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Tree Search Algorithms

Tree search algorithms systematically search the nodes of an
acyclic graph for certain goal nodes.

Root
Initial State

Goal State

Tree search algorithms have been applied in many areas such as

Constraint satisfaction,
Game search,
Constraint Programming, and
Mathematical programming.
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Elements of Tree Search Algorithms

A generic tree search algorithm consists of the following
elements:

Generic Tree Search Algorithm

Processing method: Is this a goal node?

Fathoming rule: Can node can be fathomed?

Branching method: What are the successors of this node?

Search strategy: What should we work on next?

The algorithm consists of choosing a candidate node, processing
it, and either fathoming or branching.

During the course of the search, various information (knowledge)
is generated and can be used to guide the search.
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Parallelizing Tree Search Algorithms

In general, the search tree can be very large.

The generic algorithm appears very easy to parallelize, however.

The appearance is deceiving, as the search graph is not
generally known a priori and naïve parallelization strategies are
not generally effective.

Ralphs& Xu CHiPPS



Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Tree Search Algorithms
Parallel Computing
Previous Work

Parallel Overhead

The amount of parallel overhead determines the scalability.

Major Components of Parallel Overhead in Tree Search

Communication Overhead (cost of sharing knowledge)

Idle Time

Handshaking/Synchronization (cost of sharing knowledge)
Task Starvation (cost of not sharing knowledge)
Ramp Up Time
Ramp Down Time

Performance of Redundant Work (cost of not sharing
knowledge)

Knowledge sharing is the main driver of efficiency.

This breakdown highlights the tradeoff between centralized and
decentralized knowledge storage and decision-making.
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Previous Work

Previous tree search codes:

Game tree search: ZUGZWANG and APHID

Constraint programming: ECLiPSe, G12, etc.
Optimization:

Commercial: CPLEX, Lindo, Mosek, SAS/OR, Xpress, etc.
Serial: ABACUS, bc-opt, COIN/CBC, GLPK, MINTO, SCIP, etc.
Parallel: COIN/BCP, FATCOP, PARINO, PICO, SYMPHONY, etc.

However, to our knowledge:

Few studies of general tree search algorithms, and only one
framework (PIGSeL).

No study has emphasized scalability for data-intensive
applications.

Many packages are not open source or not easy to specialize for
particular problem classes.
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The COIN-OR High-Performance Parallel Search
Framework

CHiPPS has been under development since 2000 in partnership
with IBM, NSF, and the COIN-OR Foundation.

The broad goal was to develop a successor to SYMPHONY and
BCP, two previous parallel MIP solvers.

It consists of a hierarchy of C++ class libraries for implementing
general parallel tree search algorithms.

It is an open source project hosted by COIN-OR.
Design goals

Scalability
Usability
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COIN-OR

The software discussed in this talk is available for free download
from the Computational Infrastructure for Operations Research
Web site

projects.coin-or.org/CHiPPS

The COIN-OR Foundation (www.coin-or.org)
An non-profit educational foundation promoting the development
and use of interoperable, open-source software for operations
research.
A consortium of researchers in both industry and academia
dedicated to improving the state of computational research in OR.

The COIN-OR Repository
A library of interoperable software tools for building optimization
codes, as well as some stand-alone packages.
A venue for peer review of OR software tools.
A development platform for open source projects, including an SVN
repository, project management tools, etc.
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CHiPPS: Design Goals

Intuitive object-oriented class structure.
AlpsModel
AlpsTreeNode
AlpsNodeDesc
AlpsSolution
AlpsParameterSet

Minimal algorithmic assumptions in the base class.
Support for a wide range of problem classes and algorithms.
Support for constraint programming.

Easy for user to develop a custom solver.

Design for parallel scalability, but operate effective in a
sequential environment.

Explicit support for memory compression techniques
(packing/differencing) important for implementing optimization
algorithms.
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CHiPPS: Overview of Features

The design is based on a very general concept of knowledge.

Knowledge is shared asynchronously through pools and brokers.

Management overhead is reduced with the master-hub-worker
paradigm.

Overhead is decreased using dynamic task granularity.

Two static load balancing techniques are used.

