BOBILib: Bilevel Optimization (Benchmark) Instance Library

Martin Schmidt

ISMP, Montréal July 24, 2024

First computations using small continuous linear-linear or linear-quadratic bilevel problems

- Fortuny-Amat and McCarl (1981)
- Bialas and Karwan (1984)
- Bard and Moore (1990)

First computations using small continuous linear-linear or linear-quadratic bilevel problems

- Fortuny-Amat and McCarl (1981)
- Bialas and Karwan (1984)
- Bard and Moore (1990)

Short time later, first branch-and-bound algorithm for mixed-integer linear bilevel problems

• Moore and Bard (1990)

First computations using small continuous linear-linear or linear-quadratic bilevel problems

- Fortuny-Amat and McCarl (1981)
- Bialas and Karwan (1984)
- Bard and Moore (1990)

Short time later, first branch-and-bound algorithm for mixed-integer linear bilevel problems

• Moore and Bard (1990)

After almost 20 years without much computational progress

- DeNegre and Ralphs (2009)
- Extension of the work by Moore and Bard (1990)

First computations using small continuous linear-linear or linear-quadratic bilevel problems

- Fortuny-Amat and McCarl (1981)
- Bialas and Karwan (1984)
- Bard and Moore (1990)

Short time later, first branch-and-bound algorithm for mixed-integer linear bilevel problems

• Moore and Bard (1990)

After almost 20 years without much computational progress

- DeNegre and Ralphs (2009)
- Extension of the work by Moore and Bard (1990)

Survey of mixed-integer techniques for bilevel optimization

• Kleinert, Labbé, Ljubić, S. (2021)

In addition to the mathematical aspects mentioned so far, computational bilevel optimization still suffers from the absence of a broad variety of well-curated instance libraries that can be used to test and tune specific implementations of newly developed algorithms. Although some instance sets are already publicly available (Paulavičius and Adjiman, 2019; Ralphs, 2020; Sinnl, 2020; Zhou et al., 2020), the community of computational bilevel optimization would greatly benefit from more, and in particular more diverse, instance sets.

Instance Libraries in Other Fields

MIPLIB

- Bixby et al. (1998)
- Koch et al. (2011b)
- Gleixner et al. (2019)
- https://miplib.zib.de

QPLIB

- Furini et al. (2019)
- https://qplib.zib.de

MINLPLIB

 \cdot https://www.minlplib.org

... and in bilevel optimization?

BASBLib

- Paulavicius and Adjiman (2017)
- https://github.com/basblsolver/BASBLib
- "Only" continuous bilevel instances
- Based on AMPL

... and in bilevel optimization?

BASBLib

- Paulavicius and Adjiman (2017)
- https://github.com/basblsolver/BASBLib
- "Only" continuous bilevel instances
- Based on AMPL

BOLIB

- Zhou et al. (2018)
- https://biopt.github.io/bolib
- \cdot "Only" continuous bilevel instances
- Based on MATLAB

... and in bilevel optimization?

BASBLib

- Paulavicius and Adjiman (2017)
- https://github.com/basblsolver/BASBLib
- "Only" continuous bilevel instances
- Based on AMPL

BOLIB

- Zhou et al. (2018)
- https://biopt.github.io/bolib
- "Only" continuous bilevel instances
- Based on MATLAB

Very recently: solver package by Jungen et al. (2023)

- https://git.rwth-aachen.de/avt-svt/public/libdips?
- Also contains a rather large set of test instances

We teamed up in 2017 (... or 2018?)

BOBILib: Bilevel Optimization (Benchmark) Instance Library

- More than 2500 instances of mixed-integer linear bilevel problems
- \cdot New instance data format
- \cdot New solution format
- Numerical results for all instances
- Benchmark instance subset
- Feasibility checker

Agenda

1. Instance Subsets

2. Data Formats

3. Numerical Results

4. Benchmark Instance Set

Instance Subsets

Overview of MILP-MILP Instance Classes

	Total		UL Variable	es		LL Variable	s	UL Co	onstraints	LL Co	nstraints
		Min	Max	Туре	Min	Max	Туре	Min	Max	Min	Max
interdiction											
assignment	24	25	25	В	25	25	В	1	1	45	45
clique	220	19	1593	В	8	1653	В	1	1	28	3363
generalized	90	40	50	В	40	50	MI	20	20	30	50
knapsack	599	10	500	В	10	500	I.	1	1	11	501
multidimensional- knapsack	954	10	500	В	10	500	В	1	29	11	529
network	72	22	79	В	44	158	В	1	1	41	974
general-bilevel											
mixed-integer	489	10	714 549	MI	10	714 549	MI	0	480 585	4	961 170
pure-integer	146	1	78 734	I	1	78 733	I	0	2	3	4944

Data Formats

Input Data Format

- $\cdot\,$ Every instance is a pair of files
- MPS file contains the high-point relaxation
- AUX file specifies the lower-level problem

Input Data Format: Example 2 in Moore and Bard (1990)

(

Upper Level

$$(-)\min_{x,y} \quad F(x,y) = x + 2y$$

s.t. $y \in S(x),$

Lower Level

$$f(x,y) = -y$$

s.t. $-x + 2.5y \le 3.75$,
 $x + 2.5y \ge 3.75$,
 $2.5x + y \le 8.75$,
 $x, y \ge 0$,
 $x, y \in \mathbb{Z}$.

