Bilevel Programming, Interdiction, and Branching for

Binary Integer Programs

Andrea Lodt, Ted Ralph$, Fabrizio Rossi, Stefano Smriglid

'DEIS, Universita di Bologna
2COR@L Lab, Department of Industrial and Systems Engineering, Lehigh Urijversi
Dipartimento di Informatica, Universita di L'Aquila

COMPUTATIONAL OPTIMIZATIONY Y,
RESEARCH AT LEHIGH)\;u{

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 1/2

@ Introduction
© Branching Methods in MILP
e Bilevel Linear Programming and Branching Sets

@ Mixed Integer Interdiction and Interdiction Branching
o Definitions
@ Algorithms
o Computational Experiments

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 2/2

Good Things Come in Threes

This talk concerns the relationship of three seemingly lated topics:
@ Branching methods
@ Bilevel programming
@ Interdiction problems
It came together in three different cities:
@ Bologna, Italy
o L'Aquila, ltaly
@ Bethlehem, PA, USA

And the work involved three of mitalian colleagues, who graciously hosted me
during my sabbatical.

1it should be noted that this work was fueled by the unlimitepipdyiof excellent Italian espresso
provided by my hosts.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 3/2

First Theme: Branching Methods

Definition 1 Branchingis a method of partitioning of the feasible region of a
mathematical program by means of a logical disjunction.

Definition 2 A (linear) disjunction is a logical operator consisting ofiaite set of
systems of inequalities that evaluates TRUE with respegisenx € R" if and only
if at least one of the systems is satisfiedkby

@ Specifically, a disjunction is a logical operator of the form
\V A'x>b", xes (1)
heQ

whereA" ¢ Q™" b"e Q™ neN,myeN,he Q.

@ The disjunction evaluates TRUE f&iif and only if there existh € Q such that
APz > b,

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009

42

The Branching Decision

*
oxz, - \ﬁ o
* A

@ In branch and boundbranching creates one new subproblem for each term in
branching disjunction.

@ Each resulting subproblem is solved recursively.

o Key Question How should we select a disjunction?

@ Typically, the set of disjunctions to be considered is limited a priori in sorsieida.
o From this limited set, one must choose the “best” disjunction by a givenureas

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 5/2

What is the Criteria for Choosing?

@ The overall goal of any branching scheme is to reduce runtirime,

@ As a proxy, most branching schemes try to maximize the (eséid) bound
increase resulting from imposing the disjunction.

@ The problem of selecting the disjunction whose impositiesutts in the largest
bound improvement has a natukdlevel structure

@ This comes from the fact that the bound is computed by solaimgher
optimization problem.

@ The disjunction selection problem can sometimes be fortadlas ailevel
program

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 6/2

Second Theme: Bilevel Linear Programming

Formally, abilevel linear programis described as follows.
@ x € X C R™ are theupper-level variables
o y €Y C R™ are thelower-level variables

Bilevel Linear Program

max{c'x+d'y | x e Py N X,y € argmin{d®y | y € PL(x) N Y} }

Theupper-andlower-level feasible regionare:

Py = {xe R, |Alx < b'} and
PL(X) = {y € Ry | G?y > b® — A’} . J

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009

712

What is the Connection?

@ The upper-level variables can be used to modettiwce of disjunctiorfwe’ll
see an example shortly).

@ The lower-level problem models thwund computatioafter the disjunction has
been imposed.

@ In strong branching, we are solving this problem essegtiallenumeration.

@ The bilevel branching paradigm is to select the branchisgidction directly by
solving abilevel program

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 8/2

Multi-variable Branching

)

For certain combinatorial problems, branching on singléaldes can result in
very unbalanced trees.

Consider the knapsack or set-partitioning problems, fstaince.

o Fixing a variable to 1 is typically very strong
» Fixing a variable to zero can have little or not effect for difficult instances

Often, this phenomena is causeddyynmetryor near-symmetrpf the variables.

o Fixing a single variable to zero has no effect because thérbavanother

(symmetric) variable to take its place.
However, fixing a whole set of variables to zero may have araghp

A number of authors have proposed methods specific to cerbambinatorial
problems, see, e.g., Ryan and Foster (1981); Balas and 86)19

There have also been attempts to derive general methodsliveniable
branching, e.g., SOS branching.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 9/2

)

Branching Sets

Consider a binary integer program nfiax | x € P N B"}, wherec € Q" is the
objective function and is a polyhedron.

