Introduction to COIN-OR:
Open Source Software for Optimization

TED RALPHS
ISE Department
COR@L Lab
Lehigh University
ted@lehigh.edu

University of Canterbury, 20 February 2009

Thanks:Work supported in part by the National Science Foundation

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 1/49

@ Introduction to COIN-OR
© Using CoinAll
@ The Uncapacitated Facility Location Problem
o Cutting Planes
© Developing a Solver
o Theuf| Class
o COIN Tools
o Putting It All Together
© The CHiPPS Framework
o Library Hierarchy
o Overview of ALPS
@ Overview of BiCePS
@ Overview of BLIS
© Implementing Applications
o ALPS Applications
@ BiCePS Applications
@ BLIS Applications
© cConclusion

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 2149

)

¢ ¢ © ¢

©

An increasing number of papers being written in OR todaycareputationain
nature or have a computational component.

Historically, the pace of computational research has belatively slow and the
transfer of knowledge to practitioners has been even slower

Results of research are generaillyt reproducible
Research codes are buggy, narrowly focused, and lack radasst
There ardew rewards for publishing softwaautside of archival journals.

There isno peer review proceder software and referees of computational
papers have little to go on.

Building on previous results is difficult and time-consugnin

o Interoperatingvith other software libraries (such as LP solvers) is difficu

The paradigm encouraged by archival journals does not wetkfar
computational research.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 3/49

The COIN-OR Initiative

o To address some of these challenges@hsmon Optimization Interface for
Operations Research Initiativeas launched by IBM at ISMP in 2000.

o IBM seeded the repository with four initial projects, hasteal its Web site, and
has provided funding.

@ The goal was to develop the project and then hand it over todh@emunity.

@ The project has now grown to be self-sustaining and was sfias @ nonprofit
educational foundation in the U.S. a few years ago.

@ The name was also changed to themputational Infrastructure for Operations
Researclto reflect a broader mission.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 4149

What is COIN-OR?

@ The COIN-OR Foundation

o A non-profit foundatiorpromoting the development and use of interoperable,
open-source software for operations research.

o A consortiumof researchers in both industry and academia dedicatedpimirimg
the state of computational research in OR.

o A venuefor developing and maintaining standards.

o A forumfor discussion and interaction between practitioners asdarchers.

@ The COIN-OR Repository

¢ A library of interoperable software tools for building optimizaticodes, as well as
a few stand alone packages.

o A venue for peer reviewf OR software tools.

@ A development platforrfor open source projects, including an SVN repository,

@ Seewww. coi n-or. or g for more information.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 5/49

Our Agenda

@ Accelerate the pace of reseainfcomputational OR.

o Reuse instead of reinvent.
o Reduce development time and increase robustness.
o Increase interoperability (standards and interfaces).

Provide for software what the open literature provideslieoty.

o Peer review of software.
o Free distribution of ideas.
o Adherence to the principles of good scientific research.

Define standards and interfadhat allow software components to interoperate
Increase synergetween various development projects.
@ Provide robust, open-source tools for practitioners

(]

©

©

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 6/49

Current Status

@ The foundation has been up and running for several years aratavgrowing
quickly!

©

We currently have 30+ projects and a number in the queue.
The foundation is run by two boards.

¢ A strategic boardo set overall direction
s A technical boardo advise on technical issues

The boards are composed of members from both industry am®ada, as well
as balanced across disciplines.

Membership in the foundation is available to both indivildend institutions.
The foundation Web site and repository is hostedyORMS,

©

©

©

©

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 7149

What is Open Source?

o A coding paradigm in which developmentis done in a coopezatnd
distributed fashion.

@ An economic model used by some “for-profit” software vensure

@ This model is followed by a number of well-known software jpits.

Linux (Red Hat, etc.)

Netscape/Mozill{AOL)

Star Office/Open Offic€Sun)

Apache

@ A type of software license (described on the next slide).

o To find out more, seemw. opensour ce. or g or the writings of Eric S.
Raymond The Cathedral and the Bazgar

(9

¢ ¢ ¢

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 8/49

Open Source Licenses

)

Strictly speaking, an open source license must satisfygfeirements of the
Open Source Definitian

A license can/should not call itself “open source” untikitsipproved by the
Open Source Initiative

Basic properties of an open source license

e Access to source code.
@ The right to redistribute.
o The right to modify.

The license may require that modifications also be kept open.

