
Accessible Analytics:
Openness and Operations Research

Ted Ralphs

South African Operations Research Society Annual Meeting
Parys, South Africa, 15 September 2014

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Outline

1 Accessibility and Openness

2 The Democritization of Computing

3 Open Movements Today

4 Introduction to COIN-OR
COIN-OR Foundation
Overview of Projects

5 The COIN-OR Optimization Suite
Modular Structure
Basic Building Blocks

6 Case Studies

7 Conclusions

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Defining Access

What is it that we want to access? And why? What does accessibility mean?

For physical devices or technologies, access usually
means either

physical possession of the device or object,

the ability to look "inside" the box at a device’s parts, or

access to the device over a network (e.g., computer)

Access to information, on the other hand, connotes
understanding, e.g.,

a clear explanation of the inner workings of some given
technology (device, software), or

access to and an explanation of data describing a given
phenomena.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Why is it Important?

Societal progress requires sharing of and
access to the inventions and ideas of others.

Without access, the proverbial wheel will be
repeatedly re-invented.
Good science also requires access.

It is important to understand the relationship
of your work to that of others.

The scientific method requires us to
understand and replicate the ideas and
experiments of others.

Access to technology can improve the lives of individuals.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

What Limits Accessibility?

For physical products, the end product may be difficult/expensive to replicate.

Connectivity may prevent access to data and/or information, as well as remote
access to devices.
Difficulty in enabling transfer of ideas

Prohibition on disclosure due to commercial
interests.

Closed/expensive publication venues.

Too much information (“noise”).

Technically “deep” ideas that cannot be easily
understood.

Lack of availability of implementations or
specific designs.

It takes effort on the part of individuals to make technology accessible
and there are few rewards.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

What Is “Openness”?

Accessibility is closely related to another important concept: openness.
The Open Knowledge Definition describes well what is required for knowledge
to be "open".

Free access must be granted.

Free redistribution must be allowed.

Modifications and derivative works must
be allowed.

Technological restrictions must not be im-
posed.

Respect must be given to attribution requests.

Respect must be given to integrity of the original work

No persons or groups may be discriminated against.

No descrimination can be made against fields of endeavor

The license cannot be restricted to a “package.”

There can be no restriction on the distribution of combined works.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Open Technologies

Over time, technologies have tended to evolve towards a more“open” development
model through a number of different mechanisms.

The model may be pursued as a matter of
philosophy.

Some closed technologies developed by
governments have later been placed in the
public domain (GPS, Internet, ...).

Commerical technologies may be reverse-
engimeered or re-invented by hobbyists and academics.
Technologies may be opened by the commerical entity that developed them either

to encourage wide adoption,

because they have been “commoditized” and are no longer profitable, or

to ensure control of a standard.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Openness and Accessibility in Analytics

The more open we can be, the faster we will make progress as a field.
More importantly, openness helps "newcomers" to better understand what
analytics are about.
This leads to more users and eventually more developers of our technologies.
The phrase “accessible analytics" indicates a healthy spirit of inclusiveness and
outreach.
Later in the talk, I’ll touch on Eric Raymond’s notion of the “cathedral" versus
the “bazaar" as a model for development.
Although the quiet and orderly nature of the cathedral may be enticing, the
bazaar is where business gets done!

Openness is the means to the end of accessibility

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Outline

1 Accessibility and Openness

2 The Democritization of Computing

3 Open Movements Today

4 Introduction to COIN-OR
COIN-OR Foundation
Overview of Projects

5 The COIN-OR Optimization Suite
Modular Structure
Basic Building Blocks

6 Case Studies

7 Conclusions

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Foundations (1930-1946)

The foundations for modern computing were laid
out by two pioneers.

Charles Babbage is credited with designing the
first computing machine.
Alan Turing developed the core theoretical and
practical notions on which computer science is still
based.

Early computers
Z3: first electromechnical, programmable, fully
automatic, digital computer.

