
An Introduction to the COIN-OR Optimization Suite:
Open Source Tools for Building and Solving Optimization Models

TED RALPHS
ISE Department
COR@L Lab

Lehigh University
ted@lehigh.edu

Optimization Days, Montreal, May 7, 2013

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 1 / 134

About the Tutorial

I’ll touch on a lot of things and can drill down if there’s interest.

There is an inevitable bias towards things that I work on.

I’m going to talk about the work of lots of different people and will inevitably
miss some attributions.

The talk proceeds from general high level tools down to lowerlevel tools, feel
free to leave when you’ve seen enough.

I’ll try to focus on the “not-so-obvious” bits.

Please ask questions! I may or may not be able to answer them.

Let’s Go!

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 2 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 3 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 4 / 134

Brief History of COIN-OR

TheCommon Optimization Interface for Operations Research Initiativewas an
initiative launched by IBM at ISMP in 2000.

IBM seeded an open source repository with four initial projects and created a
Web site.

The goal was to develop the project and then hand it over to thecommunity.

The project has now grown to be self-sustaining and was spun off as a nonprofit
educational foundation in the U.S. several years ago.

The name was also changed to theComputational Infrastructure for Operations
Researchto reflect a broader mission.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 5 / 134

What is COIN-OR Today?

The COIN-OR Foundation

A non-profit foundationpromoting the development and use of
interoperable, open-source software for operations research.

A consortiumof researchers in both industry and academia dedicated to
improving the state of computational research in OR.

A venuefor developing and maintaining standards.

A forumfor discussion and interaction between practitioners and
researchers.

The COIN-OR Repository

A collectionof interoperable software tools for building optimization
codes, as well as a few stand alone packages.

A venue for peer reviewof OR software tools.

A development platformfor open source projects, including a wide range
of project management tools.

Seewww.coin-or.org for more information.
T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 6 / 134

The COIN Boards

The COIN-OR Foundation is governed by two boards.

Strategic Leadership Board

Matt Saltzman (President)

Lou Hafer (Secretary)

Randy Kiefer (Treasurer)

Ted Ralphs (TLC Rep)

Bill Hart

Kevin Furman

Alan King

Technical Leadership Council

Ted Ralphs (Chair)

Kipp Martin

Stefan Vigerske

John Siirola

Matthew Galati

Haroldo Santos

The SLB sets the overall strategic direction and manages thebusiness operations:
budgeting, fund-raising, legal, etc.

The TLC focuses on technical issues: build system, versioning system, bug
reporting, interoperability, etc.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 7 / 134

How is COIN Supported?

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 8 / 134

What’s Happening at COIN

Development efforts have been moving up the stack.

Core tools are still evolving but emphasis has shifted to maintenance,
documentation, improvements to usability, development ofthe ecosystem.

Current priorities

Re-launching Web site with many new features

Forums
Social integration, single sign-on (OpenID)
Support for git
Individual project Web sites

Installers

RPMs and .debs

Modeling tools

Python support

New versions of most tools⇐ due out imminently!

And more...

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 9 / 134

What You Can Do With COIN: Low-level Tools

We currently have 50+ projects and more are being added all the time.

Most projects are now licensed under theEPL(very permissive).

COIN has solvers for most common optimization problem classes.
Linear programming
Nonlinear programming
Mixed integer linear programming
Mixed integer nonlinear programming(convex and nonconvex)
Stochastic linear programming
Semidefinite programming
Graph problems
Combinatorial problems(VRP, TSP, SPP, etc.)

COIN has various utilities for reading/building/manipulating/preprocessing
optimization models and getting them into solvers.

COIN has overarching frameworks that support implementation of broad
algorithm classes.

Parallel search
Branch and cut (and price)
Decomposition-based algorithms

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 10 / 134

What You Can Do With COIN: High-level Tools

One of the most exciting developments of recent years is the number of is the wide
range of high-level tools available to access COIN solvers.

Python-based modeling languages

Spreadsheet modeling(!)

Commercial modeling languages

Matlab

R

Sage(?)

Julia

...

COIN isn’t just for breakfast anymore!

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 11 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 12 / 134

COIN-OR Projects Overview: Linear Optimization

Clp: COIN LP Solver

Project Manager: Julian Hall

DyLP: An implementation of the dynamic simplex method

Project Manager: Lou Hafer

Cbc: COIN Branch and Cut

Project Manager: Ted Ralphs

SYMPHONY: a flexible integer programming package that supports sharedand
distributed memory parallel processing, biobjective optimization, warm starting,
sensitivity analysis, application development, etc.

Project Manager: Ted Ralphs

BLIS: Parallel IP solver built to test the scalability of the CHiPPS framework.

Project Manager: Ted Ralphs

Cgl: A library of cut generators

Project Manager: Robin Lougee

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 14 / 134

COIN-OR Projects Overview: Nonlinear Optimization

Ipopt: Interior Point OPTimizer implements interior point methods for solving
nonlinear optimization problems.

Project Manager: Andreas Wächter

DFO: An algorithm for derivative free optimization.

Project Manager: Katya Scheinberg

CSDP:A solver for semi-definite programs

Project Manager: Brian Borchers

OBOE:Oracle based optimization engine
Project Manager: Nidhi Sawhney

FilterSD:Package for solving linearly constrained non-linear optimization
problems.

Project Manager: Frank Curtis

OptiML: Optimization for Machine learning, interior point, active set method
and parametric solvers for support vector machines, solverfor the sparse inverse
covariance problem.

Project Manager: Katya Scheinberg

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 16 / 134

COIN-OR Projects Overview: Mixed Integer Nonlinear
Optimization

Bonmin:Basic Open-source Nonlinear Mixed INteger programming is for
(convex) nonlinear integer programming.

Project Manager: Pierre Bonami

Couenne:Solver for nonconvex nonlinear integer programming problems.

Project Manager: Pietro Belotti

LaGO:Lagrangian Global Optimizer, for the global optimization of nonconvex
mixed-integer nonlinear programs.

Project Manager: Stefan Vigerske

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 18 / 134

COIN-OR Projects Overview: Modeling

FLOPC++:An open-source modeling system.

Project Manager: Tim Hultberg

COOPR:A repository of python-based modeling tools.

Project Manager: Bill Hart

PuLP:Another python-based modeling language.

Project Manager: Stu Mitchell

DipPy: A python-based modeling language for decomposition-basedsolvers.