@ Most of the software in COIN-OR uses the’L, which is a certified open-source

license that is much less restrictive than the better-knGwhi.
License compatibility is an issue one has to be very cardfola

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 9/49

Why Open Source?

Increases the pace of development.
Produces more robust code.

Introduces an inherent peer review process.
Creates an informal reward structure.
Creates an impetus for good documentation.
Increases the use and distribution of code.
Prevents obsolescence.

Promotes reuse over reimplementation.
Makes collaboration much easier!

¢ &6 € ¢ ¢ ¢ ¢ ¢ ¢

“Given enough eyeballs, all bugs are shalleZSR

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 10/ 4

What Are the Downsides?

o Legalissues

Initial effort is high

Ongoing maintenance

Funding issues

Loss of control

Loss of commercial opportunities

¢ & & ¢ ¢ ¢

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 11/ 4

Input Data

The following are the input data needed to describe an instahthe uncapacitated
facility location problem (UFL):

o asetof depotbl = {1, ..., n}, a set of clientM = {1, ..., m},
o the unit transportation cosj to service client from depot,
o the fixed cosf; for using depoj

Variables

o X; is the amount of the demand for cligrgatisfied from depgt
o y; is 1 if the depot is used, O otherwise

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 12/ 4¢

Mathematical Programming Formulation

The following is a mathematical programming formulatiorttod UFL

UFL Formulation

Minimize > > e+ Y _fiy 1)
iEM jeN JEN
subjectto Y x; = d VieM, 2
JEN
Yoxi < (Qod)y VieN, 3)
ieM iEM
yi € {01} VjeN 4)
0<x<d VieMjeN (5)

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 13/ 4¢

Dynamically Generated Valid Inequalities

o The formulation presented on the last slide can be tightegetisaggregating
the constraints (3).

Xj — diy; <0,Vi € M,j e N. J

@ Rather than adding the inequalities to the initial formigiatwe can generate
them dynamically.
@ Given the current LP solutiox;, y*, we check whether

X —dy" >e,VieM,jeN. ’

@ We can also generate inequalities valid for generic MILPs.
o If aviolation is found, we can iteratively add the consttaathe current LP
relaxation.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 14/ 4¢

Tightening the Initial Formulation

Here is the basic loop for tightening the initial formulatiosing the dynamically
generated inequalities from the previous slide.

Solving the LP relaxation
@ Form the initial LP relaxation and solve it to obtdik §).
Q lterate

Try to generate a valid inequality violated k%, §). If none are violated,
STOP.

o

@ Optionally, try to generate an improved feasible solutigndundingy.
@ Solve the current LP relaxation of the initial formulatiendbtain(X,).

Q If (8,9) is feasible, STOP. Otherwise, go to Step 1.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 15/ 4¢

Data Members

class UFL {

private:
Gsi Sol verlnterface * si;
double = trans_cost; //c[i][j] -> c[xindex(i,j)]
double * fixed cost; //f[j]

doubl e * denand; [1d[j]
int M /I nunber of clients (index on i)
int N /I nunber of depots (index in j)

doubl e total demand; //sum{j in N d[j]
int xinteger_vars;

int xindex(int i, int j) {return i*N+j;}
int yindex(int j) {return MN + j;}

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 16/ 4¢

Methods

class UFL {

publi c:
UFL(const char* datafile);
~UFL();

void create_initial_ nodel ();
doubl e tighten_initial_ nodel (ostream=+*os = &cout);
voi d sol ve_npdel (ostream *os = &cout);

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 171 4¢

Open Solver Interface

)

¢ &6 & ¢ ¢ ¢

Uniform API for a variety of solvers: CBC, CLP, CPLEX, DyLREMP,
GLPK, Mosek, OSL, Soplex, SYMPHONY, the Volume Algorithm,
XPRESS-MP supported to varying degrees.

Read input from MPS or CPLEX LP files or construct instancésgi€OIN-OR
data structures.

Manipulate instances and output to MPS or LP file.

Set solver parameters.

Calls LP solver for LP or MIP LP relaxation.

Manages interaction with dynamic cut and column generators
Calls MIP solver.

Returns solution and status information.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 18/ 4¢

Cut Generator Library

@ A collection of cutting-plane generators and managemeélities.

@ Interacts with OSI to inspect problem instance and solutifarmation and get
violated cuts.

