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My Pandemic Projects

Me at the beginning of the pandemic: “At least now I’ll have some time to code!”
My wife at the beginning of the pandemic: “Guess what? We’re having a baby!!”
Result: MibS 1.2 and a healthy baby boy!

Caveats

This talk chronicles my attempts over the last 2.5 years at understanding the
behavior of MibS and tuning it to work well “off-the-shelf.”

Digging deeper into MibS made me realize how much I still didn’t know.

The MIP solver MibS is built on (Blis) is not exactly “state-of-the-art,” but
its performance as an MIBLP solver is now quite competitive.

I’ll try to give a window into what I’ve learned, but some of it is still
guesswork.

There are lots of complex interactions, take everything with a grain of salt.

Many, many questions remain.
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Setting

First-level variables: x ∈ X where X = Zr1
+ × Rn1−r1

+

Second-level variables: y ∈ Y where Y = Zr2
+ × Rn2−r2

+

MIBLP

min
x,y

{
cx + d1y

∣∣ x ∈ X, y ∈ P1(x), y ∈ argmin{d2z
∣∣ z ∈ P2(x) ∩ Y

}
(MIBLP)

where

P1(x) =
{

y ∈ Rn2
+

∣∣ G1y ≥ b1 − A1x
}

P2(x) =
{

y ∈ Rn2
+

∣∣ G2y ≥ b2 − A2x
}

Later, we’ll need to refer to

P = {(x, y) ∈ Rn1 × Rn2 | y ∈ P1(x) ∩ P2(x)}
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Simplifying Assumptions

We discuss only the optimistic case (the pessimistic case is more involved, but
the methodology is not very different).
To ensure solutions exist, we make the standard assumption that all first-level
variables that appear in second-level constraints are integer.
We further assume (without loss of generality in the optimistic case) that all
first-level variables are integer (r1 = n1).
We assume P is bounded and that

{
r ∈ Rn2

+

∣∣ G2r ≥ 0, d2r < 0
}
= ∅ (the latter

ensures the lower-level problem is bounded for any feasible upper-level
solution).
We assume all input data is integer.
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The Second-level Value Function

The second-level value function is

MILP Value Function

ϕ(β) = min
{

d2y
∣∣ G2y ≥ β, y ∈ Y

}
(VF)

We let ϕ(β) = ∞ if {y ∈ Y | G2y ≥ β} = ∅.
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The Standard Running Example

Example 1 Moore and Bard [1990]

1 2 3 4 5 6 7 8

1

2

3

4

5

objective

F

x

y

FLP min
x∈Z+

−x − 10y

s.t. y ∈ argmin
{

y :

−25x + 20y ≤ 30

x + 2y ≤ 10

2x − y ≤ 15

2x + 10y ≥ 15

y ∈ Z+ }
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Value Function Reformulation

First-level variables: x ∈ X where X = Zr1
+ × Rn1−r1

+

Second-level variables: y ∈ Y where Y = Zr2
+ × Rn2−r2

+

MIBLP

min
x,y

{
cx + d1y

∣∣ x ∈ X, y ∈ P1(x) ∩ P2(x) ∩ Y, d2y ≤ ϕ(b2 − A2x)
}

(MIBLP-VF)

Bilevel Feasible Region

F =
{
(x, y) ∈ S

∣∣ d2y ≤ ϕ(b2 − A2x)
}
,

where
S = {(x, y) ∈ X × Y | y ∈ P1(x) ∩ P2(x)}

This reformulation seems to suggest a Benders-type algorithm in which we
approximate the second-level value function.
Convexification helps avoid approximating the entire function.
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Polyhedral Reformulation

Convexification considers the following conceptual reformulation.
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x

y

conv(F)

F

ϕ(b − A2x)

P

conv(S)
min cx + d1y

s.t. (x, y) ∈ conv(F)

This reformulation suggests a branch-and-cut algorithm similar to that used for
solving MILPs DeNegre and Ralphs [2009].
To get dual bounds, we optimize over a relaxed feasible region.
We iteratively approximate conv(F) with linear inequalities.
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Basic Principle: Disjunction

Definition 1 (Valid Disjunction). A collection of disjoint sets Xi ⊆ Rn1+n2 for
i = 1, ..., k represents a valid disjunction for F if

F ⊆
k⋃

i=1

Xi.