Project Manager: Mike O’Sullivan

CMPL: An algebraic modeling language

Project Manager: Mike Stieglich

SMI: Stochastic Modeling Interface, for optimization under uncertainty.

Project Manager: Alan King

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 20 / 134

COIN-OR Projects Overview: Interfaces and Solver Links

Osi: Open solver interface is a generic API for linear and mixed integer linear
programs.

Project Manager: Matthew Saltzman

GAMSlinks: Allows you to use the GAMS algebraic modeling language and call
COIN-OR solvers.

Project Manager: Stefan Vigerske

AIMMSlinks: Allows you to use the AIMMS modeling system and call
COIN-OR solvers.

Project Manager: Marcel Hunting

MSFlinks:Allows you to call COIN-OR solvers through Microsoft Solver
Foundation.

Project Manager: Lou Hafer

CoinMP:A callable library that wraps around CLP and CBC, providing an API
similar to CPLEX, XPRESS, Gurobi, etc.

Project Manager: Bjarni Kristjansson

Optimization Services:A framework defining data interchange formats and
providing tools for calling solvers locally and remotely through Web services.

Project Managers: Jun Ma, Gus Gassmann, and Kipp Martin
T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 22 / 134

COIN-OR Projects Overview: Frameworks

Bcp: A generic framework for implementing branch, cut, and pricealgorithms.

Project Manager: Laci Ladanyi

CHiPPS:A framework for developing parallel tree search algorithms.

Project Manager: Ted Ralphs

DIP: A framework for implementing decomposition-based algorithms for integer
programming, including Dantzig-Wolfe, Lagrangian relaxation, cutting plane,
and combinations.

Project Manager: Ted Ralphs

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 24 / 134

COIN-OR Projects Overview: Automatic Differentiation

ADOL-C: Package for the automatic differentiation of C and C++ programs.

Project Manager: Andrea Walther

CppAD: A tool for differentiation of C++ functions.

Project Manager: Brad Bell

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 26 / 134

COIN-OR Projects Overview: Graphs

GiMPy and GrUMPy:Python packages for visualizing algorithms

Project Manager: Ted Ralphs

Cgc: Coin graph class utilities, etc.

Project Manager: Phil Walton

LEMON: Library of Efficient Models and Optimization in Networks

Project Manager: Alpar Juttner

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 28 / 134

COIN-OR Projects Overview: Miscellaneous

Djinni: C++ framework with Python bindings for heuristic search

Project Manager: Justin Goodson

METSlib: An object oriented metaheuristics optimization frameworkand toolkit
in C++

Project Manager: Mirko Maischberger

CoinBazaar:A collection of examples, application codes, utilities, etc.

Project Manager: Bill Hart

PFunc:Parallel Functions, a lightweight and portable library that provides C and
C++ APIs to express task parallelism

Project Manager: Prabhanjan Kambadur

ROSE:Reformulation-Optimization Software Engine, software for performing
symbolic reformulations to Mathematical Programs (MP)

Project Manager: David Savourey

MOCHA: Matroid Optimization: Combinatorial Heuristics and Algorithms,
heuristics and algorithms for multicriteria matroid optimization

Project Manager: David Hawes

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 30 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 31 / 134

How It’s Organized:CoinAll andBuildTools

Many of the tools mentioned interoperate by using the configuration and build
utilities provided by theBuildTools project.

The interoperable suite of tools for optimization will be the focus of the
remainder of the tutorial.
TheBuildTools project provides build infrastructure for

MS Windows (CYGWIN, MINGW, and Visual Studio)
Linux
Mac OS X

TheBuildTools providesautoconf macros and scripts to allow the
modular use of code across multiple projects.

If you work with multiple COIN projects, you may end up maintaining many
(possibly incompatible) copies of COIN libraries and binaries.

TheCoinAll project is an über-project that includes compatible version of all
mutually interoperable projects.

The easiest way to use multiple COIN projects is simply download and install
the latest version of CoinAll (1.7 is due out imminently).

TheTestTools project is the focal point for testing of COIN code.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 33 / 134

Getting Pre-built Libraries and Binaries

You can downloadCoinAll binaries here:

http://www.coin-or.org/download/binary/CoinAll

About version numbers
COIN numbers versions by a standardmajor, minor, release scheme.
All version within amajor.minor series are compatible.
All versions within amajor series are backwards compatible.

TheCoinBinary project is a long-term effort to provide pre-built binariesfor
popular platforms.

We now have (beta) cross-platform installers built with theopen source
InstallJammer.
We are in the process of being approved for inclusion in the Fedora distribution
(RPM).
COIN can already be installed withapt-get on Ubuntu, but these versions are
quite old now.

Other ways of obtaining COIN include downloading it througha number of
modeling language front-ends (more on this later).

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 34 / 134

http://www.coin-or.org/download/binary/CoinAll

Installing from Source

Why download and build COIN yourself?
There are many options for building COIN codes and the distributed binaries are
built with just one set of options.
We cannot distribute binaries linked to libraries licensedunder the GPL, so you
must build yourself if you want GMPL, command completion, command history,
Haskell libraries, etc.
Other advanced options that require specific hardware/software my also not be
supported in distributed binaries (parallel builds, MPI)
Once you understand how to get and build source, it ismuch faster to get bug fixes.

You can downloadCoinAll source tarballs and zip archives here:

http://www.coin-or.org/download/source/CoinAll

The recommended way to get source is to usesubversion.

With subversion, it is easy to stay up-to-date with the latest sources and to get
bug fixes.

http://www.coin-or.org/svn/CoinBinary/CoinAll

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 35 / 134

http://www.coin-or.org/download/source/CoinAll
http://www.coin-or.org/svn/CoinBinary/CoinAll

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 36 / 134

Documentation

Documentation on using the full optimization suite

http://projects.coin-or.org/CoinHelp
http://projects.coin-or.org/CoinEasy

User’s manuals and documentation for individual projects

http://projects.coin-or.org/ProjName
http://www.coin-or.org/ProjName

Source code documentation

http://www.coin-or.org/Doxygen

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 38 / 134

http://projects.coin-or.org/CoinHelp
http://projects.coin-or.org/CoinEasy
http://projects.coin-or.org/ProjName
http://www.coin-or.org/ProjName
http://www.coin-or.org/Doxygen

Support

Support is available primarily through mailing lists and bug reports.

http://list.coin-or.org/mailman/listinfo/ProjName
http://projects.coin-or.org/ProjName

Keep in mind that the appropriate place to submit your question or bug report
may be different from the project you are actually using.

