
Introduction
Benchmarking

Performance Analysis
Conclusions

Benchmarking and Performance Analysis of
Optimization Software

TED RALPHS
ISE Department

COR@L Lab
Lehigh University
ted@lehigh.edu

CPAIOR, Bologna, 15 June 2010

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Outline

1 Introduction

2 Benchmarking
Purpose
Sequential Codes
Parallel Codes

3 Performance Analysis

4 Conclusions

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

My Hats

Research Scientist
Lab Director (COR@L)
Software Developer (SYMPHONY, CHiPPS, DIP, CBC, MiBS, ...)
Open Source Project Leader (COIN-OR)
Educator
Thesis Advisor
Industry Consultant

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Caveats

This talk is heavily biased towards LP-based branch-and-bound
algorithms for solving mathematical programming problems.
In such a setting, results can be “messy.”
Important aspects of this setting are that we have to account for

numerical error
failure of the algorithm to converge

This talk contains a lot more questions than answers!

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Background: COIN-OR

The Common Optimization Interface for Operations Research Initiative
was an initiative launched by IBM at ISMP in 2000.
IBM seeded an open source repository with four initial projects and
created a Web site.
The goal was to develop the project and then hand it over to the
community.
The project has now grown to be self-sustaining and was spun off as a
nonprofit educational foundation in the U.S. several years ago.
The name was also changed to the Computational Infrastructure for
Operations Research to reflect a broader mission.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

What is COIN-OR Today?

The COIN-OR Foundation
A non-profit foundation promoting the development and use of
interoperable, open-source software for operations research.
A consortium of researchers in both industry and academia
dedicated to improving the state of computational research in OR.
A venue for developing and maintaining standards.
A forum for interaction and discussion of OR software.

The COIN-OR Repository

A collection of interoperable software tools for building
optimization codes, as well as a few stand-alone packages.
A venue for peer review of OR software tools.
A development platform for open source projects, including an
SVN repository,

See www.coin-or.org for more information.
T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

The COIN-OR Foundation

The foundation has been up and running for more than five years.
We have two boards.

A strategic board to set overall direction
A technical board to advise on technical issues

The boards are composed of members from both industry and
academia, as well as balanced across disciplines.
Membership in the foundation is available to both individuals and
institutions.
The foundation Web site and repository are hosted by INFORMS.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

My Hats: COIN-OR

Member of Strategic Leadership Board
Chair of Technical Leadership Council
Project Manager

CoinBinary/CoinAll
SYMPHONY
CHiPPS

ALPS
BiCePS
BLIS

DIP
CBC
MiBS

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

What You Can Do With COIN

We currently have 50+ projects and more are being added all the time.
Most projects are now licensed under the EPL (very permissive).
COIN has solvers for most common optimization problem classes.

Linear programming
Nonlinear programming
Mixed integer linear programming
Mixed integer nonlinear programming (convex and nonconvex)
Stochastic linear programming
Semidefinite programming
Graph problems
Combinatorial problems (VRP, TSP, SPP, etc.)

COIN has various utilities for reading, building, and manipulating
optimization models and feeding them to solvers.
COIN has overarching frameworks that support implementation of
broad algorithm classes.

Parallel search
Branch and cut (and price)
Decomposition-based algorithms

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

COIN-OR Projects Overview: Linear Optimization

Clp: COIN LP Solver
Project Manager: Julian Hall

Cbc: COIN Branch and Cut
Project Manager: T.R.

SYMPHONY: a flexible integer programming package that supports
shared and distributed memory parallel processing, biobjective
optimization, warm starting, sensitivity analysis, application
development, etc.

Project Manager: T.R.

BLIS: Parallel IP solver built to test the scalability of the CHiPPS
framework.

Project Manager: T.R.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

COIN-OR Projects Overview: Nonlinear Optimization

Ipopt: Interior Point OPTimizer implements interior point methods for
solving nonlinear optimization problems.