Colossus: Turing built this first electronic digital
programmable computer (1944)

ENIAC: first Turing-complete digital computer
(1946).

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

The Simplex Algorithm and the Transistor (1947)

In 1947, two important and seemingly
unrelated discoveries were made.

George Dantzig invented the Simplex method.

Bardeen, Brattain, and Shockley
demonstrated the first transistor.

The evolution of hardware technology and
mathematical programming have since been
inexorably linked.

Each step forward in computing technology is
immediately exploited by researchers in
mathematical programming.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Dawn of Commerical Computing (1947-1960)

Commercial computers were first introduced
in 1951 (Ferranti Mark 1, LEO I, UNIVAC I).

IBM introduced its first fully electronic data
processing system (701) and the more
versatile and popular IBM 650 in 1954.
Initially, IBM bundled “free” software with its
computers.

It could be redistributed.

Source code was included and could be
modified.

The software was not seen as a separate
product.

In the 1960s, IBM “unbundled” its software
and this led to an era dominated by proprietary
software.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Early Linear Programming Codes (1947-1960)

Until 1952, most LP computation was done on
punched card calculators (which accounts for
many of the eccentricities of the MPS format!)
The first general-purpose implementation of
the simplex algorithm is reported to have been
on the SEAC computer at the National
Institute of Standards around 1952.
Dantzig and Orchard-Hays laid the
groundwork for modern implementations of
the simplex algorithm at RAND between
1952-1956.
They implemented the simplex algorithm on
an IBM 701 in 1954-55.
This was followed by an improved
implementation on a 704 in 1955-56.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Unix and the Dawn of Open Standards (1970-1984)

Much of the history of open source is tied
to the history of Unix

Early versions of Unix were developed by
a team at AT&T Bell Labs headed by Ken
Thompson and Dennis Ritchie based on
earlier system called Multics.
In the late 70s and early 80s, two separate
movements evolved.

On the U.S. West coast, the Computer Science Research Group at UC Berkeley was
developing BSD Unix based on AT&T’s Unix implementation (1978).

On the U.S. East coast, Richard Stallman founded the Free Software Foundation and
began to develop the free GNU (GNU is Not Unix) operating system (1983).

The concept of “open systems” was developed by vendors concerned about control
of system interfaces (1984).

s

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Linux, Free BSD, and the Evolution of Sharing (1985-1995)

In the late 1980s and early 1990s, the rise
of USENET and the Internet lead to the
sharing of code and the development of
strong user communities.

The X Windows System was developed
and was the first example of an open
source platform developed by a consor-
tium of companies.
In 1991-1992, several important develop-
ments were set to change the landscape al-
together.

The 386BSD became the first completely free operating system, including a kernel
and utilities, mostly under the BSD open source license.

Linus Torvalds began implementing the first version of the Linux kernel, which was
later combined with GNU utilities to make the free GNU/Linux operating system.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Free Software Movement (1983-)

Richard Stallman was the first to formalize the notion of "free" software when he
developed the Free Software Definition:

The freedom to run the program, for any purpose.

The freedom to study how the program works, and
change it so it does your computing as you wish.

The freedom to redistribute copies so you can help
your neighbor.

The freedom to distribute copies of your modified
versions to others.

The GNU Public License codified these freedoms and added the notion of "copyleft",
which essentially required linked programs to also be under the GPL.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Open Source Movement (1997-)

In the late 1990s, a rival movement developed
in response to what some saw as the
extremism of the Free Software Foundation.

There was a need to establish a more
"industry-friendly" notion of "free" software.

A catalyst for the movement was the
publication of Eric Raymond’s Cathedral and
the Bazaar.

This soon led to the founding of the Open
Source Initiative.

The Open Source Definition codified the
foundations beliefs about what openness
really entails.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Open Source Definition

Requirements of the Open Source Definition:

Free redistribution must be allowed.

Source code must be included.

Modifications and derived works must be allowed.

Respect for integrity of the author’s source code
must be respected (as a compromise).

