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Abstract

Tree search algorithms play an important role in research areas such as constraint stat-

isfaction, game theory, artificial intelligence, and mathematical programming. Typical

tree search algorithms include backtracking search, game tree search and branch and

bound. Such tree search algorithms can be naturally parallelized, but it is often non-

trivial to achieve scalability, especially for so-called “data-intensive” applications.

The scalability of parallel algorithms is essentially determined by the amount by

which parallel overhead increases as the number of processors increases. The amount

of parallel overhead, on the other hand, is largely determined by the effectiveness of the

mechanism for sharing knowledge during the course of the search. Knowledge sharing

has a cost, in the form of increased communication overhead, but it can help to improve

the overall efficiency of the algorithm by reducing other types of overhead such as re-

dundant work. For certain applications, the amount of knowledge generated during the

search can be quite large. We must properly address the question of what knowledge to

share and when to share it.

To explore our ideas about how to implement scalable tree search algorithms, we de-

veloped a software framework, the COIN-OR High Performance Parallel Search (CHiPPS)

Framework, which can be used to implement parallel tree search applications. The
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framework currently includes a hierarchy of libraries. The Abstract Library for Parallel

Search (ALPS) is the search-handling layer and implements a basic tree search algo-

rithm. Because of its general approach, ALPS supports the implementation of a wide

variety of algorithms and applications by creating application-specific derived classes

implementing the algorithmic components required to specify a tree search. The Branch,

Constrain, and Price Software (BiCePS) is the data-handling layer and provides support

for the implementation of relaxation-based branch and bound. The BiCePs Linear In-

teger Solver (BLIS) is a concretization of BiCePS specialized to problems with linear

constraints and linear objective function. BLIS solves general mixed integer linear pro-

grams, and also provides a base framework for implementing specialized applications.

During the course of this work, we developed two applications. The first one is built

on the top of ALPS and specialized to solve the knapsack problem; the other is based

on BLIS and used to solve the Vehicle Routing Problem (VRP). These two applications

were used to demonstrate the flexibility and effectiveness of CHiPPS.

We conducted a wide range experiments to test the overall scalability of CHiPPS.

In these experiments, we solved knapsack instances, VRP instances, and generic mixed

integer linear programs (MILPs). Our results show that scalability is relatively easy to

achieve for the knapsack instances. We were able to obtain good scalability even when

using several hundreds or thousands of processors. We failed to achieve good scalability

for the VRP instances due to the fact that the number of nodes increased significantly

as the number of processors increased. For generic MILPs, overall scalability is quite

instance dependent. We observed speedup close to linear for some instances, but had

poor results for others.

Finally, we performed a number of experiments to test the effectiveness of specific

2



methods implemented in CHiPPS to improve scalability and efficiency. The results

of our experiments confirm that effective knowledge sharing is the key to improving

parallel scalability. An asynchronous implementation, along with effective load balanc-

ing, is the most essential component of a scalable algorithm. The Master-hub-worker

programming paradigm provides extra improvement for large-scale parallel computing.

Other factors, such as task granularity, task management, and termination detection, also

require careful consideration. Furthermore, the differencing scheme that we use to han-

dle data-intensive applications can significantly reduce memory usage without slowing

down the search.
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Chapter 1

Introduction

In areas like discrete optimization, artificial intelligence, and constraint programming,

tree search algorithms are among the key techniques used to solve real-world problems.

The literature contains numerous examples of successful application of tree search al-

gorithms. For instance, Feldmann, et al. [37] developed a parallel game tree search

program called ZUGZWANG that was the first parallel game tree search software suc-

cessfully used to play chess on a massively parallel computer and was vice world cham-

pion at the computer chess championships in 1992. Applegate, Bixby, Chvátal, and

Cook used a parallel implementation of branch and cut, a type of tree search algorithm

(see [50, 77, 57]), to solve a Traveling Salesman Problem (TSP) instance with 85,900

cities in 2006. The number of variables in the standard formulation for TSP is approx-

imately the square of the number of cities. Thus, this instance has roughly 7 billion

variables.

There are several reasons for the impressive progress in the scale of problems that

can be solved by tree search. The first is the dramatic increase in available computing

power over the last two decades, both in terms of processor speed and memory size. The

4



second is significant advancements in theory. New theoretical research has boosted the

development of faster algorithms, and many techniques once declared impractical have

been “re-discovered” as faster computers have made efficient implementation possible.

