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Tree Search Algorithms

@ Tree search algorithms systematically search the nodes of an
acyclic graph for certain goal nodes.
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/

@ O o

Goal State

@ Tree search algorithms have been applied in many areas such as

@ Constraint satisfaction,

@ Game search,
@ Constraint Programming, and

)

Mathematical programming.
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Introduction

Tree Search Algorithms

Elements of Tree Search Algorithms

@ A generic tree search algorithm consists of the following
elements:

Generic Tree Search Algorithm

@ Processing method: Is this a goal node?

@ Fathoming rule: Can node can be fathomed?
@ Branching method: What are the successors of this node?
@ Search strategy: What should we work on next?

@ The algorithm consists of choosing a candidate node, processing
it, and either fathoming or branching.

@ During the course of the search, various information (knowledge)

is generated and can be used to guide the search.
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lel Computing

Parallelizing Tree Search Algorithms

@ In general, the search tree can be very large.
@ The generic algorithm appears very easy to parallelize, however.

Root
Initial State

@ The appearance is deceiving, as the search graph is not

generally known a priori and naive parallelization strategies are %
not generally effective.
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Tree Search Algorithms

Previous Work

Parallel Overhead

@ The amount of parallel overhead determines the scalability.

Major Components of Parallel Overhead in Tree Search

@ Communication Overhead (cost of sharing knowledge)
@ Idle Time

@ Handshaking/Synchronization (cost of sharing knowledge)
@ Task Starvation (cost of not sharing knowledge)

@ Ramp Up Time

@ Ramp Down Time

@ Performance of Redundant Work (cost of not sharing
knowledge)

@ Knowledge sharing is the main driver of efficiency.

@ This breakdown highlights the tradeoff between centralized and
decentralized knowledge storage and decision-making. %
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Previous Work

Previous tree search codes:
@ Game tree search: ZUGZWANG and APHID
@ Constraint programming: ECLIPSe, G12, etc.
@ Optimization:
@ Commercial: CPLEX, Lindo, Mosek, SAS/OR, Xpress, etc.

@ Serial: ABACUS, bc-opt, COIN/CBC, GLPK, MINTO, SCIP, etc.
@ Parallel: COIN/BCP, FATCOP, PARINO, PICO, SYMPHONY, etc.

However, to our knowledge:

@ Few studies of general tree search algorithms, and only one
framework (PIGSel).

@ No study has emphasized scalability for data-intensive
applications.

@ Many packages are not open source or not easy to specialize for
particular problem classes.
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The CHiPPS Framework

The OIN-OR ' gh--erformance ~arallel ~earch
Framework

@ CHIiPPS has been under development since 2000 in partnership
with IBM, NSF, and the COIN-OR Foundation.

@ The broad goal was to develop a successor to SYMPHONY and
BCP, two previous parallel MIP solvers.

@ It consists of a hierarchy of C++ class libraries for implementing
general parallel tree search algorithms.

@ It is an open source project hosted by COIN-OR.

@ Design goals

@ Scalability
9 Usability
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COIN-OR

@ The software discussed in this talk is available for free download
from the Computational Infrastructure for Operations Research
Web site

proj ects. coi n-or. org/ CH PPS

@ The COIN-OR Foundation (Wwww. coi n- or . or g)

@ An non-profit educational foundation promoting the development
and use of interoperable, open-source software for operations
research.

@ A consortium of researchers in both industry and academia
dedicated to improving the state of computational research in OR.

@ The COIN-OR Repository

@ A library of interoperable software tools for building optimization
codes, as well as some stand-alone packages.

@ A venue for peer review of OR software tools.
@ A development platform for open source projects, including an SVN

repository, project management tools, etc.
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The CHiPPS Framework

CHIPPS: Design Goals

@ Intuitive object-oriented class structure.
o Al psivbdel
@ Al psTreeNode
o Al psNodeDesc
o Al psSol ution
@ Al psPar anet er Set
@ Minimal algorithmic assumptions in the base class.
@ Support for a wide range of problem classes and algorithms.
@ Support for constraint programming.
@ Easy for user to develop a custom solver.

@ Design for parallel scalability, but operate effective in a
sequential environment.

@ Explicit support for memory compression techniques

(packing/differencing) important for implementing optimization

algorithms.
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The CHiPPS Framework

@ The design is based on a very general concept of knowledge.
@ Knowledge is shared asynchronously through pools and brokers.

@ Management overhead is reduced with the master-hub-worker
paradigm.

@ Overhead is decreased using dynamic task granularity.

@ Two static load balancing techniques are used.

@ Three dynamic load balancing techniques are employed.