Project Manager: Andreas Wächter

Bonmin: Basic Open-source Nonlinear Mixed INteger programming is
for (convex) nonlinear integer programming.

Project Manager: Pierre Bonami

Couenne: Solver for nonconvex nonlinear integer programming
problems.

Project Manager: Pietro Belloti

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

COIN-OR Projects Overview: Modeling

FLOPC++: An open-source modeling system.
Project Manager: Tim Hultberg

PuLP: Python-based modeling language for linear mathematical
programs.

Project Manager: Stu Mitchell

Pyomo: Python-based modeling language for linear mathematical
programs.

Project Manager: Bill Hart

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

COIN-OR Projects Overview: Interfaces

Osi: Open solver interface is a generic API for linear and mixed integer
linear programs.

Project Manager: Matthew Saltzman

GAMSlinks: Allows you to use the GAMS algebraic modeling
language and call COIN-OR solvers.

Project Manager: Stefan Vigerske

CoinMP: A callable library that wraps around CLP and CBC, providing
an API similar to CPLEX, XPRESS, Gurobi, etc.

Project Manager: Bjarni Kristjansson

Optimization Services: A framework defining data interchange formats
and providing tools for calling solvers locally and remotely through
Web services.

Project Managers: Jun Ma, Gus Gassmann, and Kipp Martin

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

COIN-OR Projects Overview: Frameworks

Bcp: A generic framework for implementing branch, cut, and price
algorithms.

Project Manager: Laci Ladanyi

CHiPPS: A framework for developing parallel tree search algorithms.
Project Manager: T.R./Yan Xu

DIP: A framework for implementing decomposition-based algorithms
for integer programming, including Dantzig-Wolfe, Lagrangian
relaxation, cutting plane, and combinations.

Project Manager: T.R./Matthew Galati

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

COIN-OR Projects Overview: Miscellaneous

CppAD: a package for doing algorithmic differentiation, a key
ingredient in modern nonlinear optimization codes.

Project Manager: Brad Bell

CSDP: A solver for semi-definite programs
Project Manager: Brian Borchers

DFO: An algorithm for derivative free optimization.
Project Manager: Katya Scheinburg

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

CoinAll, CoinBinary, BuildTools, and TestTools

Many of the tools mentioned interoperate by using the configuration
and build utilities provided by the BuildTools project.
The BuildTools includes autoconf macros and scripts that allow
PMs to smoothly integrate code from other projects into their own.
The CoinAll project is an über-project that includes a set of mutually
interoperable projects and specifies specific sets of versions that are
compatible.
The TestTools project is the focal point for testing of COIN code.
The CoinBinary project is a long-term effort to provide pre-built
binaries for popular platforms.

Installers for Windows
RPMs for Linux
.debs for Linux

You can download CoinAll (source and/or binaries) here:
http://www.coin-or.org/download/source/CoinAll
http://www.coin-or.org/download/binary/CoinAll

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Outline

1 Introduction

2 Benchmarking
Purpose
Sequential Codes
Parallel Codes

3 Performance Analysis

4 Conclusions

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

The Different Roles of Benchmarking

Comparing performance of different codes
Comparing performance of different versions of the same code
Debugging sofware
Setting a direction/goal for future research
Tuning software

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Academy versus Industry

The role of benchmarking in academia is different than in the
commercial sector.

Commercial codes: Primary goal is to satisfy users.

Academic codes: Primary goal is to test ideas and generate papers.