Two classes of disjunction
(x̄, ȳ) ∈ P \ S ⇐ must violate a variable disjunction.
(x̄, ȳ) ∈ S \ F ⇐ must violate this valid disjunction (points in P \ S may also).A1x ≥ b1 − G1y∗

A2x ≥ b2 − G2y∗

d2y ≤ d2y∗

 OR

A1x ̸≥ b1 − G1y∗

OR

A2x ̸≥ b2 − G2y∗,

 (OPT-DISJ)

where y∗ ∈ P2(x̄) ∩ Y and d2ȳ > d2y∗.
Note that such a y∗ ̸= ȳ must exist when ȳ ∈ S.
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Exploiting Disjunctions

In branch-and-cut for MILPs, we have the following nice properties.
The only infeasible points that arise are those in P \ S, which are easy to identify.

We typically utilize the same disjunctions for deriving disjunctive cuts and
branching.

In MIBLP, points in S \ F are not easy to identify and violated valid disjunctions
are not compact or easy to generate.

For points in P \ S, it is still easy to identify violated variable disjunctions.

Nevertheless, points in P \ S may also violate disjunctions of the form
(OPT-DISJ).

It may be worthwhile to generate such violated valid disjunctions, even though
this can be expensive.
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Basic Principle: Identifying Infeasible Solutions

Just as in MILP, an important key to solving MIBLPs is identifying large
(convex) subsets of P that contain no member of F .

This should be done by carefully exploiting available information and keeping
computational overhead low.

Two methods for proving a solution infeasible underlie much of the methodology
for doing this.

Second-level Improving Solutions

Let (x, y) ∈ P and y∗ ∈ P2(x) ∩ Y . Then d2y > d2y∗ ⇒ (x, y) ̸∈ F .

Second-level Improving Directions

Let (x, y) ∈ P and ∆y ∈ Zn2 such that d2∆y < 0. Then
y +∆y ∈ P2(x) ⇒ (x, y) ̸∈ F .
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Valid Inequalities

Valid inequality: The triple (αx, αy, β) ∈ Rn1+n2+1 is a valid inequality for F if

F ⊆
{
(x, y) ∈ Rn1×n2

∣∣ αxx + αyy ≥ β
}
.

Valid improving inequality: The triple (αx, αy, β) ∈ Rn1+n2+1 is a valid improving
inequality for F with respect to (x̄, ȳ) ∈ F if{

(x, y) ∈ F
∣∣ cx + d1y < cx̄ + d1ȳ

}
⊆

{
(x, y) ∈ Rn1×n2

∣∣ αxx + αyy ≥ β
}
.

Cutting plane: As usual, a cutting plane (cut) refers to a valid (improving) inequality
violated by a given (infeasible) solution to the current relaxation.
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Basic Principle: Bilevel Free Sets [Fischetti et al., 2018]

Bilevel Free Set

A bilevel free set (BFS) is a set C ⊆ Rn1+n2 such that int(C) ∩ F = ∅.

General Recipe for Valid Inequalities

Identify a BFS C ⊆ Rn1+n2 .
Then inequalities valid for for conv(int(C) ∩ P) are also valid for F .
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Branch-and-Cut Algorithm

The basic framework is very similar to that used for solving MILPs, but with
many subtle differences.

Components

Bounding
Dual bound ⇒ A “tractable” relaxation strengthened with valid inequalities
Primal bound ⇒ Feasible solutions

Branching ⇒ Valid disjunctions

Cut generation ⇒ Inequalities valid for conv(F).

Search strategies

Preprocessing methods

Primal heuristics

Control mechanisms ⇒ Important but tricky!

This talk will focus on the highlighted areas.
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Challenges

On the surface, branch-and-cut for MIBLPs looks similar to that for MILPs.
Digging deeper, they are very different and there is a lot we still don’t know.
We have to tear down the solver and re-examine every aspect of its performance.
Some challenges that remain.

In contrast with MILP, it can be difficult to move the bound in the root node.

Thus, we don’t have a very good approximation of conv(F) in the early stages.

This (probably) makes it difficult to predict the impact of branching.

Because the disjunctions used for cutting are much stronger than those used for
branching, it seems more important to emphasize cuts.

On the other hand, cuts are expensive to generate.