@ Uses asynchronous messaging to the highest extent possible.
)

A scheduler on each process manages tasks like

@ node processing,
¢ load balancing,
@ update search states, and

@ termination checking, etc.
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Introduction

BLI
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BiCePS: Branch, Constrain, and Pric

Int olver

CHIPPS Library Hierarchy

ALPS (Abstract Library for Parallel
Search)
@ search-handling layer
@ prioritizes based on quality
BiCePS (Branch, Constrain, and Price
Software)
@ data-handling layer for
relaxation-based optimization
@ variables and constraints
@ iterative bounding procedure
BLIS (BiCePS Linear Integer Solver)

@ concretization of BiCePS
@ linear constraints and objective
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The CHIPPS Framework ALPS: Abstract Library For Parallel Search

ALPS: Knowledge Sharing

@ All knowledge to be shared is stored in classes derived from a
single base class and has an associated encoded form.

@ Encoded form is used for identification, storage, and
communication.

@ Knowledge is maintained by one or more knowledge pools.
@ The knowledge pools communicate through knowledge brokers.

Subtree pool

i

Knnw\edge bvoker

Knowledge broker Node pool
Node puo\

Process A Solution pool Process B Solution pool
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Master Hubs Workers

G-
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The CHIPPS Framework ALPS: Abstract Library For Parallel Search

Bre

ALPS: Task Granularity

@ Task granularity is a crucial element of parallel efficiency.

@ In CHIPPS, each worker is capable of exploring an entire subtree
autonomously.

@ By stopping the search prematurely, the task granularity can be
adjusted dynamically.

@ As granularity increases, communication overhead decreases,
but other sources of overhead increase.
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The CHIPPS Framework ALPS: Abstract Library For Parallel Search

ALPS: Synchronization

@ As much as possible, we have eliminated handshaking and
synchronization.

@ A knowledge broker can work completely asynchronously, as
long as its local node pool is not empty.

@ This asynchronism can result in an increase in the performance
of redundant work.

@ To overcome this, we need good load balancing.
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The CHiPPS Framework

ALPS: Load Balancing

@ Static
o Performed at startup
@ Two types
@ Two-level root initialization.
@ Spiral initialization.
@ Dynamic
Performed periodically and as needed.
Balance by quantity and quality.

o
o Keep subtrees together to enable differencing.
9 Three types

@ Inter-cluster dynamic load balancing,
@ Intra-cluster dynamic load balancing, and
@ Worker-initiated dynamic load balancing.

Workers do not know each others’ workloads.

Donors and receivers are matched at both the hub and master
level.

@ Three schemes work together to ensure workload is balanced.

©

¢ ¢

Ralphs& Xu CHiPPS



Introduction
The CHiPPS Framework

ALPS: Abstract Library For Parallel Search
Branch, Cor

train, and Pric

ALPS: Class Hierarchy
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The CHIPPS Framework AL ract Library For Par earch
BiCePS: Branch, Constrain, and Price Software
BLIS: PS Linear Integer Solver

BiCePS: Basic Notions

@ BiCePS introduces the notion of variables and constraints
(generically referred to as objects).

@ Objects are abstract entities with values and bounds.
@ They are used to build mathematical programming models.

@ Search tree nodes consist of subproblems described by sets of
variables and constraints.
@ Key assumptions

@ Algorithm is relaxation-based branch-and-bound.
@ Bounding is an iterative procedure involving generation of variables
and constraints.
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The CHIPPS Framework AL ract Library For Par earch
BiCePS: Branch, Constrain, and Price Software
BLIS: PS Linear Integer Solver

BiCePS: Differencing Scheme

@ Descriptions of search tree nodes can be extremely large.

@ For this reason, subtrees are stored using a differencing scheme.

@ Nodes are described using differences from the parent is this
description is smaller.

@ Again, there is a tradeoff between memory savings and
additional computation.

@ This approach requires keeping subtrees whole as much as
possible.

@ This impacts load balancing significantly.
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The CHiPPS Framework

BLIS: BiCePS Linear Integer Solver

BLIS: A Generic Solver for MILP

min  c'x (1)
st. Ax<b )
X €Z Viel 3)

where Ac R™" b e R™ ceR", 1 C{1,2,...,n}.

Basic Algorithmic Elements

@ Search strategy.

@ Branching scheme.

@ Object generators.
@ Heuristics.

Ralphs& Xu CHiPPS



Introduction
The CHiPPS Framework
: and Pric
BLIS: BiCePS Linear Integer Solver

BLIS: Branching Scheme

BLIS Branching scheme comprises three components:
@ Branching object; has feasible region and can be branched on.
@ Branching candidate:

o created from objects not in their feasible regions or
@ contains instructions for how to conduct branching.

@ Branching method:

@ specifies how to create a set of branching candidates.
@ has the method to compare objects and choose the best one.