Three dynamic load balancing techniques are employed.

Uses asynchronous messaging to the highest extent possible.
A scheduler on each process manages tasks like

node processing,
load balancing,
update search states, and
termination checking, etc.
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CHiPPS Library Hierarchy

ALPS (Abstract Library for Parallel
Search)

search-handling layer
prioritizes based on quality

BiCePS (Branch, Constrain, and Price
Software)

data-handling layer for
relaxation-based optimization
variables and constraints
iterative bounding procedure

BLIS (BiCePS Linear Integer Solver)
concretization of BiCePS
linear constraints and objective
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ALPS: Knowledge Sharing

All knowledge to be shared is stored in classes derived from a
single base class and has an associated encoded form.
Encoded form is used for identification, storage, and
communication.
Knowledge is maintained by one or more knowledge pools.
The knowledge pools communicate through knowledge brokers.
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ALPS: Master-Hub-Worker Paradigm

Master WorkersHubs
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ALPS: Task Granularity

Task granularity is a crucial element of parallel efficiency.

In CHiPPS, each worker is capable of exploring an entire subtree
autonomously.

By stopping the search prematurely, the task granularity can be
adjusted dynamically.

As granularity increases, communication overhead decreases,
but other sources of overhead increase.
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ALPS: Synchronization

As much as possible, we have eliminated handshaking and
synchronization.

A knowledge broker can work completely asynchronously, as
long as its local node pool is not empty.

This asynchronism can result in an increase in the performance
of redundant work.

To overcome this, we need good load balancing.
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ALPS: Load Balancing

Static
Performed at startup
Two types

Two-level root initialization.
Spiral initialization.

Dynamic
Performed periodically and as needed.
Balance by quantity and quality.
Keep subtrees together to enable differencing.
Three types

Inter-cluster dynamic load balancing,
Intra-cluster dynamic load balancing, and
Worker-initiated dynamic load balancing.

Workers do not know each others’ workloads.
Donors and receivers are matched at both the hub and master
level.
Three schemes work together to ensure workload is balanced.
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ALPS: Class Hierarchy
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BiCePS: Basic Notions

BiCePS introduces the notion of variables and constraints
(generically referred to as objects).

Objects are abstract entities with values and bounds.

They are used to build mathematical programming models.

Search tree nodes consist of subproblems described by sets of
variables and constraints.
Key assumptions

Algorithm is relaxation-based branch-and-bound.
Bounding is an iterative procedure involving generation of variables
and constraints.

Ralphs& Xu CHiPPS



Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

BiCePS: Differencing Scheme

Descriptions of search tree nodes can be extremely large.

For this reason, subtrees are stored using a differencing scheme.

Nodes are described using differences from the parent is this
description is smaller.

Again, there is a tradeoff between memory savings and
additional computation.

This approach requires keeping subtrees whole as much as
possible.

This impacts load balancing significantly.
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BLIS: A Generic Solver for MILP

MILP

min cTx (1)

s.t. Ax ≤ b (2)

xi ∈ Z ∀ i ∈ I (3)

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n, I ⊆ {1, 2, . . . , n}.

Basic Algorithmic Elements

Search strategy.

Branching scheme.

Object generators.

Heuristics.

Ralphs& Xu CHiPPS



Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

BLIS: Branching Scheme

BLIS Branching scheme comprises three components:
Branching object: has feasible region and can be branched on.
Branching candidate:

created from objects not in their feasible regions or
contains instructions for how to conduct branching.

Branching method:
specifies how to create a set of branching candidates.
has the method to compare objects and choose the best one.
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BLIS: Constraint Generators

BLIS constraint generator:
provides an interface between BLIS and the algorithms in
COIN/Cgl.
provides a base class for deriving specific generators.
has the ability to specify rules to control generator:

where to call: root, leaf?
how many to generate?
when to activate or disable?

contains the statistics to guide generating.