We don’t really know how to integrate MILP cuts and MIBLP cuts.

In general, the interaction of cutting and branching is much more intricate, which
makes good control mechanisms vitally important.

Specific properties of instances (e.g., degree of alignment of objectives) can affect
performance dramatically and this needs to be understood better.
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Dual Bound

Possible relaxations
1 Remove the optimality constraint of the second-level problem (MIP relaxation)

S =
{
(x, y) ∈ Rn1×n2

+

∣∣ x ∈ X, y ∈ P1(x) ∩ P2(x) ∩ Y
}

2 Remove the optimality constraint of the second-level problem and the integrality
constraints (LP relaxation)

P =
{
(x, y) ∈ Rn1×n2

+

∣∣ y ∈ P1(x) ∩ P2(x)
}

3 Something in between? (Neighborhood relaxation)

RN (x) = {y ∈ Projy(S) | d2y ≤ d2ȳ ∀ ȳ ∈ N (y) ∩ Projy(S)}

where N (y) is a neighborhood of y Xueyu et al. [2022].
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Which Relaxation?

What relaxation performs best is ultimately an empirical question, but we can
reason about it.
When solving MIBLPs, solving MILP subproblems seems to be a unavoidable.
and these must be “tractable” to have any hope of solving.
It is tempting to think that a stronger relaxation should be better.
However, solving an MILP subproblem at each node means undertaking the very
same process of branching that outer branch-and-cut will undertake.
But more importantly, cut generation requires quick reoptimization.
All in all, it only seems to make sense to use the LP relaxation for bounding..
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Branching

In general, there has been very little study of how to branch in solving MIBLPs.

What we do today is use roughly the same rules for branching that are used in
solving MILPs.

Does this make sense? Not always...

We may need to branch on variables that
already have an integer value (more on this).

MILP strategies predict the impact of
branching using the dual bound as a proxy.

In MIBLP, this is probably not a very good
proxy.
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x

y

FLP

F

One of the open challenges is to figure out a better prediction function.
Currently, MibS uses straightforward pseudo-cost branching.
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Branching Priorities

There are several reason why one might think it is a good idea to prioritize
branching on first-level variables.

The goal of bilevel optimization is to produce a first-level solution.

Once first-level variable values are fixed, the problem is reduced to an MILP.

Solving this resulting MILP effectively means that we just switch to branching on
second-level variables.

But we do it using the heavy machinery of an MILP solver!! This is a win!!

Unfortunately, this intuition seems to
be (completely) wrong in MibS 1.2!

In fact, it may be somewhat the
opposite!

Note, however, that standard MILP
branching schemes do not work in
pure branch-and-bound.
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Cut Generation

Unlike in MILP, we have several
distinct classes of infeasible
solution.

Each requires different handling.

Which types arise is (somewhat)
dictated by the objective
alignment.

This region can only be

separated by MIBLP cuts

1 2 3 4 5 6 7 8
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These regions can only be separated

These regions can only be separated

by either MIBLP or MILP cuts

by MILP cuts

x

y

conv(F)

F

ϕ(b − A2x)

P

conv(S)

1 (x̄, ȳ) ∈ Rn1+n2 for which d2ȳ ≤ ϕ(b2 − A2x̄) ⇐ (x̄, ȳ) ̸∈ S
Need MILP cuts, but it’s not easy to recognize this case!

2 (x̄, ȳ) ∈ Rn1+n2 for which d2ȳ > ϕ(b2 − A2x̄) ⇐ (x̄, ȳ) may or may not be in S .
x̄ ∈ X ⇐ Can evaluate ϕ(b2 − A2x̄) or Ξ(x̄) to separate.
ȳ ∈ Y ⇐ Relatively easier to separate with MIBLP cuts
x̄ ̸∈ X, ȳ ̸∈ Y ⇐ Important, but tricky case!
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Classes of Inequalities Valid for MIBLPs

Generalized Chvátal Cuts

Let C = {(x, y) ∈ P | πxx + πyy ≤ β} be a BFS, where (πx, πy) ∈ X × Y ,
β ∈ Z.
Then (πx, πy, β + 1) is valid for F .

Intersection Cuts

Let C be a convex set containing no improving solutions and let (x, y) be
an extreme point of P in the interior of C.
Then the intersection cut with respect to C and (x, y) is valid for F .