The third reason is the use of parallel computing. Developing a parallel program is not

as difficult today as it once was. A number of tools, like OpenMP[25], MPI [49], and

PVM [44], provide users a handy way to write parallel programs. Furthermore, the use

of parallel computing has become very popular. Many desktop PCs now have multiple

processors, and affordable parallel computer systems like Beowulf clusters appear to be

an excellent alternative to expensive supercomputers.

With the rapid advancement of computational technologies and new algorithms, one

of the main challenges faced by researchers is the effort required to write efficient soft-

ware. To effectively handle discrete optimization problems, we may need to incorpo-

rate problem-dependent methods (most notably for dynamic generation of variables and

valid inequalities) that typically require the time-consuming development of custom im-

plementations. It is not uncommon today to find parallel computers with hundreds or

even thousands of processors. Scalability is still not easy to obtain in many applications,

however as computing environment have become increasingly distributed, developing

scalable parallel algorithms has becomes more and more difficult.

In the following sections, we introduce some definitions and background related to

tree search, parallel computing and parallel tree search. Also, we review previous work

in the area of parallel tree search.
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1.1. DEFINITIONS

1

2

3

4

5

Figure 1.1: A Sample Graph

1.1 Definitions

This section presents the necessary background on tree search. Here, we introduce

the definitions and notation relevant for describing general tree search problems and

algorithms.

1.1.1 Graphs

We first present some definitions and notation related to graph theory since they are

extensively used in tree search. Detailed introduction to these two topics can be found

in [4, 75, 26, 62, 92].

Definition 1.1 A graph or undirected graph G = (N,E) consists of a set N of ver-

tices or nodes and a set E of edges whose elements are pairs of distinct nodes. Fig-

ure 1.1 shows a graph with five nodes and six edges, where N = {1, 2, 3, 4, 5} and

E = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 5}, {4, 5}}.

Definition 1.2 A complete graph is a graph where every pair of vertices is connected

by an edge.

6



1.1. DEFINITIONS

Definition 1.3 The degree of a node is the number of edges incident to the node.

Definition 1.4 A graph G′ = (N ′, E ′) is a subgraph of G = (N,E) if N ′ ⊆ N , E ′ ⊆

N ′ ×N ′ and E ′ ⊆ E.

Definition 1.5 A walk is an alternating sequence of nodes and edges, with each edge

being incident to the nodes immediately preceding and succeeding it in the sequence.

Definition 1.6 A path is a walk without any repetition of nodes.

Definition 1.7 A cycle is a path in which the initial node is also the terminal node.

Definition 1.8 Two nodes i and j are connected if there is at least one walk from node

i to node j.

Definition 1.9 A connected graph is a graph in which every pair of nodes is connected.

Definition 1.10 A tree is a connected graph that contains no cycle.

Definition 1.11 A subtree is a connected subgraph of a tree.

Definition 1.12 A rooted tree is a tree with a specially designated node, called the root

of the tree.

Definition 1.13 A leaf node of a tree is a node that has degree of 1. When a tree has

only one node, then the root of the tree is a also a leaf node.

1.1.2 Tree Search

Following are definitions and notation related to tree search (The knapsack example in

section 1.3.1 shows how to use these definitions and notation.)
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Definition 1.14 A problem is a set of decisions to be made subject to specified con-

straints and objectives.

Definition 1.15 A state describes the status of the decisions to be made in a problem,

e.g., which ones have been fixed or had their options narrowed and which ones are still

open.

Definition 1.16 A successor function is used to change states, i.e., fix decisions or nar-

row the set of possibilities. Given a particular state x, a successor function return a

set of < action, successor > ordered pairs, where each action is one of the possible

activities in state x and each successor is a state that can be reached from state x by

applying the action.

Definition 1.17 A state space of a problem is the set of all states reachable from the

initial state. The initial state and successor functions implicitly define the state space of

a problem.

Definition 1.18 A path in a state space is a sequence of states connected by a sequence

of actions.

Definition 1.19 A goal test function determines whether a given state is a goal state.

Definition 1.20 A path cost function assigns a numeric cost to each path.