The importance of software to the progress of academic research is
evident.
However, academic research is (unfortunately) still driven primarily by
publication in archival journals.
Software is difficult to evaluate as an intellectual product on its own
merits.
Developers are forced to publish papers in archival journals about
software instead of publishing the software itself.
Publications about software necessitate the use of benchmarks.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Developing/Maintaining Benchmarks

Many academic test sets are developed in an ad hoc fashion specifically
to support findings reported in a paper.
Hence, they are essentially only vetted by the referees of the paper who
may not even examine the test set closely.
Once cited in a paper, the test set is established and may drive the
research agenda.
Many codes become tuned to the benchmark.
This introduces undesirable biases into the literature.
Fortunately, there are some exceptions.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

The Role of Open Source

Open source projects can play an important role in benchmarking.
Reference implementations released in open source provide a
well-understood baseline for comparison.
Without such implementations, it is virtually impossible to do a
properly designed and controlled experiment.
Comparisons against black-box software are often not very meaningful.
This was one of the central motivation for the founding of COIN-OR.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Benchmarking within Open Source

Within open source projects, benchmarking plays a role somewhere
between academia and industry.
Since development is decentralized, benchmarking can provide an
“early warning system” for problems.
As in industry, they can also make it easier to track progress.
There may still be a tendency to “develop to the benchmark” that has to
be guarded against.
COIN-OR uses nightly builds and standard benchmarks to track
development.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Issue 1: What is Really Being Tested?

In general, the challenge is to test only a particular aspect of a given
algorithm.
To do so, we want to hold all other aspects of the algorithm constant.
This is most easily accomplished when all experiments are done within
a common software framework on a common experimental platform.
Even in the most ideal circumstances, it can be difficult to draw
conclusions.

Should the values of parameters be re-tuned?
Should “unrelated” parameter settings be held constant?

How do you show that a new technique will be effective within a
state-of-the-art implementation without access to the implementation?

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Issue 2: How To Measure Performance?

Most papers in mathematical programming use measures such as

Without time limit
Running time (wallclock or CPU?)
Tree size (which nodes to count?)

With time limit
Fraction solved (tolerance?)
Final gap (how measured?)
Quality of solution (what is optimum?)

Cost
Feasibility

Time to first solution (quality?)

Are these good choices? Probably not.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Issue 3: What Is a Fair Comparison?

How do we really compare two different codes “fairly”?
Codes may have inconsistent default parameters

Error tolerances
Gap tolerances

Two codes claiming to have found an optimal solution may nevertheless
produce a different optimal value.
In the case of nonlinear optimization, we may also have to deal with the
fact that codes can produce local optima.
Details of implementation

Who implemented the code and how well is it optimized?
Are there differences in the implementation of common elements that are
tangential to what is being tested?

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Benchmarking Parallel Codes

For the foreseeable future, increases in computing power will come in
the form of additional cores rather than improvements in clock speeds.
For this reason, most codes will need to be parallelized in some way to
remain competitive.
All of the previously mentioned issues are brought into even greater
contrast when benchmarking such codes.
In addition to traditional performance measures, we must also consider
scalability.

What is it?
What are the tradeoffs?

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Parallel Scalability

Parallel scalability measures how well an algorithm is able to take
advantage of increased resources (primarily cores/processors).
Generally, this is measured by executing the algorithm with different
levels of available resources and observing the change in performance.
The most clear-cut and often-cited measure is speedup, which measures
time to optimality for different numbers of processors.
This is not necessarily a relevant measure for real-world performance.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Traditional Measures of Performance

Parallel System: Parallel algorithm + parallel architecture.
Scalability: How well a parallel system takes advantage of increased
computing resources.

Terms

Sequential runtime: Ts

Parallel runtime: Tp

Parallel overhead: To = NTp − Ts

Speedup: S = Ts/Tp

Efficiency: E = S/N

Standard analysis considers change in efficiency on a fixed test set as
number of processors is increased.
This analysis is purely “compute-centric,” and does not take into
account the effects of limitations on memory and storage.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Amdahl’s Law

Amdahl’s Law postulates a theoretical limit on speed-up based on the
amount of inherently sequential work to be done.
If s is the fraction of work to be done that is sequential, then efficiency
on p processors is limited to s + (1− s)/p.
In other words, efficiency is bounded by the sequential fraction s.
In reality, there is no well-defined “sequential fraction.”
The analysis also assumes a single, fixed test set.
Isoefficiency analysis considers the increase in problem size to maintain
a fixed efficiency as number of processors is increased.
This is perhaps a more reasonable measure.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Parallel Overhead

In practice, the amount of parallel overhead essentially determines the
scalability.

