
Algorithms: Why and How

Dr. Ted Ralphs

– Typeset by FoilTEX –

Algorithms: Why and How 1

What is an Algorithm?

– Typeset by FoilTEX – 1

Algorithms: Why and How 1

What is an Algorithm?

• According to Webster’s Collegiate Dictionary:

“A procedure for solving a mathematical problem in a finite number of
steps that frequently involves repetition of an operation; broadly: a

step-by-step procedure for solving a problem or accomplishing some end
especially by a computer”

• More concisely, an algorithm is a procedure for converting input to
output.

• In this way, algorithm is similar to words such as recipe, procedure,
technique, method, process, routine, etc.

• However, algorithms usually have the following special properties:

– Each step is precisely defined.
– They are used to solve mathematical problems.
– They are finite.

• In modern use, an algorithm is usually a procedure implemented on a
computer.

– Typeset by FoilTEX – 1

Algorithms: Why and How 2

An Interesting Quote

“Here is your book, the one your thousands of letter have

asked us to publish. It has taken us years to do, checking and

rechecking countless recipes to bring you only the best, only

the interesting, only the perfect. Now we can say, without a

shadow of a doubt, that every single one of them, if you follow

the directions to the letter, will work for you exactly as it did

for us, even if you have never cooked before.”

–McCall’s Cookbook (1963)

– Typeset by FoilTEX – 2

Algorithms: Why and How 3

A Brief History of Algorithms

• According to the Oxford English Dictionary, the word algorithm is a
combination of the Middle English word algorism with arithmetic.

• This word probably did not enter common usage in the English language
until sometime last century.

• The word algorism derives from the name of an Arabic mathematician
circa A.D. 825, whose surname was Al-Khwarizmi.

• Al-Khwarizmi wrote a book on solving equations from whose title the
word algebra derives.

• It is commonly believed that the first algorithm was Euclid’s Algorithm for
finding the greatest common divisor of two integers, m and n (m ≥ n).

– Divide m by n and let r be the remainder.
– If r = 0, then gcd(m,n) = n.
– Otherwise, gcd(m,n) = gcd(n, r).

– Typeset by FoilTEX – 3

Algorithms: Why and How 4

Google Etymology for Algorithm

– Typeset by FoilTEX – 4

Algorithms: Why and How 5

Show Me the Algorithms

• Algorithms are literally everywhere you look.

• What are some common applications of algorithms?

• Why is it important that algorithms execute quickly?

– Typeset by FoilTEX – 5

Algorithms: Why and How 5

Show Me the Algorithms

• Algorithms are literally everywhere you look.

• What are some common applications of algorithms?

– Your car is run by algorithms.
– Computers and the Internet are run by algorithms.
– All your phone calls are routed by algorithms.
– Spotify, Pandora, and Netflix use algorithms to recommend

music/movies to you.
– Amazon uses algorithms to determine how to get you your stuff quickly.
– Google uses algorithms to show you the fastest route from place to

place or to target advertising.
– Money managers use algorithms to find good investments.
– Biologists use algorithms to discover drugs.
– You use algorithms to make decisions, such as how to spend your

money.

• Why is it important that algorithms execute quickly?

– Typeset by FoilTEX – 5

Algorithms: Why and How 6

What is a Problem?

– Typeset by FoilTEX – 6

Algorithms: Why and How 6

What is a Problem?

• Roughly, a problem specifies what set of outputs is desired for each given
set of inputs.

• A problem instance is just a specific set of inputs.

• Example: The Sorting Problem

Input: A sequence of n numbers a1, a2, . . . , an.
Output: A reordering a′1, a

′
2, . . . , a

′
n of the input sequence such that

a′1 ≤ a′2 ≤ · · · ≤ a′n.

• Solving a problem instance consists of specifying a procedure for
converting the inputs to an output of the desired form (called a solution).

• An algorithm that is guaranteed to result in a solution for every instance
is said to be correct.

• Note that a given instance may have either no solutions or more than
one solution.

– Typeset by FoilTEX – 6

Algorithms: Why and How 7

Another Example: Fibonacci Numbers
Thanks to David Eppstein

• Another simple example of the importance of efficient algorithms arises
in the calculation of Fibonacci numbers.

• Fibonacci numbers arise in population genetics, as well as a host of other
applications.

• The nth Fibonacci number is defined recursively as follows:

F (1) = 1, (1)

F (2) = 1, (2)

F (n) = F (n− 1) + F (n− 2) ∀n ∈ N, n > 2. (3)

• How do we calculate F (n) for a given n ∈ N?