Branching Method

Best Branching Object Branching Objects
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BLIS: BiCePS Linear Integer Solver

BLIS: Constraint Generators

BLIS constraint generator:
@ provides an interface between BLIS and the algorithms in
COIN/Cql.
@ provides a base class for deriving specific generators.
@ has the ability to specify rules to control generator:
@ where to call: root, leaf?
@ how many to generate?
@ when to activate or disable?
@ contains the statistics to guide generating.

Controller =]
5 5
I 8 —

Generator Statistics %
BLIS Constraint Pool

BLIS Constraint Generator
Ralphs& Xu CHiPPS
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BLIS: Heuristics

BLIS primal heuristic:
@ defines the functionality to heuristically search for solutions.
@ has the ability to specify rules to control heuristics.
@ where to call: before root, after bounding, at solution?
@ how often to call?
@ when to activate or disable?
@ collects statistics to guide the heuristic.
@ provides a base class for deriving specific heuristics.
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Knapsack Problem
Applications Vehicle Routing

Implementing a Knapsack Solver

@ As a demonstration application, we implemented a solver for the
knapsack problem using ALPS.

@ The solver uses the closed form solution of the LP relaxation as
a bound.

@ Branching is on the fractional variable.

@ Implementation consists of deriving a few classes to specify the
algorithm.
o KnapMbdel
@ KnapTr eeNode
@ KnapSol uti on
@ KnapPar ans

@ Once the classes have been implemented, the user writes a

mai n function.
@ The only difference between parallel and serial code is the
knowledge broker class that is used.
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Knapsack Problem
Applications Vehicle Routing

Sample main() Function

int main(int argc, char* argv[])

KnapMbdel nodel ;
#i f defi ned( SERI AL)

Al psknow edgeBr oker Seri al knap(argc, argv, nodel)}
#el i f defi ned( PARALLEL_MPI)

Al psknowl edgeBr oker MPl knap(argc, argv, nodel);
#endi f

knap. regi sterd ass("MODEL", new KnapModel ) ;

knap. regi sterd ass(" SOLUTI ON', new KnapSol uti on);

knap. regi sterd ass("NODE", new KnapTr eeNode) ;

knap. search();

knap. pri nt Resul t () ;

return O;
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Applications Vehicle Routing

The Vehicle Routing Problem

The VRP is a combinatorial problem whose ground set is the edges
of a graph G(V, E). Notation:

@ V is the set of customers and the depot (0).

@ dis a vector of the customer demands.

@ ks the number of routes.

@ C is the capacity of a truck.
A feasible solution is composed of:

@ a partition {Ry, ..., R} of V such that ZjeR g <C,1<i<k

@ a permutation o; of R U {0} specifying the order of the customers

on route i.
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Applications Vehicle Routing

Standard IP Formulation for the VRP

VRP Formulation

er;:l)(Oi = _
STx = 2 viev\{g

s Xi 2b(S) VSc V\ {0}, |§ > 1.
J&ZS

vl

@ b(S) = on the number of trucks required to service S
(normally [(>=,.di)/C]).

@ The number of constraints in this formulation is exponential.

@ We must therefore generate the constraints dynamically.

@ A solver can be implemented in BLIS by deriving just a few

classes.
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Applications

Implementing the VRP Solver

@ The algorithm is defined by deriving the following classes.
o Vr pModel

Vr pSol ution

Vr pCut Gener at or

Vr pHeuri stic

VrpVari abl e

Vr psPar anms

@ Once the classes have been implemented, the user writes a
mai n function as before.

]
]
]
o

©
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Computational Results: Platforms

Clemson Cluster

Machine: Beowulf cluster with 52 nodes
Node: dual core PPC, speed 1654 MHz
Memory: 4G RAM each node

Operating System:  Linux
Message Passing: MPICH

SDSC Blue Gene System

Machine: IBM Blue Gene with 3,072 compute nodes
Node: dual processor, speed 700 MHz
Memory: 512 MB RAM each node

Operating System:  Linux
Message Passing: MPICH

Ralphs& Xu CHiPPS
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KNAP Scalability on Difficult Instances

@ Tested the 26 instances on the SDSC Blue Gene.
@ The default algorithm was used except that
9 the static load balancing scheme is the two-level root initialization,
o the number of nodes generated by the master varies from 10000 to
30000 depends on individual instance,
@ the number of nodes generated by a hub varies from 10000 to
20000 depends on individual instance,
9 the size a unit work is 300 nodes; and
@ multiple hubs were used.