Make sure to report all information required to reproduce the bug (platform,
version number, arguments, parameters, input files, etc.)

Also, please keep in mind that support is an all-volunteer effort.

In the near future, we will be moving away from mailing lists and towards
support forums.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 40 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 41 / 134

Using COIN with a Modeling Language

Commercial
GAMS ships with COIN solvers included,
MPL ships with CoinMP (wrapper around Clp and Cbc),
AMPL works with OSAmplClient (as well as several other projects directly),
AIMMS can be connected via theAIMMSLinks project.

Python-based Open Source Modeling Languages and Interfaces
Coopr(Pyomo, PySP, SUCASA)
PuLP/Dippy(Decomposition-based modeling)
CyLP(provides API-level interface)
yaposib(OSI bindings)

Other
FLOPC++(algebraic modeling in C++)
CMPL (modeling language with GUI interface)
MathProg.jl(modeling language built in Julia)
GMPL (open-source AMPL clone)
ZMPL (stand-alone parser)
OpenSolver(spreadsheet plug-in)
R (RSymphony Plug-in)
Matlab(OPTI)

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 42 / 134

Optimization Services (OS)

Optimization Services (OS) integrates numerous COIN-OR projects and is a good
starting point for many use cases. The OS project provides:

A set ofXML based standardsfor representing optimization instances (OSiL),
optimization results (OSrL), and optimization solver options (OSoL).

A uniform API for constructing optimization problems (linear, nonlinear,
discrete) and passing them to solvers.

A command line executableOSSolverService for reading problem
instances in several formats and calling a solver either locally or remotely.

Utilities that convert files in AMPL nl, MPS, and LP format to OSiL.

Client side software for creatingWeb ServicesSOAP packages with OSiL
instances and contact a server for solution.

Standards that facilitate the communication between clients and solvers using
Web Services.

Server softwarethat works with Apache Tomcat.

Developers: Kipp Martin, Gus Gassmann, and Jun Ma

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 43 / 134

Using AMPL with OS

To use OS to call solvers in AMPL, you specify theOSAmplClient as the solver.

model hs71.mod;
tell AMPL that the solver is OSAmplClient
option solver OSAmplClient;

now tell OSAmplClient to use Ipopt
option OSAmplClient_options "solver ipopt";

now solve the problem
solve;

In order to call a remote solver service, set the solverservice option to the address
of the remote solver service.

option ipopt_options
"service http://74.94.100.129:8080/OSServer/services/OSSolverService";

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 44 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 45 / 134

Drinking the Python Kool-Aid

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 46 / 134

Why Python?

Singing the Praises

As with many high-level languages, development is quick andpainless
(relative to C++!)

Python is popular in many disciplines and there is a dizzyingarray of
packages available.

Python’s syntax is very clean and naturally adaptable to expressing
mathematical programming models.

Python has the primary data structures necessary to build and manipulate
models built in.

There has been a very strong movement in recent years toward the adoption of
Python as the high-level language of choice for (discrete) optimizers.
For these reasons and more, Sage is quickly emerging as a verycapable
open-source alternative to Matlab.
Python does have one major downside: it can be very slow.
One solution is to write extensions in C/C++: COIN!
Go and Julia are faster alternatives that retain many of Python’s advantages.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 47 / 134

Two-minute Python Primer

Python is dynamically typed.

No memory allocation or freeing, no variable declarations

Indentation has a syntactic meaning: no curly braces and good formatting is
required!

Code is usually easy to read “in English” (keywords likeis, not, andin).

Everything is a pointer to an object: functions, classes, variables,...

Everything can be “printed.”

Built-in data structures:

Lists (dynamic arrays)

Dictionaries (hash tables)

Sets

Easy to define new data types via classes and re-definition of basic operators
(magic methods).

Light-weight inheritance mechanism for customizing classes.

Extremely flexible mechanism for passing function arguments.
T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 48 / 134

PuLP (Stu Mitchell)

A modeling language for expressing linear models in Python.

Similar to other algebraic modeling languages but with the power of Python.

Let’s see an example.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 49 / 134

Example: Facility Location Problem

We haven locationsandm customers to be served from those locations.

There is a fixed costcj and a capacityWj associated with facilityj.

There is a costdij and demandwij for serving customeri from facility j.

We have two sets of binary variables.

yj is 1 if facility j is opened, 0 otherwise.

xij is 1 if customeri is served by facilityj, 0 otherwise.

Capacitated Facility Location Problem

min
n

X

j=1

cjyj +

m
X

i=1

n
X

j=1

dijxij

s.t.
n

X

j=1

xij = 1 ∀i

m
X

i=1

wijxij ≤ Wj ∀j

xij ≤ yj ∀i, j
xij, yj ∈ {0, 1} ∀i, j

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 50 / 134

PuLP Basics: Facility Location Example

from products import REQUIREMENT, PRODUCTS
from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY

prob = LpProblem("Facility_Location")

ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]
assign_vars = LpVariable.dicts("x", ASSIGNMENTS, 0, 1, LpBinary)
use_vars = LpVariable.dicts("y", LOCATIONS, 0, 1, LpBinary)

prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)

for j in PRODUCTS:
prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) == 1

for i in LOCATIONS:
prob += lpSum(assign_vars[(i, j)] * REQUIREMENT[j]

for j in PRODUCTS) <= CAPACITY * use_vars[i]

prob.solve()

for i in LOCATIONS:T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 51 / 134

PuLP Basics: Facility Location Example

The requirements for the products
REQUIREMENT = {

1 : 7,
2 : 5,
3 : 3,
4 : 2,
5 : 2,

}

Set of all products
PRODUCTS = REQUIREMENT.keys()
PRODUCTS.sort()

Costs of the facilities
FIXED_COST = {

1 : 10,
2 : 20,
3 : 16,
4 : 1,
5 : 2,

} T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 52 / 134

DipPy: Modeling Decomposition (Mike O’Sullivan)

DIP Framework

DIP is a software framework and stand-alone solver for implementation and use
of a variety of decomposition-based algorithms.

Decomposition-based algorithms have traditionally been extremely
difficult to implement and compare.

DIP abstracts the common, generic elements of these methods.