Forany seS= {i1,...,ijlg} €N = {1,...,n}, the following disjunction is
valid.
X, =1V, =1V.. VX =1V> x=0 @)
i€s)
Let « be the target. An index s&C N is abranching setf and only if:

max {c'x|x € F,x =0foralli € S} < a, ©))
x€{0,1}"

whereF D P NB".

Our goal is to select a set with the property that simultasbdiixing all of them
to zero will move the bound above a given target.

If we set the target to the current lower bound, then we caorigthe last term
and strengthen the above to:

X =1V (X, =1A% =0)V...V(Xg=1AX =0A... AXgy_,=0) (4

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 10/2

Example: Knapsack Problem

Let us consider the knapsack problem:

tem|1 2 3 4 5 6 7
w |3 3 3 4 456
g |1 2 2 3 3 45

where the knapsack has stze- 10 and the associated IP:

max X; + 3Xo + 3X3 + 4X4 + 4Xs5 + 5Xg + 6X%7
X1+ 2% + 2X3 + 3Xg + 3X5 + 4% + 5x7 < 10

x € {0,1}, i=123456,7.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 11/2

Example: Variable Branching

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 12/2

Example: Multi-variable Branching

2P =156 20 =13

eI S@)={6} »xs=1— 2" =15

(integral solution)

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 13/2

Choosing a Branching Set

The following is a bilevel programming formulation for theoplem of finding the
smallest branching set.

(BBP) min}_ .\ Vi
s.t.

c'x<z

y € B"

X € ar T
gmaxc'x

S.t.

+y<l ieN?

xeF

whereF is the feasible region of a given relaxation of the originallgem used for
computing the bound.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 1412

Third Theme: Interdiction Problems

@ Themixed integer interdiction probleMIPINT) is a bilevel program in which
there is a binary upper-levaiterdictionvariable for each lower-level variable.

@ The interdiction variable represents the choice of whiatietde to remove (fix
to zero) in the lower-level problem.

@ The objective is to determine the set of variables whose vahias the greatest
effect with respect to the upper-level objective subjeadnstraints.

o Often, the upper-level objective is just the negative ofltheer-level objective.

Mixed Integer Interdiction

max min dy (MIPINT)
XeP!, yEPL(X)

where

Pﬂ,:{erB%”|A1x<bl}
PL(x)={yeZP xR"P |Gy >b’y<ule—x)}.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 15/2

Interdiction Branching

@ Notice that the bilevel branching problem is nothing moi@ntan interdiction
problem with a slight twist.

@ The twist is that we require that the lower-level objectigediove the target.
@ This requires allowing lower-level variables in the uppmrel constraints.

@ Ordinarily, this would cause problems, but because of tlegigpform of the
constraint, we can handle it.

@ We can now easily state theterdiction branching problem

Interdiction Branching Problem

Find the smallest interdiction set that results in an ineeda the objective
function value of an MILP above a certain target amount.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 16/2

Solving the Interdiction Branching Problem

@ The interdiction problem is a bilevel program with very sipéstructure.
@ We can solve it exactly using methods we are developing.

@ Note that the exact form of the branching problem depends@baunding
subproblem (lower-level problem).

@ In practice, this bound would ordinarily be an LP relaxation

@ In this case, the branching problem is a bilevel linear paogwith continuous
variables at the lower level.

@ Details of the methods for solving these problems are bejlomdcope of this
talk, however.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 1712

A Simple Heuristic

@ Consider solving a 0-1 knapsack problem with pure branchoaichd.
@ In this case, we have only one fractional variable on whichrgmch.

@ Our branching set will thus be composed of variables thaakeady at value
one in the solution to the current relaxation.

o |dea Build up the branching set by iteratively adding the valgakith the
largest reduced cost.

o Easy to implement efficiently for the knapsack problem.
@ Notes

@ The current solution does not actually violate the disjunction.

» Adding the fractional variable to the branching set ensures the disjuntiidme
violated.

» When the branching set has size one and the target is the current lowet, lthis
means the variable can be fixed.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 18/2

Variations on the Theme

o If we make the target equal to the value of the current incurpliken we don’t
need to include the “all zero branch”.

@ Any branching set will do—we don't need the smallest one.