Definition 1.21 A solution to a problem is a sequence of actions that map the initial

state to a goal state. A solution may have a path cost, which is the numeric cost of the

path in the state space generated by the sequence of actions applied to reach that state.

8
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Definition 1.22 An optimal solution is a solution that has lowest path cost among all

solutions.

Definition 1.23 The feasible region of a problem is the set of all solutions.

Definition 1.24 Expanding or branching is the process of applying a successor function

to a state to generate a new set of states.

Definition 1.25 Processing is the procedure of computing the path cost of a state, check-

ing if the state a goal state, and expanding the state.

Definition 1.26 Tree search is the process of finding a solution or optimal solution that

map an initial state to a goal state. Tree search involve the iterative steps of choosing,

processing, and expanding states until either there are no more states to be expanded or

certain termination criteria are satisfied. Tree search can be divided into two categories:

feasibility search that aims at finding a feasible solution and optimality search that aims

at finding an optimal solution.

1.2 Tree Search Algorithms

1.2.1 General Framework

The process of searching for solutions can be visualized by constructing a search graph.

The nodes in the search graph correspond to the states in the state space, and the edges in

the search graph correspond to the actions in the state space. There is a close relationship

between the search graph and the state space, but it is important to note the difference

between nodes and states. A node is a bookkeeping data structure used to represent a

9
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state, while a state corresponds to a representation of the status of the decisions to be

made. Two different nodes can contain the same state if that state can be generated via

two different paths, although this is to be avoided if at all possible.

A node’s description generally has the following components [92]:

• State: The state in the state space to which the node corresponds;

• Parent: The node in the search tree that generated this node;

• Action: The action that was applied to the parent to generate the node;

• Path cost: The cost of the path from the root to the node; and

• Depth: The number of steps along the path from the root.

For some problems, like the knapsack problem, repeated states will not be encountered

if the search is executed properly. However, there are problems for which repeated states

are unavoidable, like the sliding-blocks puzzles [92]. If we can avoid repeated states,

then the generated search graph is a search tree.

Figure 1.2 illustrates a typical search tree. The root of the search tree represents the

initial state and corresponds to the original problem instance. For each node (except the

root), a subproblem can be formulated based on the state information contained in the

node. This subproblem generally has a smaller state space than the original problem.

For a given node j in a rooted tree, there is unique path in the search tree from the root

to that node. Intermediate nodes on this path from the root are called its ancestors, with

the node directly preceding j in the path called its parent or predecessor. Conversely, if

i is the parent of j then j is called the child or successor of i. Furthermore, j is called a

descendant of all the nodes that precede it on the path from the root.

10
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Root
Initial State

Goal State

Figure 1.2: A Search Tree

A variety of algorithms have been proposed and developed for tree search. Tree

search algorithms are among the most important search techniques to handle difficult

real-world problems. Due to their special structure, tree search algorithms can be natu-

rally parallelized, which makes them a very attractive area research in parallel comput-

ing. The main elements of tree search algorithms include the following.

• Processing method: A method for computing path cost and testing whether the

current node contains a goal state.

• Successor function: A method for creating a new set of nodes from a given node

by expanding the state defined by that node.

• Search strategy: A method for determining which node should be processed next.

• Pruning rule: A method for determining when it is possible to discard nodes

whose successors cannot produce solutions better than those found already or

who cannot produce a solution at all.

To implement tree search, we simply keep the current list of leaf nodes of the search

tree in a set from which the search strategy selects the next node to be expanded. This
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is conceptually straightforward, but it can be computationally expensive if one must

consider each node in turn in order to choose the “best” one. Therefore, we usually

assign each node a numeric priority and store the nodes in a priority queue that can be

updated dynamically. In this scheme, the priority of a node is determined based on the

search strategy. For example, if the priority of a node is its depth, then this scheme is the

well-known depth-first search. If the priority is path cost, then this scheme represents

best-first search. Algorithm 1.1 describes a generic tree search algorithm.

Algorithm 1.1 A Generic Tree Search Algorithm
1: Add Root r to a priority queue Q.
2: while Q is not empty do
3: Take the node i with the highest priority out of Q.
4: Process the node i.
5: Apply pruning rules.
6: if Node i cannot be pruned then
7: Create successors of node i based on the successor function, and add the suc-

cessors to Q.
8: else
9: Prune node i.