Key: API is in terms of the compact formulation.
The framework takes care of reformulation and implementation.
DIP is now afully generic decomposition-based parallel MILP solver.

Methods

Column generation (Dantzig-Wolfe)

Cutting plane method

Lagrangian relaxation (not complete)

Hybrid methods

⇐ Joke!

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 53 / 134

DipPy Basics: Facility Location Example

from products import REQUIREMENT, PRODUCTS
from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY

prob = dippy.DipProblem("Facility_Location")

ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]
assign_vars = LpVariable.dicts("x", ASSIGNMENTS, 0, 1, LpBinary)
use_vars = LpVariable.dicts("y", LOCATIONS, 0, 1, LpBinary)

prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)

for j in PRODUCTS:
prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) == 1

for i in LOCATIONS:
prob.relaxation[i] += lpSum(assign_vars[(i, j)] * REQUIREMENT[j]

for j in PRODUCTS) <= CAPACITY * use_vars[i]

dippy.Solve(prob, {doPriceCut:1})

for i in LOCATIONS:T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 54 / 134

SolverStudio (Andrew Mason)

Spreadsheet optimization has had a (deservedly) bad reputation for many years.

SolverStudio will change your mind about that!

SolverStudio provides a full-blown modeling environment inside a spreadsheet.

Edit and run the model.

Populate the model from the spreadsheet.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 55 / 134

Coopr and Pyomo

An algebraic modeling language in Python similar to PuLP.

More powerful, includes support for nonlinear modeling.

Coopr also include PySP for stochastic Programming.

Developers: Bill Hart, David Woodruff, John Siirola, and others at Sandia
National Labs.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 56 / 134

CyLP: Low-level API for Cbc/Clp

A lower-level modeling language for accessing details of the algorithms and
low-level parts of the API.

Clp

Pivot-level control of algorithm in Clp.

Access to fine-grained results of solve.

Cbc

Python class for cut generators

Developers: Mehdi Towhidi and Dominique Orban

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 57 / 134

CyLP: Accessing the Tableaux

lp = CyClpSimplex()
x = lp.addVariable(’x’, numVars)
lp += x_u >= x >= 0

lp += (A * x <= b if cons_sense == ’<=’ else A * x >= b)

lp.objective = -c * x if obj_sense == ’Max’ else c * x
lp.primal(startFinishOptions = 1)
numCons = len(b)
print ’Current solution is’, lp.primalVariableSolution[’x’]
numAllVars = len(lp.primalVariableSolutionAll)

tableaux = np.zeros(shape = (numAllVars, numCons))
for i in range(numAllVars):

lp.getBInvACol(i, tableaux[i,:])
tableaux = tableaux.transpose()
rhs = tableaux[:,numVars:]*np.matrix(b).transpose()

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 58 / 134

GiMPy (with Aykut Bulut)

A graph class for Python 2.∗.

Builds, displays, and saves graphs (many options)

Focus is onvisualization of well-known graph algorithms.

Priority in implementation is onclarity of the algorithms.

Efficiency isnot the goal (though we try to be as efficient as we can).

from gimpy import Graph
if __name__==’__main__’:

g = Graph(display=’pygame’)
g.add_edge(0,1)
g.add_edge(1,2)
g.add_edge(3,4)
g.display()
g.search(0)

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 59 / 134

GIMPy Example

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 60 / 134

GiMPy Example

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 61 / 134

GiMPy Algorithm Visualization

The following problem/algorithm pairs with similar visualization options exist.

Graph Search:

BFS

DFS

Prim’s

Component Labeling,

Dijkstra’s

Topological Sort

Shortest path: Dijkstra’s, Label Correcting

Maximum flow: Augmenting Path, Preflow Push

Minimum spanning tree: Prim’s Algorithm, Kruskal Algorithm

Minimum Cost Flow: Network Simplex, Cycle Canceling

Data structures: Union-Find (quick union, quick find), Binary Search Tree, Heap

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 62 / 134

GiMPy Tree

Tree class derived fromGraph class.

BinaryTree class derived fromTree class.

Has binary tree specific API and attributes.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 63 / 134

GrUMPy Overview

Visualizations for solution methods for linear models.

Branch and bound

Cutting plane method

BBTree derived from GiMPyTree.

Reads branch-and-bound data either dynamically or statically.

Builds dynamic visualizations of solution process.

Includes a pure Python branch and bound implementation.

Polyhedron2D derived frompypolyhedron.

Can construct 2D polyhedra defined by generators or inequalities.

Displays convex hull of integer points.

Can produce animations of the cutting plane method.

GrUMPy is an expansion and continuation of the BAK project (Brady Hunsaker
and Osman Ozaltin).