@ We can use any upper bound on the problem to judge the effeetss of the
branching set.

@ We can also use the procedure in the opposite way to fix vasablzero or even
intermix variables to be fixed to zero and one.

o We can take the bounds improvement of more than one branzldaebunt in
choosing the branching set.

@ Note that the bilevel branching method can apply to a mudteriset of
branching rules than just interdiction branching.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 19/2

Computational Experiments: Implementation

@ We coded a simple branch and bound solver for the knapsabkgpnausing the
CHiPPStree search framework.

Bounding is done using the Dantzig bound.
Search order is best first.
Note that the branching is the most computationally intenprocedure.

Therefore, we put the node back in the queue after boundidgaly branch it
when it is chosen again.

@ This is only possible due to the generality@HiPPS

¢ ¢ ¢ ¢

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 20/2

Computational Experiments: Setup

@ Generated 120 difficult knapsack instances using the gemexBDomenico
Salvagnin.

@ 20 instance each of size were 50, 60, 70, 80, 90, 100.
@ Run on Linux box with Intel Xeon 2.4GHz processor and 4G megmor
@ Time limit of 1800 seconds.

@ Settings Tested

o Variable branching

LP interdiction branching

LP interdiction with fractional variable added

IP interdiction branching with target set to 50% of gap
IP interdiction branching with target set to 95% of gap

¢ ¢ ¢ ¢

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 21/2

Comparing CPU Time for Fractional and Bilevel Branchi

J—

(a) Instances of size 50 and 60 (b) Instances of size 70 and 80

=

(uc) Ihsténcés o% sizme 96 ar;‘d 100

Figure: Performance profile for number CPU time for knapsack instances.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 2212

Comparing Tree Size for Fractional and Bilevel Branchin

(a) Instances of size 50 and 60 (b) Instances of size 70 and 80

—

(uc) I’nsﬂanéesﬂofﬁsizé 96 arI;d iOO

Figure: Performance profile for tree size for knapsack instances.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 23/2

Application to Other Combinatorial Problems

@ In principle, the method applies to other combinatorialjiems.

@ However, it is not exactly clear how to generalize the mestfod choosing the
branching set.

o Itis possible to naively apply the same method in otherragsti
@ Preliminary results with the TSP and VRP indicate that tlsiesinot work well.

o Our assumption that branches in which variables are fixedéondll necessarily
be strong does not seem to hold.

@ In most branches the bound does not seem to move.

o It seems likely we will need to take fractional variablesiatcount in more
general settings.

@ We conjecture the method will work much better for probleiks |
set-partitioning or packing problems..

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 2412

Current Work: Implementation

o Interdiction branching is now an option in the MILP solverIBl-which is a
parallel solver built with in the CHiIPPS framework.

COIN-OR Components Used

o TheCOIN High Performance Parallel Sear@HiPPS) framework to
perform the branch and bound.

@ TheCOIN LP Solver(CLP) framework for solving the LPs arising in the
branch and cut.

¢ TheCut Generation LibraryCGL) for generating cutting planes within
CBC.

@ TheOpen Solver InterfacOSI) for interfacing with CBC and CLP.

@ Currently, the branching set is chosen using the simpleisteudescribed
earlier, but this does not seem to work well.

@ We are working generalizations and a more efficient implaatam.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 25/2

Conclusions and Future Work

@ We presented a simple branching rule that works well in tise ¢d pure branch
and bound for the knapsack problem.

@ Itis unclear whether these performance gains can be rdatizgate-of-the-art
solvers.

@ There are connections to thebital branchingmethod of Ostrowski that need to
be explored.

o If you want to play with it, you can download the solver at
WWW. COi n-or. org

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 26/2

References |

Balas, E. and C. Yu 1986. Finding maximum clique in an arbjtggaph.SIAM
Journal on Computing5, 1054-1068.

Ryan, D. M. and B. A. Foster 198 Computer Scheduling of Public Transport
chapter An integer programming approach to schedulingtiNidolland
Publishing Company.

Lodi, Ralphs, Rossi & Smriglio (COR@L Lab) Bilevel Branching ISMP, Chicago, August 2009 2712

	Introduction
	Branching Methods in MILP
	Bilevel Linear Programming and Branching Sets
	Mixed Integer Interdiction and Interdiction Branching
	Definitions
	Algorithms
	Computational Experiments

	References