Major Components of Parallel Overhead in Tree Search

Communication Overhead (cost of sharing information)
Idle Time

Handshaking/Synchronization (cost of sharing information)
Task Starvation (cost of not sharing information)
Ramp Up Time
Ramp Down Time

Performance of Redundant Work (cost of not sharing information)

Information sharing is the main driver of efficiency.
There is a fundamental tradeoff between centralized and decentralized
information storage and decision-making.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Effect of Architecture

Architectures are getting more complex and each has its own
bottlenecks.

“Traditional” architectures are fast becoming extinct.
Multi-core desktops are now common.
Clusters of multi-core machines are becoming a standard.
GPUs are still a bit unknown.

Performance is affected by
Memory
Bandwidth
Latency

Ultimately, one can think of the architecture primarily in terms of an
extended memory hierarchy.
Performance measures are only really valid for practically identical
architectures.
It’s extremely difficult to extrapolate.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Challenges in Measuring Performance

Traditional measures may not be appropriate.
The interesting problems are the ones that take too long to solve
sequentially.
Need to account for the possibility of failure.

It’s exceedingly difficult to construct a test set
Scalability varies substantially by instance.
Hard to know what test problems are appropriate.
A fixed test set will probably fail to measure what you want.

Results are highly dependent on architecture
Difficult to make comparisons
Difficult to tune parameters

Hard to get enough time on large-scale platforms for tuning and testing.
Results are non-deterministic!

Determinism can be a false sense of security.
Lack of determinism requires more extensive testing.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Sample Scalability Analysis

Solved difficult knapsack instances by branch and bound on SDSC Blue
Gene,

SDSC Blue Gene System

Machine: IBM Blue Gene with 3,072 compute nodes
Node: dual processor, speed 700 MHz
Memory: 512 MB RAM each node
Operating System: Linux
Message Passing: MPICH

P Node Ramp-up Idle Ramp-down Wallclock Eff
64 14733745123 0.69% 4.78% 2.65% 6296.49 1.00
128 14776745744 1.37% 6.57% 5.26% 3290.56 0.95
256 14039728320 2.50% 7.14% 9.97% 1672.85 0.94
512 13533948496 7.38% 4.30% 14.83% 877.54 0.90
1024 13596979694 8.33% 3.41% 16.14% 469.78 0.84
2048 14045428590 9.59% 3.54% 22.00% 256.22 0.77

Note the increase in ramp-up and ramp-down.
T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Scalability for Generic MILPs

Selected 18 MILP instances from Lehigh/CORAL, MIPLIB 3.0,
MIPLIB 2003, BCOL, and markshare.
Tested on the Clemson cluster with BLIS.

Instance Nodes Ramp Idle Ramp Comm Wallclock Eff
-up -down Overhead

1 P 11809956 − − − − 33820.53 1.00
Per Node − − − − 0.00286
4P 11069710 0.03% 4.62% 0.02% 16.33% 10698.69 0.79
Per Node 0.03% 4.66% 0.00% 16.34% 0.00386
8P 11547210 0.11% 4.53% 0.41% 16.95% 5428.47 0.78
Per Node 0.10% 4.52% 0.53% 16.95% 0.00376
16P 12082266 0.33% 5.61% 1.60% 17.46% 2803.84 0.75
Per Node 0.27% 5.66% 1.62% 17.45% 0.00371
32P 12411902 1.15% 8.69% 2.95% 21.21% 1591.22 0.66
Per Node 1.22% 8.78% 2.93% 21.07% 0.00410
64P 14616292 1.33% 11.40% 6.70% 34.57% 1155.31 0.46
Per Node 1.38% 11.46% 6.72% 34.44% 0.00506

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Impact of Instance Properties

Instance input150_1 is a knapsack instance. When using 128
processors, BLIS achieved super-linear speedup mainly to the decrease
of the tree size
Instance fc_30_50_2 is a fixed-charge network flow instance. It
exhibits very significant increases in the size of its search tree.
Instance pk1 is a small integer program with 86 variables and 45
constraints. It is relatively easy to solve.