Benders Cuts

Let ψ̄ : Rn1 → R be such that ψ̄(x) ≥ ϕ(b2 − A2x) (a primal function).
Then C = {(x, y) ∈ P | d2y ≥ ψ̄(x) is a BFS and d2y ≤ ψ̄(x) for all
(x, y) ∈ F .
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Classes Implemented in MibS

MILP cuts.

Generalized Chvátal (Integer no-good cut) [DeNegre and Ralphs, 2009]
Benders Cuts

Benders Binary Cut [DeNegre, 2011]

Benders Interdiction Cut [?Caprara et al., 2014]

Benders Bound Cut [Tahernejad, 2019]

Intersection cuts [Fischetti et al., 2017, 2018]
Improving Solution (Types I and II)

Improving Direction

Hypercube

Generalized no-good cut [DeNegre, 2011]
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Generalized Chvátal Inequalities

Basic Idea: Just as in MILP, generate an inequality (αx, αy, β) valid for P
supporting P at extreme point (x, y) ∈ S, where

(αx, αy) ∈ X × Y ,
β ∈ Z

If (x, y) ̸∈ F , then {(x, y) ∈ P | αxx + αyy ≤ β} ∩ F = ∅.
Hence, (αx, αy, β + 1) is valid for F .
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Benders Cuts

Derive a primal bounding function for the second-level value function ϕ.
Typically, this is done by exploiting known primal solutions.

Benders Binary Cut

Let (x̂, y∗) ∈ P be such that y∗ ∈ P1(x̂) ∩ P2(x̂) ∩ Y .

ψ̄(x) =

d2y∗ if

{
xi = 1 ∀{i ∈ L \ L− | y∗i = 0}
xi = 0 ∀{i ∈ L \ L+ | y∗i > 0}

∞ otherwise

where
L− =

{
i ∈ L

∣∣ A2
i ≤ 0

}
, and

L+ =
{

i ∈ L
∣∣ A2

i ≥ 0
}

.

Basic Idea: For (x, y) ∈ P , if y∗ ∈ P2(x) and d2y > d2y∗, then (x, y) ̸∈ F .
This cut can be linearized with an appropriate big-M.
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Benders Cuts (cont’d)

A stronger version of the Benders Binary cut is valid for interdiction problems.

Benders Interdiction Cut

Let (x̂, y∗) ∈ P be such that y∗ ∈ P2(x̂) ∩ Y .

ψ̄(x) =

d2y∗ − δ(x) if

{
xi = 1 ∀{i ∈ L \ L− | x̂i = 1}
xi = 0 ∀{i ∈ L \ L+ | x̂i = 0}

∞ otherwise

where
L− =

{
i ∈ L

∣∣ A2
i ≤ 0

}
,

L+ =
{

i ∈ L
∣∣ A2

i ≥ 0
}

, and

δ(x) =
∑

{i∈L+:y∗i =0,yi=1} di −
∑

{i∈L−:xi=y∗i =1} di

As before, this cut can be linearized with an appropriate big-M.
As before, the cut eliminates (x, y) ∈ P such that y∗ ∈ P2(x) and d2y > d2y∗.
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Improving Solution Intersection Cut (ISIC)

For simplicity, assume all problem data are integral.
Let (x̂, ŷ) be an extreme point of P such that d2ŷ > d2y∗ for some
y∗ ∈ P2(x̂) ∩ Y (⇐ the improving solution).

Bilevel Free Set

C =
{
(x, y) ∈ Rn1×n2

∣∣ d2y ≥ d2y∗,A2x ≥ b2 − G2y∗ − 1
}
.

The basic logic is very similar to the Benders cut.
Crucially, note that we don’t need x̂ ∈ X or ŷ ∈ Y .
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Improving Direction Intersection Cut (IDIC)

Once again, assume all problem data are integral.
Let (x̂, ŷ) be an extreme point of P and let ∆y ∈ Zn2 (⇐ the improving
direction) such that ŷ +∆y ∈ P2(x̂) and d2∆y < 0

Bilevel Free Set

C =
{
(x, y) ∈ Rn1×n2

∣∣ A2x + G2y ≥ b2 − G2∆y − 1, y +∆y ≥ −1
}
.