Input Format: MPS & AUX files

* El	VCODING=IS	0-8859-1	
NAM	E	moore90_2	
ROWS	5		
Ν	R0004		
L	R0001		
L	R0002		
L	R0003		
COLU	JMNS		
	MARK0000	'MARKER'	'INTORG'
	C0001	R0004	1
	C0001	R0001	-1
	C0001	R0002	-1
	C0001	R0003	2.5
	C0002	R0004	2
	C0002	R0001	2.5
	C0002	R0002	-2.5
	C0002	R0003	1
	MARK0001	'MARKER'	'INTEND'
RHS			
	rhs	R0001	3.75
	rhs	R0002	-3.75
	rhs	R0003	8.75
BOUI	NDS		
UP	bnd	C0001	3
LO	bnd	C0002	1
UP	bnd	C0002	2
END/	ATA		

Input Format: MPS & AUX files

* EN	VCODING=IS	0-8859-1	
NAME	E	moore90_2	
ROWS	5		
Ν	R0004		
L	R0001		
L	R0002		
L	R0003		
COLU	JMNS		
	MARK0000	'MARKER'	'INTORG'
	C0001	R0004	1
	C0001	R0001	- 1
	C0001	R0002	- 1
	C0001	R0003	2.5
	C0002	R0004	2
	C0002	R0001	2.5
	C0002	R0002	-2.5
	C0002	R0003	1
	MARK0001	'MARKER'	'INTEND'
RHS			
	rhs	R0001	3.75
	rhs	R0002	-3.75
	rhs	R0003	8.75
BOUN	NDS		
UP	bnd	C0001	3
LO	bnd	C0002	1
UP	bnd	C0002	2
ENDA	ATA		

-1

-1

2.5

2.5

-2.5

3.75

-3.75

2

อNUMVARS ONUMCONSTRS 3 **∂VARSBEGIN** C0002 -1. **∂VARSEND ∂CONSTRSBEGIN** R0001 R0002 R0003 ລconstrsend aname moore90_2 @MPS moore90_2.mps

Solution Format (json)

```
"name": "moore90 2",
"bilevel_type": "optimistic",
"status": "optimal".
"difficulty": "easy",
"objective value": 5.0,
"upper_level_decisions": {
    "C0001": 3.0
},
"lower_level_decisions": {
    "C0002": 1.0
```

Numerical Results

Solvers

MibS 1.2.1

- Freely available
- Open-source
- DeNegre and Ralphs (2009), Tahernejad and Ralphs (2020)
- MILP sub-solver: CPLEX 22.1.1

Solvers

MibS 1.2.1

- Freely available
- Open-source
- DeNegre and Ralphs (2009), Tahernejad and Ralphs (2020)
- MILP sub-solver: CPLEX 22.1.1

FiLMoSi (Fischetti, Ljubić, Monaci, Sinnl 2024)

- Closed source
- $\cdot\,$ Available as a binary
- License can be requested from the authors
- MILP sub-solver: CPLEX 12.7

Solvers

MibS 1.2.1

- Freely available
- Open-source
- DeNegre and Ralphs (2009), Tahernejad and Ralphs (2020)
- MILP sub-solver: CPLEX 22.1.1

FiLMoSi (Fischetti, Ljubić, Monaci, Sinnl 2024)

- Closed source
- $\cdot\,$ Available as a binary
- License can be requested from the authors
- MILP sub-solver: CPLEX 12.7

Virtual best solver

for each instance, the fastest

Hardware Setup

- Single node of a server with Intel XEON SP 6126 CPUs
- Time limit: 1h
- Memory limit: 32 GB
- Number of threads: 4

Hardware Setup

- Single node of a server with Intel XEON SP 6126 CPUs
- Time limit: 1h
- Memory limit: 32 GB
- Number of threads: 4

Just since April 2024

- 60100 CPU hours
- Almost 7 CPU years

	Min	1st Quartile	Median	3rd Quartile	Max
UL Variables	1	64	250	500	714 549
Integer	0	0	0	0	77 626
Binary	0	45	100	400	636 923
Continuous	0	0	0	0	399 808
LL Variables	1	71	250	500	714 549
Integer	0	0	0	80	40 180
Binary	0	0	64	250	674 369
Continuous	0	0	0	0	399 608
Linking Variables	1	60	250	500	714 549
Integer	0	0	0	0	77 626
Binary	0	40	100	400	636 923
Continuous	0	0	0	0	394 447
UL Constraints	0	1	1	9	480 585
LL Constraints	3	84	201	501	961170
Coupling Constraints	0	0	0	0	356 461