Instance P Node Ramp-up Idle Ramp-down Wallclock Eff
input150_1 64 75723835 0.44% 3.38% 1.45% 1257.82 1.00

128 64257131 1.18% 6.90% 2.88% 559.80 1.12
256 84342537 1.62% 5.53% 7.02% 380.95 0.83
512 71779511 3.81% 10.26% 10.57% 179.48 0.88

fc_30_50_2 64 3494056 0.15% 31.46% 9.18% 564.20 1.00
128 3733703 0.22% 33.25% 21.71% 399.60 0.71
256 6523893 0.23% 29.99% 28.99% 390.12 0.36
512 13358819 0.27% 23.54% 29.00% 337.85 0.21

pk1 64 2329865 3.97% 12.00% 5.86% 103.55 1.00
128 2336213 11.66% 12.38% 10.47% 61.31 0.84
256 2605461 11.55% 13.93% 20.19% 41.04 0.63
512 3805593 19.14% 9.07% 26.71% 36.43 0.36

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Properties Affecting Scalability

Shape of search tree (balanced or not)
Time to process a node
Number/distribution of feasible solutions
Relative strength of upper/lower bound (proving optimality)
Sizes of node descriptions

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Benchmarking Tests

Scalability can be tested separately from sequential performance.

Scalability Tests

Test set with known optima (prove optimality)
Instances known to have balanced trees
Instances with small node processing times and large trees
Instances with large node processing times and small trees
Instances with large node descriptions

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Alternative Measures of Parallel Performance

Time to optimality may not be the most appropriate measure.
Most interesting problems cannot be solved easily with small numbers
of processors.

Alternative Measures

Final gap in fixed time

Time to prove optimality (post facto)

Time to target gap

Time to target solution quality

Time to target upper/lower bound

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Purpose
Sequential Codes
Parallel Codes

Tradeoffs

How important is scalability versus sequential performance?
The answer depends on the availability of computing resources.
With large numbers of processors available, good scalability may
overcome sub-standard performance.
Keep in mind, however, that going on level deeper in a balanced tree
doubles the size.
Hence, parallelism is unlikely to be much of a silver bullet.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Outline

1 Introduction

2 Benchmarking
Purpose
Sequential Codes
Parallel Codes

3 Performance Analysis

4 Conclusions

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Performance Tuning

One of the goals of benchmarks is performance tuning.
Does the information used to benchmark help us to tune?
Not really, we need more in-depth analysis.
This section focuses on branch and bound algorithms generally.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Assessing the Performance of B&B

Benchmarking focuses on aggregate measures, but these measures are
not very useful for performance tuning.
Most commercial and open-source solvers report:

optimality gap (global lower and upper bound)
number of candidate nodes
statistics to indicate use/effectiveness of various components of the
algorithm

Preprocessing
Cutting plane generators
Primal heuristics

These are ultimately not very useful in identifying strategies for
performance improvement.

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Optimality gap

Strength: Gives indication of quality of solution
Strength: Nonincreasing measure
Weakness: may remain constant for long periods, then drop suddenly

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Number of active nodes

Strength: Indicates “work done” and “work remaining.”
Weakness: may go up and down
Weakness: each active node counts equally

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Deeper Analysis

In principle, there is a wealth of additional information available that can be
used to visualize performance.

Number of nodes of different statuses
Candidate
Infeasible
Branched
Fathomed

For each “feasible” node:
LP relaxation value
integer infeasibility
history/position in tree (e.g., depth and parent)
statistics about methods applied

How can we use this information to better assess performance?