Ralphs& Xu CHiPPS



Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Introduction
ALPS: Abstract Library For Parallel Search
BiCePS: Branch, Constrain, and Price Software
BLIS: BiCePS Linear Integer Solver

BLIS: Heuristics

BLIS primal heuristic:
defines the functionality to heuristically search for solutions.
has the ability to specify rules to control heuristics.

where to call: before root, after bounding, at solution?
how often to call?
when to activate or disable?

collects statistics to guide the heuristic.
provides a base class for deriving specific heuristics.
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Implementing a Knapsack Solver

As a demonstration application, we implemented a solver for the
knapsack problem using ALPS.

The solver uses the closed form solution of the LP relaxation as
a bound.

Branching is on the fractional variable.
Implementation consists of deriving a few classes to specify the
algorithm.

KnapModel
KnapTreeNode
KnapSolution
KnapParams

Once the classes have been implemented, the user writes a
main function.

The only difference between parallel and serial code is the
knowledge broker class that is used.
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Sample main() Function

int main(int argc, char* argv[])
{

KnapModel model;
#if defined(SERIAL)

AlpsKnowledgeBrokerSerial knap(argc, argv, model);
#elif defined(PARALLEL_MPI)

AlpsKnowledgeBrokerMPI knap(argc, argv, model);
#endif

knap.registerClass("MODEL", new KnapModel);
knap.registerClass("SOLUTION", new KnapSolution);
knap.registerClass("NODE", new KnapTreeNode);
knap.search();
knap.printResult();
return 0;

}
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The Vehicle Routing Problem

The VRP is a combinatorial problem whose ground set is the edges
of a graph G(V, E). Notation:

V is the set of customers and the depot (0).

d is a vector of the customer demands.

k is the number of routes.

C is the capacity of a truck.

A feasible solution is composed of:

a partition {R1, . . . , Rk} of V such that
∑

j∈Ri
dj ≤ C, 1 ≤ i ≤ k;

a permutation σi of Ri ∪ {0} specifying the order of the customers
on route i.
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Standard IP Formulation for the VRP

VRP Formulation
∑n

j=1 x0j = 2k
∑n

j=1 xij = 2 ∀i ∈ V \ {0}
∑

i∈S
j 6∈S

xij ≥ 2b(S) ∀S ⊂ V \ {0}, |S| > 1.

b(S) = lower bound on the number of trucks required to service S
(normally

⌈(
∑

i∈S di
)

/C
⌉

).

The number of constraints in this formulation is exponential.

We must therefore generate the constraints dynamically.

A solver can be implemented in BLIS by deriving just a few
classes.
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Implementing the VRP Solver

The algorithm is defined by deriving the following classes.
VrpModel
VrpSolution
VrpCutGenerator
VrpHeuristic
VrpVariable
VrpsParams

Once the classes have been implemented, the user writes a
main function as before.
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Computational Results: Platforms

Clemson Cluster

Machine: Beowulf cluster with 52 nodes
Node: dual core PPC, speed 1654 MHz
Memory: 4G RAM each node
Operating System: Linux
Message Passing: MPICH

SDSC Blue Gene System

Machine: IBM Blue Gene with 3,072 compute nodes
Node: dual processor, speed 700 MHz
Memory: 512 MB RAM each node
Operating System: Linux
Message Passing: MPICH
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KNAP Scalability on Difficult Instances

Tested the 26 instances on the SDSC Blue Gene.
The default algorithm was used except that

the static load balancing scheme is the two-level root initialization,
the number of nodes generated by the master varies from 10000 to
30000 depends on individual instance,
the number of nodes generated by a hub varies from 10000 to
20000 depends on individual instance,
the size a unit work is 300 nodes; and
multiple hubs were used.

P Node Ramp-up Idle Ramp-down Wallclock Eff
64 14733745123 0.69% 4.78% 2.65% 6296.49 1.00
128 14776745744 1.37% 6.57% 5.26% 3290.56 0.95
256 14039728320 2.50% 7.14% 9.97% 1672.85 0.94
512 13533948496 7.38% 4.30% 14.83% 877.54 0.90
1024 13596979694 8.33% 3.41% 16.14% 469.78 0.84
2048 14045428590 9.59% 3.54% 22.00% 256.22 0.77

KNAP scales well even when using several thousand processors.
Ramp-up and ramp-down overhead inevitably increase.
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BLIS Scalability for Moderately Difficult Instances

Selected 18 MILP instances from Lehigh/CORAL, MIPLIB 3.0,
MIPLIB 2003, BCOL, and markshare.
Tested on the Clemson cluster.