Persons or groups cannot be discriminated against.

No fields of endeavor, like commercial use, can be
discriminated against.

The license needs to apply to all to whom the program is redistributed.

The license must not be specific to a product.

The license must not contaminate other software.

The license must be technology-neutral.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Outline

1 Accessibility and Openness

2 The Democritization of Computing

3 Open Movements Today

4 Introduction to COIN-OR
COIN-OR Foundation
Overview of Projects

5 The COIN-OR Optimization Suite
Modular Structure
Basic Building Blocks

6 Case Studies

7 Conclusions

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Open Hardware

There is an Open Source Hardware Definition sim-
ilar to the Open Source Definition.

It requires hardware be released with documenta-
tion and design files, in addition to required soft-
ware.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Open Publishing

Open publishing is a bit more of a mixed bag.

On the one hand, the combination of LaTex and the
Internet make it simple to self-publish.

On the other hand, although more open access jour-
nals are arising, the vast majority of journals are still
traditional.

The tenure and promotion process in the U.S.
and elsewhere have made it difficult to break the
strangle-hold of traditional publishers.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Open Software

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Open Operations Research

The field of operations research faces all of the
above frictions associated with the sharing of ideas.
Prior to 2000, operations research had few “open”
venues for the distribution of ideas.

Papers were most often not available open access.

Source code required
to replicate experiments was often not available.

Progress in computation was relatively slow.

This was the impetus for the development of COIN-OR

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Outline

1 Accessibility and Openness

2 The Democritization of Computing

3 Open Movements Today

4 Introduction to COIN-OR
COIN-OR Foundation
Overview of Projects

5 The COIN-OR Optimization Suite
Modular Structure
Basic Building Blocks

6 Case Studies

7 Conclusions

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Brief History of COIN-OR

The Common Optimization Interface for Operations Research Initiative was an
initiative launched by IBM at ISMP in 2000.
IBM seeded an open source repository with four initial projects and created a
Web site.
The goal was to develop the project and then hand it over to the community.
The project has now grown to be self-sustaining and was spun off as a nonprofit
educational foundation in the U.S. several years ago.
The name was also changed to the Computational Infrastructure for Operations
Research to reflect a broader mission.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

What is COIN-OR Today?

The COIN-OR Foundation
A non-profit foundation promoting the development and use of
interoperable, open-source software for operations research.
A consortium of researchers in both industry and academia dedicated to
improving the state of computational research in OR.
A venue for developing and maintaining standards.
A forum for discussion and interaction between practitioners and
researchers.

The COIN-OR Repository

A collection of interoperable software tools for building optimization
codes, as well as a few stand alone packages.
A venue for peer review of OR software tools.
A development platform for open source projects, including a wide range
of project management tools.

See www.coin-or.org for more information.T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

The COIN Boards

The COIN-OR Foundation is governed by two boards.

Strategic Leadership Board

Kevin Furman
Lou Hafer (Secretary)
Bill Hart
Alan King (Treasurer)
Andrew Mason
Ted Ralphs (TLC Rep)
Matt Saltzman (President)

Technical Leadership Council

Miles Lubin
Kipp Martin
Ted Ralphs (Chair)
Haroldo Santos
John Siirola
Stefan Vigerske

The SLB sets the overall strategic direction and manages the business operations:
budgeting, fund-raising, legal, etc.
The TLC focuses on technical issues: build system, versioning system, bug
reporting, interoperability, etc.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

How is COIN Supported?

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

What’s Happening at COIN

Development efforts have been moving up the stack.
Core tools are still evolving but emphasis has shifted to maintenance,
documentation, improvements to usability, development of the ecosystem.

Current priorities

We’re now on Github and we have git hosting

Packages on Fedora and Debian

Homebrew installation on OS X

Installers on Windows
Re-launching Web site with many new features

Forums
Social integration, single sign-on (OpenID)
Individual project Web sites

Modeling tools

Python support

And more...