Once again, note that we don’t need x̂ ∈ X or ŷ ∈ Y .
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Hypercube Intersection Cut (HIC)

Let (x̂, ŷ) ∈ P with x̂ ∈ X.

Bilevel Free Set

C =
{
(x, y) ∈ Rn1×n2

∣∣ x̂i − 1 ≤ xi ≤ x̂i + 1 ∀i < r1
}
.

Note that any solutions (x̂, y) ∈ F may violate this cut, so we need to evaluate
Ξ(x̂) before imposing it.
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Generalized No-good Cut

This cut is valid when first-level variables are binary.
Let (x̂, ŷ) ∈ P such that x̂ ∈ Bn1 .
Once again, all solutions (x̂, y) ∈ F violate this cut, so we need to evaluate Ξ(x̂)
before imposing it.

Generalized No Good∑
i∈L:̂xi=0

xi +
∑

i∈L:γi=1

(1 − xi) ≥ 1 ∀(x, y) ∈ F such that x ̸= x̂.

The inequality is violated by all (x, y) ∈ P with x = x̂.
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Comparing the Classes Analytically : Size of int(C)

Generalized Chvátal cuts

Only a single point (x, y) ∈ S \ F

HICs and Generalized no-good cuts

All (x̂, y) ∈ S (feasible or not) for some x̂ ∈ X such that Ξ(x̂) is known
⇒ All combinations of a fixed x̂ with any y.

Benders cuts and ISICs

All (x, y) ∈ P such that y∗ ∈ P2(x) and d2y > d2y∗

⇒ All (x, y∗) for which a fixed y∗ proves infeasibility.

IDICs

(x, y) ∈ P such that ∆y is an improving feasible direction for y, given x
⇒ All (x, y) for which a fixed ∆y proves infeasibility.
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ISICs versus IDICs

For general IBLPs, it seems apparent that ISICs and IDICs provide the most
“bang for the buck,” but how do they compare to each other?

Both classes of inequalities can be used to separate arbitrary fractional solutions,
which sets them apart.

Both also require solving an MILP subproblem.

The feasible regions of these subproblems are even (in a certain sense) equivalent.

Let
W(x̂, ŷ) =

{
w ∈ Zr2 × Rn2−r2 | d2w < 0, ŷ + w ∈ P2(x̂)

}
.

be the set of improving feasible directions with respect to (x̂, ŷ) ∈ P .
Then for any (x, y) ∈ S,

(x, y) ∈ F ⇔ W(x̂, ŷ) = ∅ ⇔ ∃y∗ ∈ P2(x) ∩ Y with d2y∗ < d2y

The crucial difference is that the construction of large bilevel free sets using the
two different recipes requires much different solutions/directions.

To construct large bilevel free sets with IDICs, directions should be short

To construct large bilevel free sets with ISICs, solutions should be high quality.

These two objectives seem to be directly at odds with each other!Ralphs, et al. (COR@L Lab) Branch-and-Cut for MIBLPs



Generating Improving Solutions/Directions

Currently, the improving solutions and directions are generated a subproblem.
Exactly which solution/direction is generated can affect performance
dramatically.
Hence, the objective function used is crucial. T

¯
he goal is generally to get the

deepest cut, but making the BFS as large as possible is a proxy.
The objective function used for the subproblem determines what BFS will be
produced.
Currently, for ISIC, we have two objective functions.

Type I: Most improving solution.
Type II: Maximize the number of redundant constraints.

For IDICs, we only have the second objective function.
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Software Framework

MibS is an open-source solver for MIBLPs.
Implements the branch-and-cut algorithm for MIBLPs described here.
Implemented in C++.
Built on top of the BLIS MILP solver [Xu et al., 2009].
Employs software available from the Computational Infrastructure for
Operations Research (COIN-OR) repository

COIN High Performance Parallel Search (CHiPPS): To manage the global
branch-and-bound

SYMPHONY: To solve the required MIPs (can also use Cbc or CPLEX)

COIN LP Solver (CLP): To solve the LPs arising in the branch and cut.