– Typeset by FoilTEX – 7

Algorithms: Why and How 8

Calculating Fibonacci Numbers

• Obvious Solution: Recursive implementation.

def fibonacci1(n):

if n == 1 or n == 2:

return 1

else:

return fibonacci1(n-1) + fibonacci1(n-2)

• How efficient is this?

• Is there a more efficient algorithm?

– Typeset by FoilTEX – 8

Algorithms: Why and How 9

Calculating Fibonacci Numbers: Second Implementation

• Second Try: Store and reuse intermediate results.

def fibonacci2(n):

f = [0, 1, 1]

for i in range(3, n+1):

f.append(f[i-1] + f[i-2])

return f[n]

• Are there any downsides of this implementation?

– Typeset by FoilTEX – 9

Algorithms: Why and How 10

Calculating Fibonacci Numbers: Third Implementation

• Third Try: Only store the intermediate results that are needed.

def fibonacci3(n):

a, b = 0, 1

for i in range(n):

a, b = b, a+b

return a

• Can we do any better?

– Typeset by FoilTEX – 10

Algorithms: Why and How 11

Calculating Fibonacci Numbers: Fourth Implementation

• Fourth Try: Fast doubling

def fibonacci5(n):

return _fibonacci5(n)[0]

Returns the tuple (F(n), F(n+1)).

def _fibonacci5(n):

if n == 0:

return (0, 1)

else:

a, b = _fibonacci5(n // 2)

c = a * (b * 2 - a)

d = a * a + b * b

if n % 2 == 0:

return (c, d)

else:

return (d, c + d)

– Typeset by FoilTEX – 11

Algorithms: Why and How 12

Calculating Fibonacci Numbers: Fifth Implementation

• Fifth Try: Calculate using direct formula.

def fibonacci(n):

x = (1 + sqrt(5))/2

return x**n - (1-x)**n)/(x - (1-x))

• This produces the answer in one step.

• What is a possible problem with this?

– Typeset by FoilTEX – 12

Algorithms: Why and How 13

Importance of Studying Algorithms

• We have just seen several different algorithms for solving the same
problem.

• The improved algorithms were much more efficient than the first one.

• Would you rather have a faster computer or a better algorithm?

– Typeset by FoilTEX – 13

Algorithms: Why and How 13

Importance of Studying Algorithms

• We have just seen several different algorithms for solving the same
problem.

• The improved algorithms were much more efficient than the first one.

• Would you rather have a faster computer or a better algorithm?

– For large values of n, a 20 year old computer running any of the
later algorithms will beat a state-of-the-art computer running the first
algorithm.

– It is generally easier to make performance gains through faster software
than through faster hardware.

– Typeset by FoilTEX – 13

Algorithms: Why and How 14

Graphs

• A graph is an abstraction used to model such connectivity relations.

• A consists of a list of “items,” along with a list of pairs of items that are
connected.

• The study of such graphs and their properties, called graph theory, is
hundreds of years old.

• Graphs can be visualized easily by creating a physical manifestation.

• There are several variations on this theme.

– The connections in the graph may or may not have a direction.
– We may not allow more than one connection between a pair of items.
– We may not allow an item to be connected to itself.
– The connections may have weight, length, cost, etc.

– Typeset by FoilTEX – 14

Algorithms: Why and How 15

Example of an Abstract Graph

– Typeset by FoilTEX – 15

Algorithms: Why and How 16

Applications of Graphs

– Typeset by FoilTEX – 16

Algorithms: Why and How 16

Applications of Graphs

• Maps

• Social Networks

• World Wide Web

• Circuits

• Scheduling

• Communication Networks

• Production and Logistics

• ...

– Typeset by FoilTEX – 16

Algorithms: Why and How 17

Graphs from Social Networks

– Typeset by FoilTEX – 17

Algorithms: Why and How 18

A Facebook Graph

– Typeset by FoilTEX – 18

Algorithms: Why and How 19

Scheduling

– Typeset by FoilTEX – 19

Algorithms: Why and How 20

Flow Problems

– Typeset by FoilTEX – 20

Algorithms: Why and How 21

Graphs for Fun

– Typeset by FoilTEX – 21

Algorithms: Why and How 22

Graphs from Map Data

– Typeset by FoilTEX – 22

Algorithms: Why and How 23

Finding a Simple Path in a Graph

• We now revisit the question of whether there is a path connecting a
given pair of vertices in a graph.

• Using the operations in the Graph class, we can answer this question
directly using a recursive algorithm.

