=1

sixi ≤ c, xi ∈ {0, 1}, i = 1, 2, . . . , m}, (9)

First, deriving following subclasses

KnapModel (fromAlpsModel) : It stores the data used to describe a
knapsack problem.

KnapTreeNode (fromAlpsTreeNode) : It defines the functions to compute
path costs, expand nodes, and create children.

KnapNodeDesc (fromAlpsNodeDesc) : It stores information about which
items have been fixed by branching and which are still free to select.

KnapSolution (fromAlpsSolution) It tells whether put an item in the
knapsack (1) or leave it out of the knapsack (0).

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 41 / 49

ALPS Application: A Knapack Solver

Then, write a main function

int main(int argc, char* argv[])
{

KnapModel model;

#if defined(SERIAL)
AlpsKnowledgeBrokerSerial broker(argc, argv, model);

#elif defined(PARALLEL_MPI)
AlpsKnowledgeBrokerMPI broker(argc, argv, model);

#endif

broker.search();
broker.printResult();
return 0;

}

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 42 / 49

ALPS Application: A Knapack Solver

Randomly generated 26difficult Knapsack instances based on the rule proposed
by Martello (’90).

Tested on the SDSC Blue Gene System (Linux, MPICH, 700MHz Dual
Processor, 512 MB RAM).

Table: Scalability for solving Difficult Knapsack Instances

P Node Ramp-up Idle Ramp-down Wallclock Eff
64 14733745123 0.69% 4.78% 2.65% 6296.49 1.00
128 14776745744 1.37% 6.57% 5.26% 3290.56 0.95
256 14039728320 2.50% 7.14% 9.97% 1672.85 0.94
512 13533948496 7.38% 4.30% 14.83% 877.54 0.90
1024 13596979694 13.33% 3.41% 16.14% 469.78 0.84
2048 14045428590 9.59% 3.54% 22.00% 256.22 0.77

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 43 / 49

BiCePS Application

What kinds of Applications?

Discrete Optimization

Constraint programming

Sample Applications

Mixed Integer Linear Programming Solver (BLIS)

Mixed Integer Quadratic Programming Solver (not implemented)

Mixed Integer Nonlinear Programming Solver (not implemented)

Stochastic Programming Solver (not implemented)

Others ...

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 44 / 49

BLIS Application

What kinds of Applications?

Mixed Integer Linear Optimization

Sample Applications (Scott DeNegre, Ted Ralphs, Yan Xu, andothers)

Vehicle Routing Problem (VRP)

Traveling Salesman Problem (TSP)

Mixed Integer Bilevel Solver (MiBS)

Others ...

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 45 / 49

BLIS Applications: VRP Formulation

min
∑

e∈E

cexe

∑

e={0,j}∈E

xe = 2k, (10)

∑

e={i,j}∈E

xe = 2 ∀i ∈ N, (11)

∑

e={i,j}∈E
i∈S,j /∈S

xe ≥ 2b(S) ∀S⊂ N, |S| > 1, (12)

0 ≤ xe ≤ 1 ∀e = {i, j} ∈ E, i, j 6= 0, (13)

0 ≤ xe ≤ 2 ∀e = {i, j} ∈ E, (14)

xe ∈ Z ∀e∈ E. (15)

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 46 / 49

BLIS Applications: VRP

First, derive a few subclasses to specify the algorithm and model
VrpModel (from BlisModel),
VrpSolution (from BlisSolution),
VrpCutGenerator (from BlisConGenerator),
VrpHeurTSP (from BlisHeuristic),
VrpVariable (from BlisVariable), and
VrpParameterSet (from AlpsParameterSet).

Then, writes amain function

int main(int argc, char* argv[])
{

OsiClpSolverInterface lpSolver;
VrpModel model;
model.setSolver(&lpSolver);

#ifdef COIN_HAS_MPI
AlpsKnowledgeBrokerMPI broker(argc, argv, model);

#else
AlpsKnowledgeBrokerSerial broker(argc, argv, model);

#endif
broker.search(&model);
broker.printBestSolution();
return 0;

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 47 / 49

BLIS Applications: VRP

Select 16 VRP instances from public sources (Ralphs,’03)

Tested on a Clemson Cluster (Linux, MPICH, 1654 MHz Dual Core, 4G RAM).

P Nodes Ramp-up Idle Ramp-down Wallclock Eff
1 40250 − − − 19543.46 1.00
4 36200 7.06% 7.96% 0.39% 5402.95 0.90
8 52709 9.88% 6.15% 1.29% 4389.62 0.56
16 70865 14.16% 8.81% 3.76% 3332.52 0.37
32 96160 15.85% 10.75% 16.91% 3092.20 0.20
64 163545 18.19% 10.65% 19.02% 2767.83 0.11

In October, 2007, the VRP/TSP solver won the Open Contest of Parallel
Programming at the 19th International Symposium on Computer Architecture

and High Performance Computing.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 48 / 49

The CHiPPS framework is available at

https://projects.coin-or.org/CHiPPS

Questions? & Thank You!

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 49 / 49

	Introduction to COIN-OR
	Using CoinAll
	The Uncapacitated Facility Location Problem
	Cutting Planes

	Developing a Solver
	The ufl Class
	COIN Tools
	Putting It All Together

	The CHiPPS Framework
	Library Hierarchy
	Overview of ALPS
	Overview of BiCePS
	Overview of BLIS

	Implementing Applications
	ALPS Applications
	BiCePS Applications
	BLIS Applications

	Conclusion