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 64 / 134

GrUMPy: BBTree Branch and Bound Implementation

Key

x36 ≤ 0.0

x7 ≤ 0.0

x34 ≤ 0.0

x0 ≤ 0.0

x6 ≥ 1.0

x4 ≥ 1.0

x18 ≥ 1.0

x7 ≥ 1.0

x9 ≤ 0.0

x38 ≥ 1.0

x15 ≥ 1.0

x18 ≤ 0.0

x17 ≤ 0.0 x4 ≥ 1.0

x11 ≤ 0.0

x38 ≤ 0.0x36 ≥ 1.0

x28 ≤ 0.0

x15 ≤ 0.0

x0 ≥ 1.0

x0 ≥ 1.0

x15 ≤ 0.0

x6 ≤ 0.0

x36 ≥ 1.0

x4 ≤ 0.0

x6 ≤ 0.0

x31 ≥ 1.0

x15 ≤ 0.0

x29 ≤ 0.0

x0 ≤ 0.0

x2 ≥ 1.0

x15 ≤ 0.0

x4 ≤ 0.0

x0 ≤ 0.0

x17 ≥ 1.0 x15 ≤ 0.0x4 ≤ 0.0

x15 ≥ 1.0

x28 ≥ 1.0

x34 ≤ 0.0

x15 ≥ 1.0

x36 ≤ 0.0

x23 ≤ 0.0

x4 ≥ 1.0

x6 ≥ 1.0x29 ≥ 1.0

x0 ≤ 0.0

x2 ≤ 0.0x12 ≤ 0.0

x9 ≥ 1.0x15 ≥ 1.0

x18 ≥ 1.0

x4 ≥ 1.0x4 ≤ 0.0

x34 ≤ 0.0 x34 ≥ 1.0

x34 ≥ 1.0

x34 ≥ 1.0

x18 ≤ 0.0

x20 ≥ 1.0

x23 ≥ 1.0

x36 ≥ 1.0

x34 ≤ 0.0

x6 ≤ 0.0

x0 ≥ 1.0

x34 ≥ 1.0

x12 ≥ 1.0

x36 ≥ 1.0

x6 ≥ 1.0

x4 ≤ 0.0

x36 ≤ 0.0

x38 ≥ 1.0x38 ≤ 0.0

x11 ≥ 1.0

x15 ≥ 1.0

x36 ≤ 0.0

x4 ≥ 1.0

x31 ≤ 0.0

x20 ≤ 0.0

x0 ≥ 1.0 x6 ≥ 1.0

x6 ≤ 0.0

192.4 195.2

190.4 194.5

193.0 195.8

191.2 195.6

194.7 194.5

197.7

196.4

196.2

Pruned

193.8194.5

194.7193.3 196.8195.5

197.5196.9

196.8195.2

192.0 191.2

191.6 194.5

197.7

194.1

Candidate

Solution

193.8194.6

196.8195.2

197.6196.9

196.8195.5194.7193.7

194.3 196.6

194.6 196.2

192.6 195.5

193.9 195.3

191.8 191.0

196.8

196.3

192.1196.0

192.3195.8

190.6195.4

193.4195.0

195.8191.8

191.8 191.0

193.9 195.3

192.6 195.5

194.6 196.2

194.3 196.6

195.1

195.9

Infeasible

195.6193.3

195.8194.5

195.8194.2

195.9195.9

195.2193.6

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 65 / 134

GrUMPy: Dynamic Branch and Bound Visualizations

GrUMPy provides four visualizations of the branch and boundprocess.

Can be used dynamically or statically with any instrumentedsolver.

BB tree

Histogram

Scatter plot

Incumbent path

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 66 / 134

GrUMPy Branch and Bound Tree

Figure:BB tree generated by GrUMPy

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 67 / 134

GrUMPy Histogram

Figure:BB histogram generated by GrUMPy

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 68 / 134

GrUMPy Scatter Plot

Figure:Scatter plot generated by GrUMPy

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 69 / 134

GrUMPy Incumbent Path

Figure:Incumbent path generated by GrUMPy

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 70 / 134

GrUMPy: Polyhedron2D

fig = plt.figure()
ax = fig.add_subplot(111)
ax.grid()
if points is not None:

p = Polyhedron2D(points = points, rays = rays)
else:

p = Polyhedron2D(A = A, b = b)
p.draw(ax, color = ’blue’, linestyle = ’solid’)
ax.set_xlim(p.plot_min[0], p.plot_max[0])
ax.set_ylim(p.plot_min[1], p.plot_max[1])
pI = p.make_integer_hull()
pI.draw(ax, color = ’red’, linestyle = ’dashed’)
if c is not None:

add_line(ax, c, obj_val, p.plot_max - [0.2, 0.2], p.plot_min +
linestyle = ’dashed’)

plt.show()

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 71 / 134

GrUMPy: Polyhedron2D

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 72 / 134

GrUMPy: Polyhedron2D

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 73 / 134

GrUMPy: Polyhedron2D

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 74 / 134

GrUMPy: Polyhedron2D

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 75 / 134

GrUMPy: Polyhedron2D

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 76 / 134

GrUMPy: Polyhedron2D

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 77 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 78 / 134

Interactive Shells

A number of projects provide interactive shells (SYMPHONY,CLP, Cbc, OS)

~/COIN/trunk/build/bin > ./symphony
== Welcome to the SYMPHONY MILP Solver
== Copyright 2000-2011 Ted Ralphs and others
== All Rights Reserved.
== Distributed under the Eclipse Public License 1.0
== Version: Trunk (unstable)
== Build Date: Mar 16 2013
== Revision Number: 2068

***** WELCOME TO SYMPHONY INTERACTIVE MIP SOLVER ******

Please type ’help’/’?’ to see the main commands!

SYMPHONY:

To invoke, type command with no arguments in thebin directory (or click in incon).
Note that shells are more capable whenreadline andhistory are available.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 79 / 134

OS: Solving a Problem on the Command Line

The OS project provides an single executableOSSolverService that can be
used to call most COIN solvers.

To solve a problem in MPS format

OSSolverService -mps parinc.mps

The solver also accepts AMPL nl and OSiL formats.

You can display the results in raw XML, but it’s better to print to a file to be
parsed.

OSSolverService -osil parincLinear.osil -osrl result.xml

You can then view in a browser using XSLT.

Copy the style sheets to your output directory.
Open in your browser

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 80 / 134

OS: Remote Solves

The OSSolverService can be invoked to make remote solve calls.

./OSSolverService osol remoteSolve2.osol serviceLocation
http://74.94.100.129:8080/OSServer/services/OSSolverService

Note that in this case, even the instance file is stored remotely.

<osol xmlns="os.optimizationservices.org">
<general>

<instanceLocation locationType="http">
http://www.coin-or.org/OS/p0033.osil
</instanceLocation>
<solverToInvoke>symphony</solverToInvoke>
</general>

</osol>

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 81 / 134

OS: Specifying a Solver

OSSolverService -osil ../../data/osilFiles/p0033.osil
-solver cbc

To solve alinear program set the solver options to:

clp

dylp

To solve amixed-integer linear program set the solver options to:

cbc

symphony

To solve acontinuous nonlinear program set the solver options to:

ipopt

To solve amixed-integer nonlinear program set the solver options to:

bonmin

couenne

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 82 / 134

OS: File formats

What is the point of the OSiL format?
Provides a single interchange standard for all classes of mathematical programs.
Makes it easy to use existing tools for defining Web services,etc.
Generally, however, one would not build an OSiL file directly.

To construct an OSiL file, there are several routes.
Use a modeling language—AMPL, GAMS, and MPL work with COIN-OR solvers.
Use FlopC++.
Build the instance in memory using COIN-OR utilities.

There are also result and options languages for specifying options to a solver and
getting results back.

XML makes it easy to display the results in a standard templated format.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 84 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 85 / 134

Building Applications

After mastering black box solvers, the next step is to try building a custom
applications.