Instance Nodes Ramp Idle Ramp Comm Wallclock Eff
-up -down Overhead

1 P 11809956 − − − − 33820.53 1.00
Per Node − − − − 0.00286
4P 11069710 0.03% 4.62% 0.02% 16.33% 10698.69 0.79
Per Node 0.03% 4.66% 0.00% 16.34% 0.00386
8P 11547210 0.11% 4.53% 0.41% 16.95% 5428.47 0.78
Per Node 0.10% 4.52% 0.53% 16.95% 0.00376
16P 12082266 0.33% 5.61% 1.60% 17.46% 2803.84 0.75
Per Node 0.27% 5.66% 1.62% 17.45% 0.00371
32P 12411902 1.15% 8.69% 2.95% 21.21% 1591.22 0.66
Per Node 1.22% 8.78% 2.93% 21.07% 0.00410
64P 14616292 1.33% 11.40% 6.70% 34.57% 1155.31 0.46
Per Node 1.38% 11.46% 6.72% 34.44% 0.00506
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BLIS Scalability for Very Difficult Instances

Tests on Clemson’s palmetto cluster (60 on the Top 500 list,
11/2008, Linux, MPICH, 8-core 2.33GHz Xeon/Opteron mix,
12-16GB RAM).

Tests use one processor per node.
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Raw Computational Results
Name 256 128 64 1

mcf2 926 1373 2091 43059
neos-1126860 2184 1830 2540 39856
neos-1122047 1676 1125 1532 NS
neos-1413153 4230 3500 2990 20980
neos-1456979 78.06% NS NS
neos-1461051 396 1082 536 NS
neos-1599274 1500 8108 9075
neos-548047 137.29% 376.48% 482%
neos-570431 1034 1255 1308 21873
neos-611838 712 956 886 8005
neos-612143 565 1716 1315 4837
neos-693347 1.28% 1.70% NS
neos-912015 538 438 275 10674
neos-933364 6.67% 6.79% 11.80%
neos-933815 6.54% 8.77% 32.85%
neos-934184 6.67% 6.76% 9.15%
neos18 30.78% 30.78% 79344
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Speedups

Name 256 128 64

mcf2 46.5 31.36 20.59
neos-1126860 18.25 21.78 15.69
neos-1413153 4.96 5.99 7.02
neos-1599274 6.05 1.12
neos-570431 21.15 17.43 16.72
neos-611838 11.24 8.37 9.03
neos-612143 8.56 2.82 3.68
neos-912015 19.84 24.37 38.81

Ralphs& Xu CHiPPS



Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

Efficiency

Name 256 128 64

mcf2 0.18 0.25 0.32
neos-1126860 0.07 0.17 0.25
neos-1413153 0.02 0.05 0.11
neos-1599274 0.05 0.02
neos-570431 0.08 0.14 0.26
neos-611838 0.04 0.07 0.14
neos-612143 0.03 0.02 0.06
neos-912015 0.08 0.19 0.61
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ALPS

Our methods implemented in ALPS seem effective in improving
scalibility.

The framework is useful for implementing serial or parallel tree
search applications.

The KNAP application achieves very good scalability.
There is still much room for improvement

load balancing,
fault tolerance,
hybrid architectures,
grid enable.

Ralphs& Xu CHiPPS



Introduction
The CHiPPS Framework

Applications
Results and Conclusions

Computational Experiments
Conclusions

BLIS

The performance of BLIS in serial mode is favorable when
compared to state of the art non-commercial solvers.

The scalability for solving generic MILPs is highly dependent on
properties of individual instances.

Based on BLIS, applications like VRP/TSP can be implemented
in a straightforward way.
Much work is still needed

Callable library API
Support for column generation
Enhanced heuristics
Additional capabilities
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Obtaining CHiPPS

The CHiPPS framework is available for download at

https://projects.coin-or.org/CHiPPS
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Thank You!

Questions?
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