• We must pass in a vector of bools to track which nodes have been
visited.

def SPath(G, v, w, visited = {})

if v == w:

return True

visited[v] = True

for n in v.get_neighbors():

if not visited[n]:

if SPath(G, n, w, visited):

return True

return False

– Typeset by FoilTEX – 23

Algorithms: Why and How 24

A Graph from a Maze

– Typeset by FoilTEX – 24

Algorithms: Why and How 25

Finding a Hamiltonian Path

• Now let’s consider finding a path connecting a given pair of vertices that
also visits every other vertex in between (called a Hamiltonian path).

• We can easily modify our previous algorithm to do this by passing an
additional parameter d to track the path length.

• What is the change in running time?

– Typeset by FoilTEX – 25

Algorithms: Why and How 26

Finding a Hamiltonian Path (code)

def HPath(G, v, w = None, d = None, visited = {})

if d == None:

d = G.get_node_num()

if v == w:

return d == 0

if w == None:

w = v

visited[v] = True

for n in v.get_neighbors():

if not visited[n]:

if SPath(G, n, w, d-1, visited):

return True

visited[v] = False

return False

What is the difference? Why is it more difficult?

– Typeset by FoilTEX – 26

Algorithms: Why and How 27

The Traveling Salesman Problem

• In the Traveling Salesman Problem, we are given a list of locations that
a salesman needs to visit.

• The salesman starts at home and then must visit all cities in some order,
returning back to home.

• The goal is to make the overall route as short as possible.

• Consider an instance with 50 location.

– Number of possible solutions: ≈ 1064.
– Number of atoms in the universe: ≈ 1079.
– Enumeration of all solutions is not an option.
– Instead, we do intelligent, partial enumeration.

– Typeset by FoilTEX – 27

Algorithms: Why and How 28

Example TSP

– Typeset by FoilTEX – 28

Algorithms: Why and How 29

Example TSP

– Typeset by FoilTEX – 29

Algorithms: Why and How 30

Needle in the Haystack

Key

x18 ≤ 0.0

x5 ≤ 0.0

x35 ≤ 0.0

x18 ≥ 1.0

x10 ≤ 0.0

x14 ≤ 0.0

x9 ≤ 0.0x4 ≥ 1.0

x22 ≥ 1.0

x14 ≤ 0.0

x0 ≤ 0.0

x11 ≥ 1.0

x26 ≥ 1.0

x4 ≤ 0.0

x16 ≤ 0.0

x0 ≥ 1.0

x18 ≥ 1.0

x5 ≥ 1.0

x35 ≥ 1.0

x35 ≥ 1.0

x14 ≥ 1.0

x14 ≥ 1.0

x0 ≥ 1.0

x2 ≤ 0.0x15 ≤ 0.0

x34 ≥ 1.0

x22 ≤ 0.0 x11 ≤ 0.0

x20 ≤ 0.0

x14 ≤ 0.0

x0 ≤ 0.0

x2 ≥ 1.0 x35 ≥ 1.0

x0 ≤ 0.0

x25 ≤ 0.0

x15 ≥ 1.0x15 ≤ 0.0

x26 ≥ 1.0

x20 ≤ 0.0

x25 ≥ 1.0

x34 ≥ 1.0x34 ≤ 0.0

x22 ≥ 1.0

x34 ≥ 1.0 x20 ≥ 1.0x34 ≤ 0.0 x35 ≤ 0.0

x17 ≥ 1.0

x16 ≥ 1.0

x2 ≥ 1.0x0 ≤ 0.0

x22 ≤ 0.0

x35 ≥ 1.0

x26 ≤ 0.0x15 ≥ 1.0

x20 ≥ 1.0

x2 ≤ 0.0

x10 ≥ 1.0

x34 ≤ 0.0

x9 ≥ 1.0

x24 ≤ 0.0

x35 ≤ 0.0

x18 ≤ 0.0x17 ≤ 0.0

x14 ≥ 1.0

x0 ≥ 1.0

x0 ≥ 1.0

x26 ≤ 0.0

x35 ≤ 0.0

x24 ≥ 1.0

178.5

176.0

178.3

180.9

181.6

182.0

180.5 182.6181.6

179.0181.4

180.5 182.2

182.0 182.2181.3 177.6

179.5 183.5

182.7 182.9 182.5
Pruned

Candidate

180.3 181.9

181.1 180.5181.9 180.9

185.9

185.1184.6

183.6184.5 184.5183.9

183.2182.2

179.5

182.8

182.5

Candidate

Infeasible

182.3

182.0

Pruned

Solution

180.0 181.7181.2

179.9

183.0

178.7

180.5 182.5

180.0

184.1183.3183.0183.8 182.2182.7

182.9180.4 183.8181.5183.1182.6

182.4182.2

183.2181.0

182.2

179.1

181.7

181.5

– Typeset by FoilTEX – 30

Algorithms: Why and How 31

A Large-scale Instance: USA13509

– Typeset by FoilTEX – 31

Algorithms: Why and How 32

The Solution

– Typeset by FoilTEX – 32

Algorithms: Why and How 33

Summing Up

• Algorithms that are both efficient and correct are a technology that must
be developed.