There are two basic routes
Calling the library as a black box through the API.
Customizing the library through callbacks and customization classes.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 87 / 134

Building Applications: APIs

Using SYMPHONY API

#include "symphony.h"

int main(int argc, char **argv)
{

sym_environment *env = sym_open_environment();

sym_parse_command_line(env, argc, argv);

sym_load_problem(env);

sym_solve(env);

sym_close_environment(env);

return(0);
}

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 88 / 134

Linking to COIN Libraries: Distribution

bin

lib
python2.*/site-packages
pkg-config

share/coin
doc
Data

include/coin

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 89 / 134

Linking to COIN Libraries: Usingpkg-config

pkg-config is a utility available on most *nix systems.

It helps automatically determine how to build against installed libraries.

To determine the libraries that need to be linked against, the command is

pkg-config --libs cbc

To determine the flags that should be given to the compiler, the command is

pkg-config --cflags cbc

Note that the user doesn’t need to know what any of the downstream
dependencies are.

Depending on the install location, may need to set the environment variable
PKG_CONFIG_PATH.

The .pc files are installed in

/path/to/install/location/lib/pkgconfig

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 90 / 134

Linking to COIN Libraries:pkg-config in a Makefile

Thepkg-config command can be used to vastly simplify the Makefiles used
to build project that link with COIN.

LIBS = ‘PKG_CONFIG_PATH=/path/to/pc-files pkg-config --libs os‘
CFLAGS = ‘PKG_CONFIG_PATH=/path/to/pc-files pkg-config --cflags os‘

.cpp.o:
$(CXX) \$(CFLAGS) -c -o file.cpp

$(EXE):
$(CXX) \$(CFLAGS) -o app.exe $(OBJS) \$(LIBS)

Note that the auto tools will automatically produce Makefiles that utilize
pkg-config.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 91 / 134

Libtool Versioning (Shared Libraries)

Libtools versioning allows smooth upgrading without breaking existing builds.

The libtool version number indicates backward compatibility.

Versions of the same library can be installed side-by-side (version number is
encoded in the name).

When a new version of a library is installed, codes built against the older library
are automatically linked to the new version (if it is backward compatible).

Based on concepts ofage, current, andrevision.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 92 / 134

A Note About Configuration Headers

One of the most recent enhancements to the build system is better handling of
configuration header files.

These are the files that contain settings specific to a platform or individual user’s
set-up.

In all cases, the header file to include to get these settings is called
ConfigXxx.h. From this file, the proper additional file will be included.

For each project, the defined symbols are now divided into public and private
sets, with a generated and default header for each set.

config.h (private)
config_default.h (private)
config_xxx.h (public)
config_xxx_default.h (public)

Which header to include is controlled by whether the symbolXXX_BUILD is
defined or not.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 93 / 134

Finding Code Snippets and Examples

Many projects have a directory with examples that show how tolink to the
library.

The examples typically reside in theexamples/ directory of the project’s
source tree.

In the near future, they will be installed as part of the binary distribution.

If you build from source on a *nix platform, custom Makefiles are produced that
allow easy linking to installed libraries.

Visual Studio project files are also available for many examples.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 95 / 134

CoinBazaar and Application Templates

CoinBazaar is a collection of examples, utilities, and light-weight applications
built using COIN-OR.

Application Templates is a project within CoinBazaar that provides templates for
different kinds of projects.

In CoinAll, it’s in theexamples directory.

Otherwise, get it with

svn co
https://projects.coin-or.org/svn/CoinBazaar/projects/ApplicationTemplates/releases/1.2.2

Examples

Branch-cut-price

Algorithmic differentiation

Adding Cgl cuts

...

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 97 / 134

Building Blocks: Open Solver Interface

Uniform API for a variety of solvers: CBC, CLP, CPLEX, DyLP, FortMP,
GLPK, Mosek, OSL, Soplex, SYMPHONY, the Volume Algorithm,
XPRESS-MP supported to varying degrees.

Read input from MPS or CPLEX LP files or construct instances using COIN-OR
data structures.

Manipulate instances and output to MPS or LP file.

Set solver parameters.

Calls LP solver for LP or MIP LP relaxation.

Manages interaction with dynamic cut and column generators.

Calls MIP solver.

Returns solution and status information.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 98 / 134

Building Blocks: Open Solver Interface

Uniform API for a variety of solvers: CBC, CLP, CPLEX, DyLP, FortMP,
GLPK, Mosek, OSL, Soplex, SYMPHONY, the Volume Algorithm,
XPRESS-MP supported to varying degrees.

Read input from MPS or CPLEX LP files or construct instances using COIN-OR
data structures.

Manipulate instances and output to MPS or LP file.

Set solver parameters.

Calls LP solver for LP or MIP LP relaxation.

Manages interaction with dynamic cut and column generators.

Calls MIP solver.

Returns solution and status information.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 99 / 134

Building Blocks: Cut Generator Library

A collection of cutting-plane generators and management utilities.

Interacts with OSI to inspect problem instance and solutioninformation and get
violated cuts.

Cuts include:
Combinatorial cuts: AllDifferent, Clique, KnapsackCover, OddHole
Flow cover cuts
Lift-and-project cuts
Mixed integer rounding cuts
General strengthening: DuplicateRows, Preprocessing, Probing, SimpleRounding

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 100 / 134

Building Blocks: Calling a Solver with OS

Step 1: Construct an instance in a solver-independent format using the OS API.
Step 2:Create a solver object

CoinSolver *solver = new CoinSolver();
solver->sSolverName = "clp";

Step 3: Feed the solver object the instance created in Step 1.

solver->osinstance = osinstance;

Step 4: Build solver-specific model instance

solver->buildSolverInstance();

Step 5: Solve the problem.

solver->solve();

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 101 / 134

Building an OS Instance

TheOSInstance class provides an API for constructing models and getting those
models into solvers.

set() andadd() methods for creating models.

get() methods for getting information about a problem.

calculate() methods for finding gradient and Hessians using algorithmic
differentiation.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 103 / 134

Building an OS Instance (cont.)

Create anOSInstance object.

