
Bilevel Programming, Interdiction, and Branching for
Binary Integer Programs

Andrea Lodi1, Ted Ralphs2, Fabrizio Rossi3, Stefano Smriglio3

1DEIS, Universitá di Bologna
2COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

3Dipartimento di Informatica, Universitá di L’Aquila

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 1 / 27

Outline

1 Introduction

2 Branching Methods in MILP

3 Bilevel Linear Programming and Branching Sets

4 Mixed Integer Interdiction and Interdiction Branching
Definitions
Algorithms
Computational Experiments

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 2 / 27

Good Things Come in Threes

This talk concerns the relationship of three seemingly unrelated topics:

Branching methods

Bilevel programming

Interdiction problems

It came together in three different cities:

Bologna, Italy

L’Aquila, Italy

Bethlehem, PA, USA

And the work involved three of myItaliancolleagues, who graciously hosted me
during my sabbatical.1

1It should be noted that this work was fueled by the unlimited supply of excellent Italian espresso
provided by my hosts.
Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 3 / 27

First Theme: Branching Methods

Definition 1 Branchingis a method of partitioning of the feasible region of a
mathematical program by means of a logical disjunction.

Definition 2 A (linear) disjunction is a logical operator consisting of afinite set of
systems of inequalities that evaluates TRUE with respect toa givenx̃ ∈ Rn if and only
if at least one of the systems is satisfied byx̃.

Specifically, a disjunction is a logical operator of the form

∨

h∈Q

Ahx ≥ bh
, x ∈ S (1)

whereAh ∈ Qmh×n, bh ∈ Qmh, n ∈ N, mh ∈ N, h ∈ Q.

The disjunction evaluates TRUE forx̃ if and only if there existsh ∈ Q such that
Ahx̃ ≥ bh.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 4 / 27

The Branching Decision

*

*

*

*

*

*

*

* *

cx=z
0

S1

S2

0cx=z

*

*

* *

*

*

*

*

* S2
S1

cx=z0

* * *

* **

S1

S2

In branch and bound, branching creates one new subproblem for each term in the
branching disjunction.

Each resulting subproblem is solved recursively.

Key Question: How should we select a disjunction?
Typically, the set of disjunctions to be considered is limited a priori in some fashion.
From this limited set, one must choose the “best” disjunction by a given measure.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 5 / 27

What is the Criteria for Choosing?

The overall goal of any branching scheme is to reduce runningtime.

As a proxy, most branching schemes try to maximize the (estimated) bound
increase resulting from imposing the disjunction.

The problem of selecting the disjunction whose imposition results in the largest
bound improvement has a naturalbilevel structure.

This comes from the fact that the bound is computed by solvinganother
optimization problem.

The disjunction selection problem can sometimes be formulated as abilevel
program.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 6 / 27

Second Theme: Bilevel Linear Programming

Formally, abilevel linear programis described as follows.

x ∈ X ⊆ Rn1 are theupper-level variables

y ∈ Y ⊆ Rn2 are thelower-level variables

Bilevel Linear Program

max
{

c1x + d1y | x ∈ PU ∩ X, y ∈ argmin{d2y | y ∈ PL(x) ∩ Y}
}

Theupper-andlower-level feasible regionsare:

PU =
{

x ∈ R+ | A1x ≤ b1
}

and

PL(x) =
{

y ∈ R+ | G2y ≥ b2 − A2x
}

.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 7 / 27

What is the Connection?

The upper-level variables can be used to model thechoice of disjunction(we’ll
see an example shortly).

The lower-level problem models thebound computationafter the disjunction has
been imposed.

In strong branching, we are solving this problem essentially by enumeration.

The bilevel branching paradigm is to select the branching disjunction directly by
solving abilevel program.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 8 / 27

Multi-variable Branching

For certain combinatorial problems, branching on single variables can result in
very unbalanced trees.

Consider the knapsack or set-partitioning problems, for instance.
Fixing a variable to 1 is typically very strong.
Fixing a variable to zero can have little or not effect for difficult instances.

Often, this phenomena is caused bysymmetryor near-symmetryof the variables.

Fixing a single variable to zero has no effect because there will be another
(symmetric) variable to take its place.

However, fixing a whole set of variables to zero may have an impact.

A number of authors have proposed methods specific to certaincombinatorial
problems, see, e.g., Ryan and Foster (1981); Balas and Yu (1986).