@ Cuts include:

Combinatorial cuts: AllDifferent, Clique, KnapsackCové&ddHole

Flow cover cuts

Lift-and-project cuts

Mixed integer rounding cuts

General strengthening: DuplicateRows, Preprocessimdify, SimpleRounding

(9

¢ ¢ ¢ ¢

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 19/ 4

COIN LP Solver

o High-quality, efficient LP solver.

o Simplex and barrier algorithms.

@ QP with barrier algorithm.

o Interface through OSI or native API.

o Tight integration with CBC (COIN-OR Branch and Cut MIP saixe

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 20/ 4

COIN Branch and Cut

o State of the art implementation of branch and cut.

o Tight integration with CLP, but can use other LP solvers dgloOSI.
@ Uses CGL to generate cutting planes.

o Interface through OSI or native API.

@ Many customization options.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 21/ 4

Theinitialize_sol ver () Method

Initializing the LP solver
#i f defined(CO N _USE CLP)

#i ncl ude "Gsi C pSol ver | nterface. hpp"
typedef Osi C pSol verl nterface Osi XxxSol ver| nterface;

#el i f defined(CO N _USE CPX)

#i ncl ude "Gsi CpxSol ver I nterface. hpp"
typedef Osi CpxSol verl nterface Osi XxxSol ver| nterface;

#endi f

Csi Sol verInterfacex UFL::initialize_solver() {
Csi XxxSol ver | nterfacex si =
new Gsi XxxSol ver | nterface();
return si;

}

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 22/ 49

Thecreate_ initial _nodel () Method

Creating Rim Vectors

Coi nlotaN(i nteger _vars, N, M* N);
CoinFill N(col Ib, n_cols, 0.0);
int i, j, index;
for (i =0; i <M i++) {
for (j =0; j <N j++) {
i ndex xi ndex(i,j);

obj ective[index] =
col _ub[i ndex] =
}
}
Coi nFil I N(col _ub + (MN),
Coi nDi sj oi nt CopyN(fi xed_cost,

trans_cost [i ndex] ;
demand[i];

N, 1.0);

N, objective + (M* N));

T.K. Ralphs (Lehigh University) COIN-OR

20 February, 2009

23/ 49

Thecreate_ initial _nodel () Method

Creating the Constraint Matrix

Coi nPackedMvatrix = matrix =
new Coi nPackedMatri x(fal se, 0, 0);

mat ri x- >set Di nensi ons(0, n_col s);

for (i=0; i <M i++) { //denmand constraints:
Coi nPackedVect or row,
for (j=0; j < N, j++) row.insert(xindex(i,j),1.0);
mat ri x- >appendRow(r ow) ;

}

for (j=0; j <N, j++) { [/linking constraints:
Coi nPackedVect or row,
row. i nsert(yindex(j), -1.0 * total denmand);
for (i=0; i <M i++) row.insert(xindex(i,j),1.0);
mat ri x- >appendRow(r ow) ;

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 24 49

Loading and Solving the LP Relaxation

Loading the Problem in the Solver

si - >l oadProbl em(*matrix, col Ib, col ub,
obj ective, row |b, row ub);

Solving the Initial LP Relaxation

si->initial Solve();

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 25/ 49

Theti ghten_initial nodel () Method

Tightening the Relaxation—Custom Cuts

const doubl ex sol = si-

int newcuts =0, i, j,

>get Col Sol ution();
xi nd, vyind;

for (i =0; i <M i++) {
for (j =0; j <N j++) {

xi nd xi ndex(i,j);

yi nd = yindex(j);

if (sol[xind] - (demand[i] * sol[yind]) >
tol erance) { // violated constraint

Coi nPackedVect or
cut.insert(xind,
cut.insert (yind,
si - >addRow(cut ,
newcut s++;
}
}
}

cut;
1.0);
-1.0 * demand[i]);

-1.0 » si->getInfinity(), 0.0);

T.K. Ralphs (Lehigh University)

COIN-OR

20 February, 2009

26/ 49

Theti ghten_initial nodel () Method

Tightening the Relaxation—CGL Cuts

GCsi Cuts cutlist;

si - >set I nteger(integer_vars, N);

Cgl Gonory * gonory = new Cgl Gonory;

gonory->set Li mt(100);

gonory->generateCuts(xsi, cutlist);

Cgl KnapsackCover =* knapsack = new Cgl KnapsackCover;
knapsack- >gener at eCut s(*si, cutlist);