P Node Ramp-up Idle  Ramp-down  Wallclock Eff
64 14733745123 0.69% 4.78% 2.65% 6296.49 1.00
128 14776745744 1.37% 6.57% 5.26% 3290.56 0.95
256 14039728320 250% 7.14% 9.97% 1672.85 0.94
512 13533948496 7.38% 4.30% 14.83% 877.54 0.90
1024 13596979694 8.33% 3.41% 16.14% 469.78 0.84
2048 14045428590 9.59%  3.54% 22.00% 256.22 0.77

@ KNAP scales well even when using several thousand processors.

@ Ramp-up and ramp-down overhead inevitably increase.
Ralphs& Xu CHiPPS
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BLIS Scalability for Moderately Difficult Instances

@ Selected 18 MILP instances from Lehigh/CORAL, MIPLIB 3.0,
MIPLIB 2003, BCOL, and markshare.
@ Tested on the Clemson cluster.

Instance Nodes | Ramp Idle Ramp Comm | Wallclock Eff
-up -down | Overhead

1P 11809956 - - - — | 33820.53 | 1.00
Per Node — — — — 0.00286

4P 11069710 | 0.03% | 4.62% | 0.02% 16.33% | 10698.69 | 0.79
Per Node 0.03% 4.66% 0.00% 16.34% 0.00386

8P 11547210 | 0.11% 4.53% 0.41% 16.95% 5428.47 | 0.78
Per Node 0.10% 4.52% 0.53% 16.95% 0.00376

16P 12082266 | 0.33% | 5.61% | 1.60% 17.46% 2803.84 | 0.75
Per Node 0.27% 5.66% 1.62% 17.45% 0.00371

32P 12411902 | 1.15% 8.69% 2.95% 21.21% 1591.22 | O.
Per Node 1.22% | 8.78% | 2.93% 21.07% 0.00410

64P 14616292 | 1.33% | 11.40% | 6.70% 34.57% 1155.31 | O.
Per Node 1.38% | 11.46% | 6.72% 34.44% 0.00506
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BLIS Scalability for Very Difficult Instances

@ Tests on Clemson’s palmetto cluster (60 on the Top 500 list,

11/2008, Linux, MPICH, 8-core 2.33GHz Xeon/Opteron mix,
12-16GB RAM).

@ Tests use one processor per node.
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Raw Computational Results

[[Name [ 256 128 64 1)
mcf2 926 1373 2001 43059
neos-1126860 | 2184 1830 2540 39856
neos-1122047 | 1676 1125 1532 NS
neos-1413153 || 4230 3500 2990 20980
neos-1456979 78.06% NS NS
neos-1461051 | 396 1082 536 NS
neos-1599274 1500 8108 9075
neos-548047 137.29% 376.48%  482%
neos-570431 | 1034 1255 1308 21873
neos-611838 | 712 956 886 8005
neos-612143 | 565 1716 1315 4837
neos-693347 128%  1.70% NS
neos-912015 | 538 438 275 10674
neos-933364 6.67%  6.79% 11.80%
neos-933815 6.54%  8.77% 32.85%
neos-934184 6.67%  6.76%  9.15%
neos18 30.78%  30.78% 79344
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Speedups

| Name | 256 128 64 ]

mcf2 46,5 31.36 20.59
neos-1126860 || 18.25 21.78 15.69
neos-1413153 4.96 5.99 7.02
neos-1599274 6.05 1.12
neos-570431 21.15 17.43 16.72
neos-611838 11.24 8.37 9.03
neos-612143 8.56 2.82 3.68
neos-912015 19.84 2437 38.81
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Results and Conclusions

Computational Experiments

Conclusi

ions

Name | 256 128 64
mcf2 0.18 0.25 0.32
neos-1126860 || 0.07 0.17 0.25
neos-1413153 || 0.02 0.05 0.11
neos-1599274 0.05 0.02
neos-570431 0.08 0.14 0.26
neos-611838 0.04 0.07 0.14
neos-612143 0.03 0.02 0.06
neos-912015 0.08 0.19 0.61
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Results and Conclusions

@ Our methods implemented in ALPS seem effective in improving
scalibility.

@ The framework is useful for implementing serial or parallel tree
search applications.

@ The KNAP application achieves very good scalability.

@ There is still much room for improvement

¢ load balancing,

o fault tolerance,

@ hybrid architectures,
@ grid enable.
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Results and Conclusions

@ The performance of BLIS in serial mode is favorable when
compared to state of the art non-commercial solvers.

@ The scalability for solving generic MILPs is highly dependent on
properties of individual instances.

@ Based on BLIS, applications like VRP/TSP can be implemented
in a straightforward way.
@ Much work is still needed
o Callable library API
@ Support for column generation
@ Enhanced heuristics
o Additional capabilities
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Obtaining CHIPPS

The CHIPPS framework is available for download at

https://projects. coi n-or. org/ CH PPS J
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Conclusions

Results and Conclusions

Thank You!

Questions?
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