There have also been attempts to derive general methods of multi-variable
branching, e.g., SOS branching.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 9 / 27

Branching Sets

Consider a binary integer program min{cx | x ∈ P ∩ Bn}, wherec ∈ Qn is the
objective function andP is a polyhedron.

For any setS= {i1, . . . , i|S|} ⊆ N = {1, . . . , n}, the following disjunction is
valid.

xi1 = 1∨ xi2 = 1∨ . . . ∨ xi|S| = 1∨
∑

i∈S)

xi = 0 (2)

Let α be the target. An index setS⊆ N is abranching setif and only if:

max
x∈{0,1}n

{cTx |x ∈ F , xi = 0 for all i ∈ S} ≤ α, (3)

whereF ⊇ P ∩ Bn.

Our goal is to select a set with the property that simultaneously fixing all of them
to zero will move the bound above a given target.

If we set the target to the current lower bound, then we can ignore the last term
and strengthen the above to:

xi1 = 1∨ (xi2 = 1∧ xi1 = 0) ∨ . . . ∨ (xi|S| = 1∧ xi1 = 0∧ . . . ∧ xi|S|−1
= 0) (4)

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 10 / 27

Example: Knapsack Problem

Let us consider the knapsack problem:

item 1 2 3 4 5 6 7
wj 3 3 3 4 4 5 6
aj 1 2 2 3 3 4 5

where the knapsack has sizeb = 10 and the associated IP:

max 3x1 + 3x2 + 3x3 + 4x4 + 4x5 + 5x6 + 6x7

x1 + 2x2 + 2x3 + 3x4 + 3x5 + 4x6 + 5x7 ≤ 10

xj ∈ {0, 1}, i = 1, 2, 3, 4, 5, 6, 7.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 11 / 27

Example: Variable Branching

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 12 / 27

Example: Multi-variable Branching

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 13 / 27

Choosing a Branching Set

The following is a bilevel programming formulation for the problem of finding the
smallest branching set.

(BBP) min
∑

i∈N yi

s.t.
c⊤x ≤ z̄

y ∈ Bn

x ∈ arg maxx c⊤x
s.t.

xi + yi ≤ 1, i ∈ Na

x ∈ F

whereF is the feasible region of a given relaxation of the original problem used for
computing the bound.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 14 / 27

Third Theme: Interdiction Problems

Themixed integer interdiction problem(MIPINT) is a bilevel program in which
there is a binary upper-levelinterdictionvariable for each lower-level variable.

The interdiction variable represents the choice of which variable to remove (fix
to zero) in the lower-level problem.

The objective is to determine the set of variables whose removal has the greatest
effect with respect to the upper-level objective subject toconstraints.

Often, the upper-level objective is just the negative of thelower-level objective.

Mixed Integer Interdiction

max
x∈P I

U

min
y∈P I

L(x)
dy (MIPINT)

where

P I
U =

{

x ∈ Bn | A1x ≤ b1
}

P I
L(x) =

{

y ∈ Zp × Rn−p | G2y ≥ b2
, y ≤ u(e− x)

}

.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 15 / 27

Interdiction Branching

Notice that the bilevel branching problem is nothing more than an interdiction
problem with a slight twist.

The twist is that we require that the lower-level objective be above the target.

This requires allowing lower-level variables in the upper-level constraints.

Ordinarily, this would cause problems, but because of the special form of the
constraint, we can handle it.

We can now easily state theinterdiction branching problem.

Interdiction Branching Problem

Find the smallest interdiction set that results in an increase in the objective
function value of an MILP above a certain target amount.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 16 / 27

Solving the Interdiction Branching Problem

The interdiction problem is a bilevel program with very special structure.

We can solve it exactly using methods we are developing.

Note that the exact form of the branching problem depends on the bounding
subproblem (lower-level problem).

In practice, this bound would ordinarily be an LP relaxation.

In this case, the branching problem is a bilevel linear program with continuous
variables at the lower level.

Details of the methods for solving these problems are beyondthe scope of this
talk, however.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 17 / 27

A Simple Heuristic

Consider solving a 0-1 knapsack problem with pure branch andbound.

In this case, we have only one fractional variable on which tobranch.

Our branching set will thus be composed of variables that arealready at value
one in the solution to the current relaxation.

Idea: Build up the branching set by iteratively adding the variable with the
largest reduced cost.