Cut Generation Library (CGL): To generate cutting planes within both
SYMPHONY and MibS

Open Solver Interface (OSI): To interface with other solvers
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Data Sets

Table: The summary of data sets

Data Set # VT V# C# Align Notes

INT-DEN 300
B
B

10-40
10-40

1
11-41 -1

Interdiction
DeNegre [2011]

DEN 50
I
I

5-15
5-15

0
20 Varies DeNegre [2011]

DEN2 110
I
I

5-10
5-20

0
5-15 Varies DeNegre [2011]

ZHANG 30
B
I

50-80
70-110

0
6-7 0.6-0.8 Zhang and Ozaltın [2017]

ZHANG2 30
I
I

50-80
70-110

0
6-7 0.6-0.8 Zhang and Ozaltın [2017]

FIS 57
B
B Varies Varies -1

MIPLIB
Fischetti et al. [2018]

XU 100
I

IC
10-460
4-184

10-460
4-184 ≈ 0

Mixed
Xu and Wang [2014]
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Computational Experiments

Nearly 20K CPU hours with four different versions of MibS with both
SYMPHONY and CPLEX as subsolvers (and filmosi for comparison).
Run on the COR@L cluster: 14 nodes, dual 8-core .8 GHz CPUs, 32 Gb memory
Instances that took less than 5 seconds to solve for all versions were filtered.
Which data sets are included are indicated in the title (X = XU, F=FIS, etc.)
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Control Mechanism: Cut Generation

As mentioned, not all cuts can separate all solutions.
(x̂, ŷ) ∈ S: all classes except MILP cuts.
x̂ ∈ X: no Generalized Chvátal
ŷ ∈ Y: ISICs of types I and II, IDIC,
ŷ ̸∈ Y: Depends on whether d2ŷ > ϕ(B2 − A2x̂)!

Whether/how to separate (x̂, ŷ) ̸∈ S involves important tradeoffs.
MILP cuts are relatively cheap, but may be redundant.
IDICs and ISICs are expensive, but it may be worth it in order to move the dual
bound sooner (especially in the root node).

Control mechanism for ISICs and IDICs.
If either x̂ ∈ X or ŷ ∈ Y , IDICS are always generated and ISICs are only generated
when the second-level problem has already been solved to check feasibility.
If x̂ ̸∈ X and ŷ ̸∈ Y , IDICs and/or ISICs are generated if the associated parameter is
set (and the second-level problem is already solved in the case of ISICs).

Note that cut filtering by dynamism and density are disabled.
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Control Mechanism: Solving Subroblems

Options for when to solve the second-level problem.
Every iteration
When x ∈ X
When (x, y) ∈ S (equivalent to checking feasibility)
When first-level variables are fixed by branching (in this case, we evaluate Ξ)

Evaluating Ξ involves solving one additional MILP.
Options for when to do this are similar.
Solving these subproblems is a pre-requisite for generating certain cuts.

When generating Benders binary cuts, Benders interdiction cuts, or ISICs of type 1,
we must first solve the second-level problem.
When generating generalized no-good cuts and Hypercube ICs, we must also
evaluate Ξ.

By default, MibS currently only solves the second-level problem when
(x, y) ∈ S and when x is fixed by branching.
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Control Mechanism: Branching

As with MILP, performance is highly sensitive to the stopping criteria for cut
generation.
In MibS 1.2, this stopping criteria is based on a simple tailing off scheme.
Branching is forced when the relative change in gap is less than a parameter
value (.05 is the current default).
When branching on all variables and not just first-level, we need to allow cut
generation to continue whenever the solution is integral, regardless.
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Comparing Branching Schemes
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Comparing Cuts Empirically

In the MILP context, it is typical to compare cuts using a closure bound or root
gap to isolate the separate effects of branching and cutting.
Results are displayed using a combination of

Performance profiles (CDF of the ratio
Cumulative profiles
Baseline profiles

Performance measure
CPU time
Nodes evaluated
Root bound
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Summary Results (IDICs versus ISICs)
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Summary Results (IDICs versus ISICs)
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Analysis

The overall winner by performance profile using CPU time as a performance
measure is separating only integer solutions with IDICs.
The cumulative profile shows that for problems that cannot be solved in one hour,
the gap is more effectively closed by separating fractional solutions with IDICs.
Note, however, that “No cuts” is actually the overall winner in terms of gap
closed.
In terms of tree size, separating fractional solution with IDICs is easily the
winner, but the expense of generating doesn’t pay off in most cases.
Nor surprisingly, fractional IDICs are also effective at closing the gap in the root
node for some but not all instances.
MILP cuts do help on top of MIBLP cuts in general.
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Cut Generation Failure

Recall that cut generation may fail when
d2ŷ ≤ ϕ(b2 − A2x̂).