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

What You Can Do With COIN-OR: Low-level Tools

We currently have 50+ projects and more are being added all the time.
Most projects are now licensed under the EPL (very permissive).
COIN-OR has solvers for most common optimization problem classes.

Linear programming
Nonlinear programming
Mixed integer linear programming
Mixed integer nonlinear programming (convex and nonconvex)
Stochastic linear programming
Semidefinite programming
Graph problems
Combinatorial problems (VRP, TSP, SPP, etc.)

COIN-OR has various utilities for reading/building/manipulating/preprocessing
optimization models and getting them into solvers.
COIN-OR has overarching frameworks that support implementation of broad
algorithm classes.

Parallel search
Branch and cut (and price)
Decomposition-based algorithms

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

What You Can Do With COIN-OR: High-level Tools

One of the most exciting developments of recent years is the number of is the wide
range of high-level tools available to access COIN-OR solvers.

Python-based modeling languages
Spreadsheet modeling (!)
Commercial modeling languages
Mathematica
Matlab
R
Sage
Julia
...

COIN-OR isn’t just for breakfast anymore!

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

COIN-OR Projects Overview: Linear Optimization

Clp: COIN LP Solver
Project Manager: Julian Hall

DyLP: An implementation of the dynamic simplex method
Project Manager: Lou Hafer

Cbc: COIN Branch and Cut
Project Manager: Ted Ralphs

SYMPHONY: a flexible integer programming package that supports shared and
distributed memory parallel processing, biobjective optimization, warm starting,
sensitivity analysis, application development, etc.

Project Manager: Ted Ralphs

BLIS: Parallel IP solver built to test the scalability of the CHiPPS framework.
Project Manager: Ted Ralphs

Cgl: A library of cut generators
Project Manager: Robin Lougee

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

COIN-OR Projects Overview: Nonlinear Optimization

Ipopt: Interior Point OPTimizer for nonlinear optimization problems.
Project Manager: Andreas Wächter

DFO: An algorithm for derivative free optimization.
Project Manager: Katya Scheinberg

CSDP: A solver for semi-definite programs
Project Manager: Brian Borchers

OBOE: Oracle based optimization engine
Project Manager: Nidhi Sawhney

FilterSD: Package for solving linearly constrained non-linear optimization
problems.

Project Manager: Frank Curtis

OptiML: Optimization for Machine learning, interior point, active set method
and parametric solvers.

Project Manager: Katya Scheinberg

qpOASES: QP solver using the active online set strategy.
Project Manager: Joachim Ferreau

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

COIN-OR Projects Overview: Mixed Integer Nonlinear
Optimization

Bonmin: Basic Open-source Nonlinear Mixed INteger programming is for
(convex) nonlinear integer programming.

Project Manager: Pierre Bonami

Couenne: Solver for nonconvex nonlinear integer programming problems.
Project Manager: Pietro Belotti

LaGO: Lagrangian Global Optimizer, for the global optimization of nonconvex
mixed-integer nonlinear programs.

Project Manager: Stefan Vigerske

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

COIN-OR Projects Overview: Modeling

FLOPC++: An open-source modeling system.
Project Manager: Tim Hultberg

COOPR: A repository of python-based modeling tools.
Project Manager: Bill Hart

PuLP: Another python-based modeling language.
Project Manager: Stu Mitchell

DipPy: A python-based modeling language for decomposition-based solvers.
Project Manager: Mike O’Sullivan

CMPL: An algebraic modeling language
Project Manager: Mike Stieglich

SMI: Stochastic Modeling Interface, for optimization under uncertainty.
Project Manager: Alan King

yaposib: Yet Another Python OSI Binding.
Project Manager: Ted Ralphs

CyLP: Python interface to Cbc and Clp.
Project Manager: Mehdi Towhidi

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

COIN-OR Projects Overview: Interfaces and Solver Links

Osi: Open solver interface is a generic API for linear and mixed integer linear
programs.