• Data structures allow us to represent relationships between various data
and allow us to manipulate them effectively during an algorithm.

• Efficient algorithms enable us to solve important problems more quickly,
which is critical for many applications.

• Development of algorithms requires an understanding of theory
(mathematics) and computation.

• There are many interesting challenges to be addressed in solving
optimization problems and this is a good way to have an impact on
the world!

• Good luck and above all, have fun!

Thank You!

– Typeset by FoilTEX – 33

Algorithms: Why and How 34

Questions

• What nerdy books do you enjoy most? What books do you think are
critical to read for an industrial engineer?

• What are some common difficulties in implementing algorithms efficiently
at scale?

• How does OR change from country to country? Is it difficult to
communicate with people who are not in the US and did not receive the
same education as you?

• Is there a method you use to narrow down the algorithms before deciding
on one?

• Regarding optimization techniques, are there algorithms/methods to
solve current real-world issues that work well in theory but with computing
power requirements that are too high for current technology (silicon
transistor sizes, etc)?

• What steps would you take if given an inefficient algorithm in code
and then given the task to optimize it? Also, could/do you apply your
optimization problem skills to CPU architecture as well?

– Typeset by FoilTEX – 34

Algorithms: Why and How 35

• This class is just our first introduction into operations research. If we
want to continue in this direction, what are a few different routes we can
take?

• What kind of process is required when transferring an OR problem from
the theory on a whiteboard using figures to a coding program and/or
make it a more realistic problem? Do you have to ignore certain aspects
of the theory to make it realistic, and if so, how do you decide what gets
left out?

• I’ve studied short path algorithms before in computer science, I was
wondering how often programming is used in the Industrial Engineering
field. Is there a special place for industrial engineering in computer
science, such as for optimizing problems besides path algorithms?

• What got you interested in the Traveling Salesman problem? Is there a
connection in your life that spurred the drive to find a solution to the
complex problem?

• After reading through the linear programming formulation for The
Traveling Salesman along with a few online articles, I still am unclear on
how the algorithm finds the solution in a short amount of time. Could
you general overview of how this formulation operates?

• Do you find theory or computation harder? Is it difficult to transfer

– Typeset by FoilTEX – 35

Algorithms: Why and How 36

theory over to computation or does a solid understanding of theory make
computation much easier?

• What affect, if any, does Quantum Computing have on Modern
Operations Research. I have read articles that state the TSP problem is
used to measure the speed of Supercomputers.

• While working with computationally complicated problems, such as
the traveling salesman problem, do you use more advanced operations
research specific computing programs to assist in solving these problems?
If so, which programs are used?

• What is something that you emphasize to your students about being
successful in the world of Industrial and Systems Engineering?

• Hello! As a college student, I’d like to know your opinion about studying
abroad as an Industrial Engineering major. I’m currently looking for
different options abroad and there are so many to choose from! Based
on your past experiences, do you have any advice, programs in mind, or
ways in general to go abroad in the Industrial Engineering major? For
example, should I be taking classes or working or just traveling...etc.

• Do you really have five tattoos of the same thing in different languages
on your body, if so what languages?

– Typeset by FoilTEX – 36

Algorithms: Why and How 37

• Why does Dijkstra’s algorithm (the algorithm used for google
maps/traveling salesmen problems) become so much more complicated
than shortest path models?

• What are some of the most common and ”unpredictable” fallacies that
occur when a simple optimization problem is applied at a macro scale
and how are these problems then addressed in the constraints of the
problems or analysis of the results?

• How long did it take you to set up the ”perfect college tour” problem,
with all of the research that went into it?

• Other than finding the best route between cities for a travelling salesman,
what is the best application for solutions to the travelling salesman
problem?

• What inspired you to focus your career on operations research? What
are you specifically researching at the Zuse Institute? What made you
want to focus on discrete optimization? Have you ever encountered a
situation where the implementation of algorithms ended up producing
worse results than before?

• What previously computationally difficult problems have we now resolved?
And why and how? Do you foresee future problems being resolved? And
in what manner?

– Typeset by FoilTEX – 37