Cgl Si nmpl eRoundi ng * roundi ng = new Cgl Si npl eRoundi ng;
r oundi ng- >gener at eCut s(*si, cutlist);

Cgl GddHol e * oddhol e = new Cgl GddHol e;

oddhol e- >generat eCut s(*si, cutlist);

Cgl Probing * probe = new Cgl Probi ng;

pr obe- >gener at eCut s(*si, cutlist);

si - >appl yCut s(cutlist);

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 271 48

Thesol ve_nodel () Method

Calling the Solver (Built-In MIP)

si - >set I nteger(integer _vars, N);

si - >br anchAndBound() ;

if (si->isProvenOptimal()) {
const double * solution si - >get Col Sol uti on();
const doubl e * obj Coeff si - >get Qbj Coefficients();
print_sol ution(sol ution, objCoeff, o0s);

}

el se
cerr << "B&B failed to find opti mal" << endl;
return;

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 28/ 49

Thesol ve_nodel () Method

Calling the Solver (CLP Requires Separate MIP)

CbcMbdel nodel (*si);

nodel . br anchAndBound() ;

if (nodel.isProvenOptimal ()) {
const doubl e * sol ution nodel . get Col Sol uti on();
const doubl e * obj Coeff nodel . get Obj Coef fi ci ent s(
print_sol ution(sol ution, objCoeff, o0s);

}

el se
cerr << "B&B failed to find optinmal" << endl

return;

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 29/ 49

Quick Introduction to CHIPPS

@ CHIPPS stands for COIN-OR High Performance Parallel Search

o CHIPPS is a set of C++ class libraries for implementirgallel or serial tree
searchalgorithms.

What Differentiates CHiPPS?

@ Intuitive interface and open source implementation.

Very general, base classes make minimal algorithmic asgonsp
Easy to specialize for particular problem classes.

Designed foparallel scalability:

Explicitly supportsdata-intensivalgorithms.

Operates effectively in botharallel andsequentiaenvironments.

To our knowledge, the only other framework for general parédee
search algorithms is the Parallel Implicit Graph Searcharip (PIGSeL)
by Peter Sanders.

¢ &6 & ¢ ¢ ¢

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 30/ 49

CHIPPS Library Hierarchy

ALPS (Abstract Library for Parallel Search)

@ is the search-handling layer (parallel apd
sequential).

@ provides various search strategies.

BiCePS (Branch, Constrain, and Price Software

@ is the data-handling layer for
relaxation-based optimization.

@ adds notion ofiariablesandconstraints

@ assumes iterative bounding process.

BLIS (BiCePS Linear Integer Solver)

@ is a concretization of BiCePS.
@ specific to models withinearconstraints|
and objective function.

ALPS

Assume Branch and Bound)

<

BiCePS

(Assume LP-based Bound)

I<=

BLIS

CHIiPPS

T.K. Ralphs (Lehigh University) COIN-OR

20 February, 2009

31/4¢9

ALPS: Parallelizing Tree Search Algorithms

@ The state space for a tree search can be extremely large.
@ Ostensibly, tree search seems very easy to parallelize.

Root
Initial State

© 6 o @

E EGoal State

Frocessor 1 I Poceuer ot Frocessor 3
3]

@ However the search graph may not be known a priori and there will be
significant parallel overhead with naive parallelization.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009

32/ 4

ALPS: Ideas for Improving Scalability

The design is based on a very general conceghofvliedge
Knowledge is sharedsynchronouslthroughpoolsandbrokers
Management overhead is reduced with tiester-hub-workeparadigm.
Overhead is decreased usimgnamic task granularity

Two static load balancintechniques are used.

Threedynamic load balancintechniques are employed.
Useasynchronoumessaging mode

A scheduler on each process manages tasks like
@ node processing,

load balaning,

update search states, and

termination checking, etc.