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

The Branch and Bound Analysis Kit (BAK)

Works with any instrumented solver (currently open-source solvers
GLPK, SYMPHONY, and CBC).
Solver must be modified to provide output when nodes are added and
processed.
A processing script creates visual representations of the data by parsing
the output file

Output file can be processed at any point during the solving process
Parsing is done in Python, images are created with Gnuplot

Available for download at http://www.rosemaryroad.org/
brady/software/index.html

T.K. Ralphs Benchmarking

http://www.rosemaryroad.org/brady/software/index.html
http://www.rosemaryroad.org/brady/software/index.html

Introduction
Benchmarking

Performance Analysis
Conclusions

Example of output from solver

CBC
0.040003 heuristic -28.000000
2.692169 branched 0 -1 N -39.248099 16 0.169729
2.692169 pregnant 2 0 R -39.248063 14 105.991922
2.708170 pregnant 3 0 L -38.939929 6 0.105246
2.764173 pregnant 5 2 R -39.244862 12 49.115388
2.764173 branched 2 0 R -39.248063 14 105.991922

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Visual Representations

Histogram of active node LP bounds
Scatter plot of active node LP bounds & integer infeasibility
Incumbent node history in scatter plot
B&B trees showing the LP bound of each node

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Visualization tools: Histogram of active node LP bounds

Horizontal axis is the LP bound
Vertical axis is number of active nodes
Green vertical line shows the current incumbent value and the blue one
shows the overall LP boundT.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example histogram series 2: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Visualization tools: Scatter plot

Horizontal axis is the integer infeasibility
Vertical axis is the LP bound
Green horizontal line is the current incumbent value

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example scatter plot series 1: swath

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Patterns in integer infeasibility: SYMPHONY

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Patterns in integer infeasibility: SYMPHONY

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Visualization tools: Incumbent node history in scatter plot

Horizontal axis is the integer infeasibility
Vertical axis is the LP bound
Green line shows ancestors of the incumbent node

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example incumbent node history series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example incumbent node history series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example incumbent node history series 2: liu

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Visualization tools: B&B trees

Vertical axis is the LP bound
Nodes are horizontally positioned to make the pictures more readable
Alternatively, horizontal positions may be fixed based on position in the
tree

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Visualization tools: B&B trees

Node color legend:
green: branched
yellow: candidate or pregnant
red: fathomed
blue: infeasible

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B trees

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B trees

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B trees

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B trees

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B trees

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B trees

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B trees

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B trees

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 1: l152lav

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 2: liu

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 2: liu

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 2: liu

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 2: liu

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 2: liu

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 2: liu

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 2: liu

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 2: liu

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Example B&B tree series 3

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Outline

1 Introduction

2 Benchmarking
Purpose
Sequential Codes
Parallel Codes

3 Performance Analysis

4 Conclusions

T.K. Ralphs Benchmarking

Introduction
Benchmarking

Performance Analysis
Conclusions

Other Tools

Performance profiles
Hudson (https://software.sandia.gov/hudson/)
Hans Mittelman’s Optimization Benchmarks
(http://plato.asu.edu/bench.html)
STOP (http://www.rosemaryroad.org/brady/
software/index.html)

T.K. Ralphs Benchmarking

https://software.sandia.gov/hudson/
http://plato.asu.edu/bench.html
http://www.rosemaryroad.org/brady/software/index.html
http://www.rosemaryroad.org/brady/software/index.html

Introduction
Benchmarking

Performance Analysis
Conclusions

Final Remarks

Benchmarking must be done with extreme care, especially with parallel
codes.
Open source can play a critical role in allowing researchers to carry out
properly designed and controlled experiments.
Please consider putting your codes into the COIN-OR repository or
elsewhere for others to build on.

T.K. Ralphs Benchmarking

	Introduction
	Benchmarking
	Purpose
	Sequential Codes
	Parallel Codes

	Performance Analysis
	Conclusions