Project Manager: Matthew Saltzman
GAMSlinks: Allows you to use the GAMS algebraic modeling language and call
COIN-OR solvers.

Project Manager: Stefan Vigerske
AIMMSlinks: Allows you to use the AIMMS modeling system and call
COIN-OR solvers.

Project Manager: Marcel Hunting
MSFlinks: Allows you to call COIN-OR solvers through Microsoft Solver
Foundation.

Project Manager: Lou Hafer
CoinMP: A callable library that wraps around CLP and CBC, providing an API
similar to CPLEX, XPRESS, Gurobi, etc.

Project Manager: Bjarni Kristjansson
Optimization Services: A framework defining data interchange formats and
providing tools for calling solvers locally and remotely through Web services.

Project Managers: Jun Ma, Gus Gassmann, and Kipp Martin
T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

COIN-OR Projects Overview: Frameworks

Bcp: A generic framework for implementing branch, cut, and price algorithms.
Project Manager: Laci Ladanyi

CHiPPS: A framework for developing parallel tree search algorithms.
Project Manager: Ted Ralphs

DIP: A framework for implementing decomposition-based algorithms for integer
programming, including Dantzig-Wolfe, Lagrangian relaxation, cutting plane,
and combinations.

Project Manager: Ted Ralphs

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

COIN-OR Projects Overview: Automatic Differentiation

ADOL-C: Package for the automatic differentiation of C and C++ programs.
Project Manager: Andrea Walther

CppAD: A tool for differentiation of C++ functions.
Project Manager: Brad Bell

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

COIN-OR Projects Overview: Graphs

GiMPy and GrUMPy: Python packages for visualizing algorithms
Project Manager: Ted Ralphs

Cgc: Coin graph class utilities, etc.
Project Manager: Phil Walton

LEMON: Library of Efficient Models and Optimization in Networks
Project Manager: Alpar Juttner

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

COIN-OR Projects Overview: Miscellaneous

Djinni: C++ framework with Python bindings for heuristic search
Project Manager: Justin Goodson

METSlib: An object oriented metaheuristics optimization framework and toolkit
in C++

Project Manager: Mirko Maischberger

CoinBazaar: A collection of examples, application codes, utilities, etc.
Project Manager: Bill Hart

PFunc: Parallel Functions, a lightweight and portable library that provides C and
C++ APIs to express task parallelism

Project Manager: Prabhanjan Kambadur

ROSE: Reformulation-Optimization Software Engine, software for performing
symbolic reformulations to Mathematical Programs (MP)

Project Manager: David Savourey

MOCHA: Matroid Optimization: Combinatorial Heuristics and Algorithms,
heuristics and algorithms for multicriteria matroid optimization

Project Manager: David Hawes

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Outline

1 Accessibility and Openness

2 The Democritization of Computing

3 Open Movements Today

4 Introduction to COIN-OR
COIN-OR Foundation
Overview of Projects

5 The COIN-OR Optimization Suite
Modular Structure
Basic Building Blocks

6 Case Studies

7 Conclusions

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

The COIN-OR Optimization Suite

Many of the tools focused on solution of mathematical optimization models
interopate.
They are built in a hierarchical fashion using a common build harness.
The COIN-OR Optimization Suite is an umbrella project that consists of
compatible version of all these mutually interoperable projects.
This suite will be the focus of the remainder of the talk.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Modular Structure of the Suite

One of the hallmarks of good open source tools is modularity.

The suite is made up of building blocks with well-defined interfaces that allow
construction of higher level tools.

There have been 75 authors over time and most have never coordinated directly
with each other!

This is the open source model of development.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Basic Building Blocks: CoinUtils

The CoinUtils project contains a wide range of low-level utilities used in almost every
project in suite.