¢ ¢ ¢ © ¢ ¢ ¢ ¢

¢ ¢ ¢

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 33/ 4

BiCePS: Handling Data Intensive Applications

o A differencing scheme is used to store the difference batilee descriptions of
a child node and its parent.

o Need spend time=coveringthe explicit description of tree nodes.
@ Have an option to store a explicit description when a nodédgdain depth.

struct BcpsObj ect Li st Mbd t enpl at e<cl ass T>

{ struct BcpsFi el dLi st Mod
int nunRenove; {
i nt * posRenpve; bool relative;
int numAdd; int nunmvbdify;
BcpsObj ect **obj ects; int *posModify;
BcpsFi el dLi st Mod<doubl e> | bHar d; T xentries;
BcpsFi el dLi st Mod<doubl e> ubHar d; };
BcpsFi el dLi st Mod<doubl e> | bSoft;
BcpsFi el dLi st Mod<doubl e> ubSof t ;

b

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 34/ 49

BLIS: A Generic Solver for MILP

MILP

min c'x (6)
st. Ax<b (7)
X €7 Viel (8)

where(A, b) € R™ () ¢ ¢ RN

Basic Algorithmic Components

@ Bounding method.
@ Branching scheme.
o Object generators.
@ Heuristics.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 35/ 4¢9

BLIS: Branching Scheme

BLIS Branching scheme comprise three components:
o Object has feasible region and can be branched on.

@ Branching Object
o is created from objects that do not lie in they feasible negior objects that will be
beneficial to the search if branching on them.
@ contains instructions for how to conduct branching.
@ Branching method
@ specifies how to create a set of candidate branching objects.
o has the method to compare objects and choose the best one.

Branching Method

Best Branching Object Branching Objects

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 36/ 4

BLIS: Constraint Generators

BLIS constraint generator:
@ provides an interface between BLIS and the algorithms inNZOgl.
@ provides a base class for deriving specific generators.
@ has the ability to specify rules to control generator:

@ where to call: root, leaf?
o how many to generate?

o when to activate or disable?

@ contains the statistics to guide generating.

Controller

Generator

Statistics

BLIS Constraint Generator

T.K. Ralphs (Lehigh University)

COIN-OR

>

(C

BLIS Constraint Pool

20 February, 2009

37149

BLIS: Heuristics

BLIS primal heuristic:
o defines the functionality to search for solutions.
@ has the ability to specify rules to control heuristics.
o where to call: before root, after bounding, at solution?

@ how often to call?
@ when to activate or disable?

@ collects statistics to guide the heuristic.
@ provides a base class for deriving specific heuristics.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 38/ 4

ALPS Applications

What kinds of Applications?

o Constraint Programming
o Artificial Intelligence
@ Discrete Optimization

Sample Applications (Matt Galati, Scott DeNegre, Yan Xug athers)

o Knapsack Problem,

@ Axial Assignment Problem,

@ Steiner Problem in Graphs,

@ Maxtrix Decomposition,

o Portifolio Optimization, and

o Mixed-integer Stackelberg Games, etc.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 39/ 4¢

ALPS Applications: The Two Steps Required

@ The first step is deriving a few classes to specify the algoriand model.
Al pshvbdel

Al psTreeNode

Al psNodeDesc

Al psSol ution

Al psPar anet er Set

@ The second step is writingraai n function.

(9

¢ ¢ ¢ ¢

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 40/ 4

ALPS Application: A Knapack Solver

The formulation of the binary Knapsack problem is

m m
max(» pix: > sx <cxe{01},i=12...,m}, 9)
i—1

i=1
First, deriving following subclasses
o KnapMbdel (from Al psibdel) : It stores the data used to describe a
knapsack problem.

o KnapTreeNode (from Al psTr eeNode) : It defines the functions to compute
path costs, expand nodes, and create children.

@ KnapNodeDesc (from Al psNodeDesc) : It stores information about which
items have been fixed by branching and which are still freelecs.

o KnapSol uti on (fromAl psSol uti on) It tells whether put an item in the
knapsack (1) or leave it out of the knapsack (0).

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 41/ 4

ALPS Application: A Knapack Solver

Then, write a main function

int main(int argc, char* argv[])

{
KnapModel nodel

#i f defi ned(SERI AL)
Al psknow edgeBr oker Seri al broker (argc, argv, nodel));
#el i f defi ned(PARALLEL MPI)
Al psknow edgeBr oker VPl br oker (argc, argv, nodel);
#endi f

br oker . search();
br oker. printResul t ();
return O;

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 42/ 49

ALPS Application: A Knapack Solver

@ Randomly generated 2#fficult Knapsack instances based on the rule propost
by Martello ('90).

o Tested on the SDSC Blue Gene System (Linux, MPICH, 700MH2Z Dua
Processor, 512 MB RAM).