OSInstance *osinstance = new OSInstance();

Put some variables in

osinstance->setVariableNumber(2);
osinstance->addVariable(0, "x0", 0, OSDBL_MAX, ’C’, OSNAN, "");
osinstance->addVariable(1, "x1", 0, OSDBL_MAX, ’C’, OSNAN, "");

There are methods for constructing

the objective function
constraints with all linear terms
quadratic constraints
constraints with general nonlinear terms

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 104 / 134

Building Linear Models

CoinUtils has a number of utilities for constructing instances.
PackedMatrix andPackedVector classes.
CoinBuild
CoinModel

Osi provides an interface for building models and getting them into solvers for
linear probes.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 106 / 134

Customization through Callbacks and Inheritance

A number of the solvers can be customized with callbacks for adding such things
as

Valid inequalities

Heuristics

Branching

These include Clp, Cbc, SYMPHONY, Bcp, DIP, and CHiPPS.

In Dippy, callbacks can be written in Python, providing convenient
customization options.

Most other frameworks require coding in C/C++.

On the TODO list is to enable Python callbacks in more projects.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 108 / 134

Dippy Callbacks

def solve_subproblem(prob, index, redCosts, convexDual):
...
return knapsack01(obj, weights, CAPACITY)

def knapsack01(obj, weights, capacity):
...
return solution

def first_fit(prob):
...
return bvs

prob.init_vars = first_fit
def choose_branch(prob, sol):

...
return ([], down_branch_ub, up_branch_lb, [])

def generate_cuts(prob, sol):
...
return new_cuts

def heuristics(prob, xhat, cost):
...
return sols

dippy.Solve(prob, {’doPriceCut’: ’1’})
T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 109 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 110 / 134

SYMPHONY (with M. Guzelsoy and A. Mahajan)

Using SYMPHONY
C Library API
OSI C++ interface
Interactive shell
AMPL/GMPL, GAMS, FLOPC++
Framework for customization

Advanced Features
Shared and distributed memory parallel MIP (since 1994)
Biobjective MIP
Warm starting for MIP
Sensitivity analysis for MIP

SYMPHONY Applications
TSP/VRP
Set Partitioning Problem
Mixed Postman Problem
Capacitated Node Routing
Multicriteria Knapsack

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 111 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 112 / 134

DIP Framework: Motivation

DIP Framework

DIP is a software framework that provides a virtual sandbox for testing and com-
paring various decomposition-based bounding methods.

It’s difficult to compare variants of decomposition-based algorithms.

The method for separation/optimization over a given relaxation is the primary
custom component of any of these algorithms.

DIP abstracts the common, generic elements of these methods.

Key: The user defines methods in the space of the compact formulation.
The framework takes care of reformulation and implementation for all variants.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 113 / 134

Traditional Decomposition Methods

TheCutting Plane Method (CP)iteratively builds anouter approximation ofP ′ by solving acutting plane
generation subproblem.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 114 / 134

Traditional Decomposition Methods

TheCutting Plane Method (CP)iteratively builds anouter approximation ofP ′ by solving acutting plane
generation subproblem.

The Dantzig-Wolfe Method (DW)iteratively builds aninner approximation ofP ′ by solving acolumn
generation subproblem.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 114 / 134

Traditional Decomposition Methods

TheCutting Plane Method (CP)iteratively builds anouter approximation ofP ′ by solving acutting plane
generation subproblem.

The Dantzig-Wolfe Method (DW)iteratively builds aninner approximation ofP ′ by solving acolumn
generation subproblem.

TheLagrangian Method (LD)iteratively solves aLagrangian relaxation subproblem.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 114 / 134

Common Threads

TheLP boundis obtained by optimizing over the intersection of two explicitly
defined polyhedra.

zLP = min
x∈Rn

{c⊤x | x ∈ Q′ ∩ Q′′}

Thedecomposition boundis obtained by optimizing over the intersection of one
explicitly defined polyhedron and one implicitly defined polyhedron.

zCP = zDW = zLD = zD = min
x∈Rn

{c⊤x | x ∈ P ′ ∩ Q′′} ≥ zLP

Traditional decomposition-based bounding methods contain two primary steps

Master Problem: Update the primal/dualsolutioninformation.

Subproblem: Update theapproximationof P ′: SEP(x,P ′) or
OPT(c,P ′).

Integrated decomposition methodsfurther improve the bound by considering two
implicitly defined polyhedra whose descriptions are iteratively refined.

Price and Cut(PC)

Relax and Cut(RC)

Decompose and Cut(DC)

Q′′

Q
′
∩ Q

′′

c⊤

Q′′

c⊤

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 115 / 134

DIP Framework (with Matt Galati)

TheDIP framework, written in C++, is accessed through two user interfaces:
Applications Interface: DecompApp
Algorithms Interface: DecompAlgo

DIP provides the bounding method for branch and bound.

ALPS(Abstract Library for Parallel Search) provides the framework for parallel
tree search.

AlpsDecompModel : public AlpsModel
a wrapper class that calls (data access) methods fromDecompApp

AlpsDecompTreeNode : public AlpsTreeNode
a wrapper class that calls (algorithmic) methods fromDecompAlgo

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 116 / 134

Automatic Structure Detection

For unstructured problems, block structure may be detectedautomatically.

This is done using hypergraph partitioning methods.

We map each row of the original matrix to a hyperedge and the nonzero elements
to nodes in a hypergraph.

Hypergraph partitioning results in identification of the blocks in a
singly-bordered block diagonal matrix.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 117 / 134

Hidden Block Structure

0 500 1000 1500 2000 2500

0

200

400

600

nz = 8937

MIPLIB2003 instance : p2756

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 118 / 134

Hidden Block Structure

0 500 1000 1500 2000 2500

0

200

400

600

Instance p2756 with 10 blocks partitioning

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 119 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 120 / 134

CHiPPS (with Yan Xu)

CHiPPS stands for COIN-OR High Performance Parallel Search.

CHiPPS is a set of C++ class libraries for implementingtree searchalgorithms
for both sequential and parallel environments.

CHiPPS Components (Current)

ALPS (Abstract Library for Parallel Search)

is the search-handling layer (parallel and sequential).
provides various search strategies based on node priorities.

BiCePS (Branch, Constrain, and Price Software)

is the data-handling layer for relaxation-based optimization.
adds notion ofvariablesandconstraints.
assumes iterative bounding process.

BLIS (BiCePS Linear Integer Solver)

is a concretization of BiCePS.
specific to models withlinearconstraints and objective function.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 121 / 134

ALPS: Design Goals

Intuitive object-oriented class structure.

AlpsModel

AlpsTreeNode

AlpsNodeDesc

AlpsSolution

AlpsParameterSet

Minimal algorithmic assumptions in the base class.