Factorization
File parsing
Sparse matrix and array storage
Presolve
Memory management
Model building
Parameter parsing
Timing
Basic data structures

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Building Blocks: Open Solver Interface

Uniform API for a variety of solvers:

CBC
CLP
CPLEX
DyLP
FortMP
XPRESS-MP

GLPK
Mosek
OSL
Soplex
SYMPHONY
Volume Algorithm

Read input from MPS or CPLEX LP files or construct instances using COIN-OR
data structures.
Manipulate instances and output to MPS or LP file.
Set solver parameters.
Calls LP solver for LP or MIP LP relaxation.
Manages interaction with dynamic cut and column generators.
Calls MIP solver.
Returns solution and status information.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Building Blocks: Cut Generator Library

A collection of cutting-plane generators and management utilities.
Interacts with OSI to inspect problem instance and solution information and get
violated cuts.
Cuts include:

Combinatorial cuts: AllDifferent, Clique, KnapsackCover, OddHole

Flow cover cuts

Lift-and-project cuts

Mixed integer rounding cuts

General strengthening: DuplicateRows, Preprocessing, Probing, SimpleRounding

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Optimization Suite Dependency Graph

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Installing the COIN-OR Optimization Suite

Many of the tools mentioned interoperate by using the configuration and build
utilities provided by the BuildTools project.
The BuildTools project provides build infrastructure for

MS Windows (CYGWIN, MINGW, and Visual Studio)
Linux
Mac OS X (clang, gcc)

The BuildTools provides autoconf macros and scripts to allow the
modular use of code across multiple projects.
If you work with multiple COIN projects, you may end up maintaining many
(possibly incompatible) copies of COIN libraries and binaries.
The easiest way to use multiple COIN projects is simply to download and install
the latest version of the suite (1.8 due out imminently).
The TestTools project is the focal point for testing of COIN code.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Getting the Binary Distribution

The CoinBinary project is a long-term effort to provide pre-built binaries and
installers for popular platforms.
You can download binaries here:

http://www.coin-or.org/download/binary/CoinAll

Installers
For Windows, there is an automated installer available at the URL above for Visual
Studio compatible libraries built with the open source InstallJammer.
For OS X, there are Homebrew recipes for some projects (we are working on adding
more—interested?)
For Linux, there are now Debian and Fedora packages for most projects in the suite
and we are investigating the possiblity of providing Linuxbrew packages

About version numbers
COIN numbers versions by a standard major, minor, release scheme.
All version within a major.minor series are compatible.
All versions within a major series are backwards compatible.

Other ways of obtaining COIN include downloading it through a number of
modeling language front-ends (more on this later).

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

http://www.coin-or.org/download/binary/CoinAll

Outline

1 Accessibility and Openness

2 The Democritization of Computing

3 Open Movements Today

4 Introduction to COIN-OR
COIN-OR Foundation
Overview of Projects

5 The COIN-OR Optimization Suite
Modular Structure
Basic Building Blocks

6 Case Studies

7 Conclusions

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

PuLP (Stu Mitchell)

A modeling language for expressing linear models in Python.
Similar to other algebraic modeling languages but with the power of Python.
Let’s see an example.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Example: Facility Location Problem

We have n locations and m customers to be served from those locations.

There is a fixed cost cj and a capacity Wj associated with facility j.

There is a cost dij and demand wij for serving customer i from facility j.

We have two sets of binary variables.

yj is 1 if facility j is opened, 0 otherwise.

xij is 1 if customer i is served by facility j, 0 otherwise.

Capacitated Facility Location Problem

min
n∑

j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1 ∀i

m∑
i=1

wijxij ≤ Wj ∀j

xij ≤ yj ∀i, j
xij, yj ∈ {0, 1} ∀i, j

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

PuLP Basics: Facility Location Example

from products import REQUIREMENT, PRODUCTS
from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY

prob = LpProblem("Facility_Location")

ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]
assign_vars = LpVariable.dicts("x", ASSIGNMENTS, 0, 1, LpBinary)
use_vars = LpVariable.dicts("y", LOCATIONS, 0, 1, LpBinary)

prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)

for j in PRODUCTS:
prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) == 1

for i in LOCATIONS:
prob += lpSum(assign_vars[(i, j)] * REQUIREMENT[j]

for j in PRODUCTS) <= CAPACITY * use_vars[i]

prob.solve()

for i in LOCATIONS:
if use_vars[i].varValue > 0:

print "Location ", i, " is assigned: ",
print [j for j in PRODUCTS if assign_vars[(i, j)].varValue > 0]

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

PuLP Basics: Facility Location Example

The requirements for the products
REQUIREMENT = {

1 : 7,
2 : 5,
3 : 3,
4 : 2,
5 : 2,

}

Set of all products
PRODUCTS = REQUIREMENT.keys()
PRODUCTS.sort()

Costs of the facilities
FIXED_COST = {

1 : 10,
2 : 20,
3 : 16,
4 : 1,
5 : 2,

}

Set of facilities
LOCATIONS = FIXED_COST.keys()
LOCATIONS.sort()

The capacity of the facilities
CAPACITY = 8

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

DipPy: Modeling Decomposition (Mike O’Sullivan)

DIP Framework
DIP is a software framework and stand-alone solver for implementation and use
of a variety of decomposition-based algorithms.

Decomposition-based algorithms have traditionally been extremely
difficult to implement and compare.
DIP abstracts the common, generic elements of these methods.

Key: API is in terms of the compact formulation.
The framework takes care of reformulation and implementation.
DIP is now a fully generic decomposition-based parallel MILP solver.

Methods
Column generation (Dantzig-Wolfe)
Cutting plane method
Lagrangian relaxation (not complete)
Hybrid methods

⇐ Joke!

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

DipPy Basics: Facility Location Example

from products import REQUIREMENT, PRODUCTS
from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY

prob = dippy.DipProblem("Facility_Location")

ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]
assign_vars = LpVariable.dicts("x", ASSIGNMENTS, 0, 1, LpBinary)
use_vars = LpVariable.dicts("y", LOCATIONS, 0, 1, LpBinary)

prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)

for j in PRODUCTS:
prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) == 1

for i in LOCATIONS:
prob.relaxation[i] += lpSum(assign_vars[(i, j)] * REQUIREMENT[j]

for j in PRODUCTS) <= CAPACITY * use_vars[i]

dippy.Solve(prob, {doPriceCut:1})

for i in LOCATIONS:
if use_vars[i].varValue > 0:

print "Location ", i, " is assigned: ",
print [j for j in PRODUCTS if assign_vars[(i, j)].varValue > 0]

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

SolverStudio (Andrew Mason)

Spreadsheet optimization has had a (deservedly) bad reputation for many years.

SolverStudio will change your mind about that!
SolverStudio provides a full-blown modeling environment inside a spreadsheet.

Edit and run the model.

Populate the model from the spreadsheet.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Optimization Services (OS)

Optimization Services (OS) integrates numerous COIN-OR projects and is a good
starting point for many use cases. The OS project provides:

A set of XML based standards for representing optimization instances (OSiL),
optimization results (OSrL), and optimization solver options (OSoL).
A uniform API for constructing optimization problems (linear, nonlinear,
discrete) and passing them to solvers.
A command line executable OSSolverService for reading problem
instances in several formats and calling a solver either locally or remotely.
Utilities that convert files in AMPL nl, MPS, and LP format to OSiL.
Client side software for creating Web Services SOAP packages with OSiL
instances and contact a server for solution.
Standards that facilitate the communication between clients and solvers using
Web Services.
Server software that works with Apache Tomcat.
Developers: Kipp Martin, Gus Gassmann, and Jun Ma

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Using AMPL with OS

To use OS to call solvers in AMPL, you specify the OSAmplClient as the solver.

model hs71.mod;
tell AMPL that the solver is OSAmplClient
option solver OSAmplClient;

now tell OSAmplClient to use Ipopt
option OSAmplClient_options "solver ipopt";

now solve the problem
solve;

In order to call a remote solver service, set the solver service option to the address
of the remote solver service.

option ipopt_options
"service http://74.94.100.129:8080/OSServer/services/OSSolverService";

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

OS: Solving a Problem on the Command Line

The OS project provides an single executable OSSolverService that can be
used to call most COIN solvers.
To solve a problem in MPS format

OSSolverService -mps parinc.mps

The solver also accepts AMPL nl and OSiL formats.
You can display the results in raw XML, but it’s better to print to a file to be
parsed.