Number of Variables and Constraints in the Entire Collection

Statistics for the Entire Collection

Number of solved and open problems for the entire collection with time limit of 1h

Total	Optimal	Infeasible	Open with feasible point	Open
2594	990	33	1141	430

Statistics for the Entire Collection

Number of solved and open problems for the entire collection with time limit of 1 h

Total	Optimal	Infeasible	Open with feasible point	Open
2594	990	33	1141	430

Runtimes (s) of the virtual best solver (only for instances solved to optimality)

Min	1st Quartile	Median	3rd Quartile	Max
0.01	0.42	2.68	32.18	3475.75

Statistics for the Entire Collection

Number of solved and open problems for the entire collection with time limit of 1h

Total	Optimal	Infeasible	Open with feasible point	Open
2594	990	33	1141	430

Runtimes (s) of the virtual best solver (only for instances solved to optimality)

Min	1st Quartile	Median	3rd Quartile	Max
0.01	0.42	2.68	32.18	3475.75

Instances solved within specific time ranges (only for instances solved to optimality)

[0,10)	[10,100)	[100, 1000)	[1000, 3600)
636	211	109	34

Virtual Best Solver: Entire Collection

18

- Large number of instances can be solved quickly (within 10 s)
- Instances whose solution time exceeds 10 s are much more difficult to solve to optimality
- Feasible point known but not solved to optimality for large number of instances
 - Status: open with feasible point
- Proving optimality seems to be the main challenge
- Library mainly contains instances that are either easy or difficult
- Need to increase the number of instances of moderate difficulty

Benchmark Instance Set

Defining Conditions

- \cdot The instance can be solved by both solvers within 1400 s
- It requires at least 10 s for each solver to solve the instance
- $\boldsymbol{\cdot}$ The instance is either infeasible or has a finite optimum
- The results of both solvers are consistent and pass the feasibility check

Defining Conditions

- The instance can be solved by both solvers within 1400 s
- It requires at least 10 s for each solver to solve the instance
- · The instance is either infeasible or has a finite optimum
- $\cdot\,$ The results of both solvers are consistent and pass the feasibility check
- 122 instances (all feasible)
- 60 instances are considered as easy, i.e., they can be solved by both solvers within 180 s
- Virtual best solver can solve 110 benchmark instances within 180 s

Virtual Best Solver: Benchmark Instance Set

Statistics for the Benchmark Instance Set

Runtimes (s) of the virtual best solver

Min	1st Quartile	Median	3rd Quartile	Max
10.51	19.03	33.85	83.84	664.73

Statistics for the Benchmark Instance Set

Runtimes (s) of the virtual best solver

Min	1st Quartile	Median	3rd Quartile	Max
10.51	19.03	33.85	83.84	664.73

Instances solved within specific time ranges

[0,10)	[10,100)	[100, 1000)	[1000, 3600)
0	96	26	0

Benchmark Instance Set

Sets	BOBILib	Benchmark Set	
collection	2594	122	
interdiction	1959	53	
generalized	90	27	
assignment	24	0	
knapsack	599	9	
multidimensional-knapsack	954	0	
clique	220	0	
network	72	17	
general-bilevel	635	69	
mixed-integer	489	63	
pure-integer	146	6	

	Min	1st Quartile	Median	3rd Quartile	Max
UL Variables	5	50	360	700	2258
Integer	0	0	10	600	1000
Binary	0	0	0	50	2258
Continuous	0	0	0	0	0
LL Variables	10	50	360	700	2258
Integer	0	10	170	315	512
Binary	0	0	0	20	2258
Continuous	0	0	20	308	527
Linking Variables	5	40	360	700	2258
Integer	0	0	10	600	1000
Binary	0	0	0	40	2258
Continuous	0	0	0	0	0
UL Constraints	0	1	20	240	400
LL Constraints	7	40	184	280	3664
Coupling Constraints	0	0	20	240	400

Number of Variables and Constraints of the Benchmark Instances

Future Plans

- Collect more instances of real-world bilevel problems
- More instances that are not of some kind of interdiction type
- More balanced set of instances
- More infeasible instances
- \cdot Extension to the pessimistic case

Future Plans

- Collect more instances of real-world bilevel problems
- More instances that are not of some kind of interdiction type
- More balanced set of instances
- More infeasible instances
- \cdot Extension to the pessimistic case

http://bobilib.org

Future Plans

- Collect more instances of real-world bilevel problems
- · More instances that are not of some kind of interdiction type
- More balanced set of instances
- More infeasible instances
- \cdot Extension to the pessimistic case

http://bobilib.org

- Please submit instances if you have some!
- Please report new solutions if you have some!
- Please report bugs if you find some!