Easy to implement efficiently for the knapsack problem.

Notes
The current solution does not actually violate the disjunction.
Adding the fractional variable to the branching set ensures the disjunctionwill be
violated.
When the branching set has size one and the target is the current lower bound, this
means the variable can be fixed.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 18 / 27

Variations on the Theme

If we make the target equal to the value of the current incumbent, then we don’t
need to include the “all zero branch”.

Any branching set will do—we don’t need the smallest one.

We can use any upper bound on the problem to judge the effectiveness of the
branching set.

We can also use the procedure in the opposite way to fix variables to zero or even
intermix variables to be fixed to zero and one.

We can take the bounds improvement of more than one branch into account in
choosing the branching set.

Note that the bilevel branching method can apply to a much richer set of
branching rules than just interdiction branching.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 19 / 27

Computational Experiments: Implementation

We coded a simple branch and bound solver for the knapsack problem using the
CHiPPStree search framework.

Bounding is done using the Dantzig bound.

Search order is best first.

Note that the branching is the most computationally intensive procedure.

Therefore, we put the node back in the queue after bounding and only branch it
when it is chosen again.

This is only possible due to the generality ofCHiPPS.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 20 / 27

Computational Experiments: Setup

Generated 120 difficult knapsack instances using the generator of Domenico
Salvagnin.

20 instance each of size were 50, 60, 70, 80, 90, 100.

Run on Linux box with Intel Xeon 2.4GHz processor and 4G memory.

Time limit of 1800 seconds.

Settings Tested
Variable branching
LP interdiction branching
LP interdiction with fractional variable added
IP interdiction branching with target set to 50% of gap
IP interdiction branching with target set to 95% of gap

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 21 / 27

Comparing CPU Time for Fractional and Bilevel Branching

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

(a) Instances of size 50 and 60
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

(b) Instances of size 70 and 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

(c) Instances of size 90 and 100

Figure:Performance profile for number CPU time for knapsack instances.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 22 / 27

Comparing Tree Size for Fractional and Bilevel Branching

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

(a) Instances of size 50 and 60
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

(b) Instances of size 70 and 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

(c) Instances of size 90 and 100

Figure:Performance profile for tree size for knapsack instances.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 23 / 27

Application to Other Combinatorial Problems

In principle, the method applies to other combinatorial problems.

However, it is not exactly clear how to generalize the methods for choosing the
branching set.

It is possible to naively apply the same method in other settings.

Preliminary results with the TSP and VRP indicate that this does not work well.

Our assumption that branches in which variables are fixed to one will necessarily
be strong does not seem to hold.

In most branches the bound does not seem to move.

It seems likely we will need to take fractional variables into account in more
general settings.

We conjecture the method will work much better for problems like
set-partitioning or packing problems..

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 24 / 27

Current Work: Implementation

Interdiction branching is now an option in the MILP solver BLIS, which is a
parallel solver built with in the CHiPPS framework.

COIN-OR Components Used

TheCOIN High Performance Parallel Search(CHiPPS) framework to
perform the branch and bound.

TheCOIN LP Solver(CLP) framework for solving the LPs arising in the
branch and cut.

TheCut Generation Library(CGL) for generating cutting planes within
CBC.

TheOpen Solver Interface(OSI) for interfacing with CBC and CLP.

Currently, the branching set is chosen using the simple heuristic described
earlier, but this does not seem to work well.

We are working generalizations and a more efficient implementation.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 25 / 27

Conclusions and Future Work

We presented a simple branching rule that works well in the case of pure branch
and bound for the knapsack problem.

It is unclear whether these performance gains can be realized in state-of-the-art
solvers.

There are connections to theorbital branchingmethod of Ostrowski that need to
be explored.

If you want to play with it, you can download the solver at

www.coin-or.org

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 26 / 27

References I

Balas, E. and C. Yu 1986. Finding maximum clique in an arbitrary graph.SIAM
Journal on Computing15, 1054–1068.

Ryan, D. M. and B. A. Foster 1981.Computer Scheduling of Public Transport,
chapter An integer programming approach to scheduling. North-Holland
Publishing Company.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 27 / 27

	Introduction
	Branching Methods in MILP
	Bilevel Linear Programming and Branching Sets
	Mixed Integer Interdiction and Interdiction Branching
	Definitions
	Algorithms
	Computational Experiments

	References