Support for a wide range of problem classes and algorithms.

Support for constraint programming.

Easy for user to develop a custom solver.

Design forparallel scalability, but operate effective in a sequential environment.

Explicit support formemory compression techniques (packing/differencing)
important for implementing optimization algorithms.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 122 / 134

ALPS: Overview of Features

The design is based on a very general concept ofknowledge.

Knowledge is sharedasynchronouslythroughpools andbrokers.

Management overhead is reduced with themaster-hub-worker paradigm.

Overhead is decreased usingdynamic task granularity.

Two static load balancingtechniques are used.

Threedynamic load balancingtechniques are employed.

Usesasynchronousmessaging to the highest extent possible.

A scheduler on each process manages tasks like

node processing,

load balaning,

update search states, and

termination checking, etc.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 123 / 134

BiCePS: Support for Relaxation-based Optimization

Adds notion ofmodeling objects (variables and constraints).

Models are built from sets of such objects.

Bounding is an iterative process that produces new objects.

A differencing scheme is used to store the difference between the descriptions of
a child node and its parent.

struct BcpsObjectListMod template<class T>
{ struct BcpsFieldListMod

int numRemove; {
int* posRemove; bool relative;
int numAdd; int numModify;
BcpsObject **objects; int *posModify;
BcpsFieldListMod<double> lbHard; T *entries;
BcpsFieldListMod<double> ubHard; };
BcpsFieldListMod<double> lbSoft;
BcpsFieldListMod<double> ubSoft;

};

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 124 / 134

BLIS: A Generic Distributed Solver for MILP

MILP

min cTx (1)

s.t. Ax ≤ b (2)

xi ∈ Z ∀ i ∈ I (3)

where(A, b) ∈ R
m×(n+1), c ∈ R

n.

Basic Algorithmic Components

Bounding method.

Branching scheme.

Object generators.

Heuristics.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 125 / 134

Outline

1 Introduction to COIN
COIN-OR Foundation
Overview of Projects

2 Overview of Optimization Suite
Installing the COIN Optimization Suite
Documentation and Support

3 Entry Points
Modeling Systems
Python Tools
Command-line Tools
Building Applications

4 Advanced Development
SYMPHONY
DIP
CHiPPS
Working with Source

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 126 / 134

Build Tools

Build system is based on the GNU auto tools.
Build scripts work on any platform
Externals can be used to get complete sources (including dependencies).
Projects are only loosely coupled and can be installed individually.
Scripts available for upgrading to latest releases.
Smooth upgrade path.

Features
Libtool library versioning.
Support for pkg-config.
Build against installed binaries.
Wrapper libraries for third party open source projects.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 127 / 134

Monolithic Builds from Source (*Nix)

Suppose you want to check out CoinAll (or any other project) and build all
required libraries and binaries from source.

Monolithic Build
svn co http://projects.coin-or.org/svn/CoinBinary/CoinAll/stable/1.6 CoinAll-1.6
cd CoinAll-1.6
mkdir build
cd build
../configure --enable-gnu-packages -C --prefix=/path/to/install/location
make -j 2
make test
make install

Note that after building, the examples will be installed with Makefiles in project
subdirectories.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 128 / 134

ThirdParty Projects

There are a number of open-source projects that COIN projects can link to, but
whose source we do not distribute.

We provide convenient scripts for downloading these projects and a build
harness for build them.

We also produce libraries and pkg-config files.
AMPL Solver Library
Blas
Lapack
Glpk
Metis
MUMPS
Soplex
SCIP
HSL
FilterSQP

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 129 / 134

Parallel Builds

SYMPHONY, DIP, CHiPPS, and Cbc all include the ability to solve in parallel.
CHiPPS uses MPI and is targeted at massive parallelism (it would be possible to
develop a hybrid algorithm, however).
SYMPHONY and Cbc both have shared memory threaded parallelism.
DIP’s parallel model is still being implemented but is a hybrid distributed/shared
approach.

To enable shared memory for Cbc, option is-enable-cbc-parallel.

For SYMPHONY, it’s-enable-openmp

For CHiPPS, specify the location of MIP with-with-mpi-incdir and
-with-mpi-lib:

configure --enable-static
--disable-shared
--with-mpi-incdir=/usr/include/mpich2
--with-mpi-lib="-L/usr/lib -lmpich"
MPICC=mpicc
MPICXX=mpic++

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 130 / 134

Other Configure-time Options

Over-riding variables:CC, CXX, F77

-prefix

-enable-debug

-enable-gnu-packages

-C

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 131 / 134

Building Individual Projects from Source (*Nix)

Assuming some libraries are already installed in
/path/to/install/location

Tweaking a Single Library
svn co http://projects.coin-or.org/svn/Cbc/stable/2.6/Cbc Cbc-2.6
cd Cbc-2.6
mkdir build
cd build
../configure --enable-gnu-packages -C --prefix=/path/to/install/location
make -j 2
make test
make install

Note that this checks out Cbc without externals and links against installed
libraries.

“Old style” builds will still work with all dependencies checked out using SVN
externals.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 132 / 134

Building Individual Projects from Source (Windows)

Building with either CYGWIN or MinGW compilers is just as on other *nix
systems.

For Visual Studio, it is possible to build with thecl compiler using the
autotools!

To build through the IDE, MSVC++ project files provided for most projects.

Current standard version of the compiler is v10.

Projects requiring Fortran are a problem with the MSVC++ IDE.

Keeping settings synced across all projects has always beenpainful.
Important: We recently switched to using property sheets to save common settings.
Change the settings on the property sheets, not in the individual projects and
configurations!!!!
It is incredibly easy to slip up on this and the repercussionsare always annoyingly
difficult to deal with.

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 133 / 134

COIN needs your help!
Contribute a project

Help develop an existing project

Use projects and report bugs

Volunteer to review new projects

Develop documentation

Develop Web site

Chair a committee

Questions? & Thank You!

T.K. Ralphs (Lehigh University) COIN-OR 7 May, 2013 134 / 134

	Introduction to COIN
	COIN-OR Foundation
	Overview of Projects

	Overview of Optimization Suite
	Installing the COIN Optimization Suite
	Documentation and Support

	Entry Points
	Modeling Systems
	Python Tools
	Command-line Tools
	Building Applications

	Advanced Development
	SYMPHONY
	DIP
	CHiPPS
	Working with Source

	Conclusion