The degree to which this is an issue varies
a lot!

In practice, it may be a big issue, but may
be mitigated with better control
mechanisms.

This region can only be

separated by MIBLP cuts

1 2 3 4 5 6 7 8

1

2

3

4

5

These regions can only be separated

These regions can only be separated

by either MIBLP or MILP cuts

by MILP cuts

x

y

conv(F)

F

ϕ(b − A2x)

P

conv(S)

Branching
Priority

Fractional
Separation DeNegre Zhang Interdiction

All Yes .62 .89 .84
Link Yes .62 .97 .79
All No .28 .15 .07

Link No .31 .96 .04

Ralphs, et al. (COR@L Lab) Branch-and-Cut for MIBLPs



Performance on Individual Datasets

Although the results look very uniform when aggregated, performance varied
greatly between datasets.
For the IBLP-DEN instances, separating fractional points with IDICs is the
magic bullet.
For the IBLP-DEN2 instances, Integer No Good Cuts perform as well as any
other class and outperform IDICs.
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Results on Individual Datasets
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Do MILP Cuts Help?
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Binary Instances

As with MILPs, instances with only binary first-level variables are a special case
for which there are additional classes of inequalities.
Surprisingly, however, the cuts specialized to binary instances do not outperform
IDICs.
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Summary Results (Binary Instances)
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Interdiction Instances

For interdiction instances, Benders cuts are clearly dominant.
This is not at all unexpected.
It is the one class of problems for which there are specialized cuts that help.
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Summary Results (Interdiction)
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Overall Results: Different Versions of MibS
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Analyzing the Results

The improvements have mainly been in how many instances could be solved.
Each new version has brought a new set of instances to solvability.
For closing the gap on unsolved instances, older versions were better.
This makes sense and is consistent with previous results.
Using CPLEX as a subsolver only results in marginal gains.
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Overall Results: Comparing MibS with filmosi
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Analyzing the Results

Using CPLEX as the underlying MILP solver, results are competitive with
filmosi using default parameters settings for each.
It is very difficult to tell what is going on inside filmosi and this is a bit of an
apples-oranges comparison.
There is still a lot of low-hanging fruit to improve MibS, but it is unclear what
can be done with filmosi.
Many of the things one might want to do to improve performance are not
possible with a closed-source solver.
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Future Directions

There are still many avenues for improving performance and
much low-hanging fruit.

Improved branching

Better dynamic control mechanisms for cut generation (better integration of MIBLP
and MILP cuts)

Warm-starting of subproblem solvers (SYMPHONY)

Pools of solutions/directions/cuts

...

Existing capabilities that need further development.
Stochastic bilevel solver

Pessimistic solver

Bounded rationality
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The Dream

How would we design a solver if we could do it from the ground up?

No explicit subsolvers, just one tightly integrated solver.
Flexible reaction sets (bounded rationality).
Flexible base relaxations.
Solver based completely on improving directions?
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Conclusions

Solutions of MIBLPs is where solution of MILPs was 15 years ago.
The basic theory is well-developed, but in practice, solvers are
well-tuned bags of tricks.
MILP solvers are still improving, thanks largely to commercial
viability and fierce competition.
It remains to be seen if MIBLP solvers will follow a similar
trajectory.

Ralphs, et al. (COR@L Lab) Branch-and-Cut for MIBLPs



References I

A. Caprara, M. Carvalho, A. Lodi, and G.J. Woeginger. Bilevel knapsack with
interdiction constraints. Technical Report OR-14-4, University of Bologna, 2014.

S. DeNegre. Interdiction and Discrete Bilevel Linear Programming. PhD, Lehigh
University, 2011. URL http://coral.ie.lehigh.edu/~ted/files/
papers/ScottDeNegreDissertation11.pdf.

S. DeNegre and T.K. Ralphs. A Branch-and-Cut Algorithm for Bilevel Integer
Programming. In Proceedings of the Eleventh INFORMS Computing Society
Meeting, pages 65–78, 2009. doi: 10.1007/978-0-387-88843-9_4. URL http:
//coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf.
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