OSSolverService -osil parincLinear.osil -osrl result.xml

You can then view in a browser using XSLT.
Copy the style sheets to your output directory.
Open in your browser

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

OS: Remote Solves

The OSSolverService can be invoked to make remote solve calls.

./OSSolverService osol remoteSolve2.osol serviceLocation
http://74.94.100.129:8080/OSServer/services/OSSolverService

Note that in this case, even the instance file is stored remotely.

<osol xmlns="os.optimizationservices.org">
<general>

<instanceLocation locationType="http">
http://www.coin-or.org/OS/p0033.osil
</instanceLocation>
<solverToInvoke>symphony</solverToInvoke>
</general>

</osol>

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

OS: Specifying a Solver

OSSolverService -osil ../../data/osilFiles/p0033.osil
-solver cbc

To solve a linear program set the solver options to:

clp

dylp

To solve a mixed-integer linear program set the solver options to:

cbc

symphony

To solve a continuous nonlinear program set the solver options to:

ipopt

To solve a mixed-integer nonlinear program set the solver options to:

bonmin

couenne

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

OS: File formats

What is the point of the OSiL format?
Provides a single interchange standard for all classes of mathematical programs.
Makes it easy to use existing tools for defining Web services, etc.
Generally, however, one would not build an OSiL file directly.

To construct an OSiL file, there are several routes.
Use a modeling language—AMPL, GAMS, and MPL work with COIN-OR solvers.
Use FlopC++.
Build the instance in memory using COIN-OR utilities.

There are also result and options languages for specifying options to a solver and
getting results back.
XML makes it easy to display the results in a standard templated format.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Building Blocks: Calling a Solver with OS

Step 1: Construct an instance in a solver-independent format using the OS API.
Step 2: Create a solver object

CoinSolver *solver = new CoinSolver();
solver->sSolverName = "clp";

Step 3: Feed the solver object the instance created in Step 1.

solver->osinstance = osinstance;

Step 4: Build solver-specific model instance

solver->buildSolverInstance();

Step 5: Solve the problem.

solver->solve();

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Building an OS Instance

The OSInstance class provides an API for constructing models and getting those
models into solvers.

set() and add() methods for creating models.
get() methods for getting information about a problem.
calculate() methods for finding gradient and Hessians using algorithmic
differentiation.

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Building an OS Instance (cont.)

Create an OSInstance object.

OSInstance *osinstance = new OSInstance();

Put some variables in

osinstance->setVariableNumber(2);
osinstance->addVariable(0, "x0", 0, OSDBL_MAX, ’C’, OSNAN, "");
osinstance->addVariable(1, "x1", 0, OSDBL_MAX, ’C’, OSNAN, "");

There are methods for constructing
the objective function
constraints with all linear terms
quadratic constraints
constraints with general nonlinear terms

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Outline

1 Accessibility and Openness

2 The Democritization of Computing

3 Open Movements Today

4 Introduction to COIN-OR
COIN-OR Foundation
Overview of Projects

5 The COIN-OR Optimization Suite
Modular Structure
Basic Building Blocks

6 Case Studies

7 Conclusions

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

Conclusions

COIN-OR is just one of many organizations moving the operations research
community towards more openness and accessibility.
It has been gratifying to see the growth and wide adoption of COIN-OR, but we
need your help!
Everyone can play a part.
If you are passionate about openness, join us!.

Let’s change the world!!

T.K. Ralphs (Lehigh University) Accessible Analytics 15 September, 2014