Table: Scalability for solving Difficult Knapsack Instances

P Node Ramp-up Idle Ramp-down Wallclock Eff

64 14733745123 0.69% 4.78% 2.65% 6296.49 1.00
128 14776745744 1.37% 6.57% 5.26% 3290.56 Q.95
256 14039728320 2.50% 7.14% 9.97% 1672.85 Q.94
512 13533948496 7.38% 4.30% 14.83% 877.54 (.90
1024 13596979694 13.33% 3.41% 16.14% 469.78 (.84
2048 14045428590 9.59% 3.54% 22.00% 256.22 Q.77

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 43/ 49

BiCePS Application

What kinds of Applications?
o Discrete Optimization
@ Constraint programming

Sample Applications

Mixed Integer Linear Programming Solver (BLIS)

Mixed Integer Quadratic Programming Solver (not implereeit
Mixed Integer Nonlinear Programming Solver (not impleneeht
Stochastic Programming Solver (not implemented)

Others ...

¢ € ¢ ¢ ¢

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 44 | 49

BLIS Application

What kinds of Applications?

o Mixed Integer Linear Optimization

Sample Applications (Scott DeNegre, Ted Ralphs, Yan Xu,ahdrs)
@ Vehicle Routing Problem (VRP)
@ Traveling Salesman Problem (TSP)
o Mixed Integer Bilevel Solver (MiBS)
e Others ...

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 45/ 49

BLIS Applications: VRP Formulation

min Z:cexe
ecE
3 oxe=2 (10)
e={0,j}€E
> xe=2VieN, (11)
e={i,j}€E
> xe>2b(S) VSCN, [§ > 1, (12)
e={i,j}€E
i€eSj¢s
0<xe<1lVe={ijleE ij#0, (13)
0<x <2Ve={i,j} €E, (14)
Xe € Z Ve e E. (15)

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 46/ 4

BLIS Applications: VRP

o First, derive a few subclasses to specify the algorithm aodeh
Vr pModel (from Bl i shbdel),
Vr pSol uti on (fromBl i sSol uti on),
Vr pCut Gener at or (fromBl i sConCener at or),
Vr pHeur TSP (from Bl i sHeur i sti c),
VrpVari abl e (fromBl i sVari abl e), and
e VrpPar anet er Set (from Al psPar anet er Set).
@ Then, writes arai n function

(9

¢ ¢ ¢ ¢

int main(int argc, charx argv[])
{

GCsi Cl pSol verInterface | pSol ver;

Vr pMbdel nodel ;

nodel . set Sol ver (& pSol ver);
#ifdef CO N_HAS MPI

Al psknow edgeBr oker MPl br oker (argc, argv, nodel);
#el se

Al psknowl edgeBr oker Seri al broker(argc, argv, nodel);
#endi f
br oker . sear ch(&model) ;

ala -
COIN-OR 20 February, 2009

hr olca Q
T.K. Ralphs (Lehigh University)

BLIS Applications: VRP

@ Select 16 VRP instances from public sources (Ralphs, 03)
@ Tested on a Clemson Cluster (Linux, MPICH, 1654 MHz Dual Cdfe RAM).

P Nodes Ramp-up Idle Ramp-down Wallclock Biff

1 40250 — — — 19543.46 1.00

4 36200 7.06% 7.96% 0.39% 5402.95 0.90
8 52709 9.88% 6.15% 1.29% 4389.62 0.56
16 70865 14.16% 8.81% 3.76% 3332.52 0.87
32 | 96160 15.85% 10.75% 16.91% 3092.20 0.p0
64 | 163545 18.19% 10.65% 19.02% 2767.83 0f11

In October, 2007, the VRP/TSP solver won the Open Contesaialigl
Programming at the 19th International Symposium on ConmArghitecture
and High Performance Computing.

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 48/ 49

The CHIPPS framework is available at
https://projects. coi n-or. org/ CH PPS J

Questions? & Thank You! |

T.K. Ralphs (Lehigh University) COIN-OR 20 February, 2009 49/ 4

	Introduction to COIN-OR
	Using CoinAll
	The Uncapacitated Facility Location Problem
	Cutting Planes

	Developing a Solver
	The ufl Class
	COIN Tools
	Putting It All Together

	The CHiPPS Framework
	Library Hierarchy
	Overview of ALPS
	Overview of BiCePS
	Overview of BLIS

	Implementing Applications
	ALPS Applications
	BiCePS Applications
	BLIS Applications

	Conclusion