10: end if
11: end while

Generally, the performance of a search algorithm can be evaluated by one of the

following criteria [92].

• Completeness: Is the algorithm guaranteed to find a solution when there is one?

• Optimality: Is the algorithm guaranteed to find the optimal solution?

• Time complexity: How long does it take to find a solution or an optimal solution?

• Space complexity: How much memory is needed to perform the search?
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Some algorithms are guaranteed to find a solution while others are not. Complete-

ness is a desirable feature of an algorithm, but, in practice, it is not always possible to

find a solution because of problem difficulty or resource limitation for tree search algo-

rithms. Russell and Norvig [92] state that the following three quantities determine the

time and space complexities of a search algorithm:

• the maximum number of successors of any node, i.e., branching factor;

• the depth of the shallowest goal node; and

• the maximum length of any path in the state space.

Time complexity can be measured by the number of nodes generated, while space com-

plexity can be measured by the maximum number of nodes stored in memory during the

search. For many problems, the number of states in the state space is extremely large.

To find a solution, a search algorithm might need to generate a large number of nodes

and take a long period of time. In most case, it is important that the search graph be

acyclic in order to guarantee termination of the search.

1.2.2 Branch and Bound

Brand and bound is a type of tree search that prunes parts of the state space by using

bounds on the value of an optimal solution to the subproblems examined during the

search. Branch and bound can be viewed as an iterative scheme for reducing the gap

between upper and lower bound on the optimal objective value. Besides the essential

elements of tree search algorithms, branch-and-bound algorithm have two additional

elements.
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• Lower bounding method: A method for determining a lower bound on the optimal

value to a given instance.

• Upper bounding method: A method for obtaining a upper bound on the optimal

value to a given problem.

Most of the terminologies used in branch-and-bound are the same as those in general

tree search, but there are a few differences: branching in branch and bound is the same

as expanding in tree search, and the branching method in branch and bound is called

successor function in tree search,

In 1960, Land and Doig [66] first proposed the idea of using a branch-and-bound

algorithm for solving integer programs. Since then, branch and bound has became the

primary method for finding optimal solutions of MILPs. The majority of branch-and-

bound algorithms for MILPS are based on linear programming, meaning that subprob-

lems are relaxed to LPs by dropping the integrality restriction of variables, and those

LPs are solved to provide lower bounds on the optimal value of the original MILP. The

method is based on the following properties of LP relaxations:

• if an optimal solution to the LP relaxation of a subproblem satisfies the integrality

restrictions, then the solution is also an optimal solution to the subproblem and

the subproblem can be pruned;

• if the LP is infeasible, then the subproblem is also infeasible and can be pruned;

and

• if the subproblem is not pruned, it can be divided into several new subproblems.

The objective values of feasible solutions to the MILP provide upper bounds on the

optimal value of the MILP. The difference between the smallest upper bound and largest
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lower bound is called the optimality gap. Next, we briefly describe an LP-based branch-

and-bound algorithm for MILPs.

Let zu be the smallest upper bound found so far, xu be the corresponding solution,

N i be the subproblem formulated at node i, and N 0 be the problem formulated at the

root (N0 is the original MILP). For subproblem N i, let zi be a lower bound on the

value that a solution can have and let xi be such a solution, if it exists. Let L represent

the set of subproblems waiting to be processed. Algorithm 1.2 outlines an LP-based

branch-and-bound algorithm ( See Chapter 3 for more details).

Algorithm 1.2 LP-based branch-and-bound Algorithm
1: Initialize.
L = {N0}. zu =∞. xu = ∅.

2: Terminate?
If L = ∅ or optimality gap is within certain tolerance, then, the solution xu is
optimal. Terminate the search.

3: Select.
Choose a subproblem N i from L.

4: Process.
Solve the linear programming relaxation of N i. If the problem is infeasible, got to
step 2, else let zi be its objective value and xi be its solution.

5: Prune.
If zi ≥ zu, go to step 2. Otherwise, if xi satisfies the integrality restrictions, let
zu = zi, xu = xi, delete from L all problem j with zj ≥ zu, and go to step 2.

6: Branch.
Partition the feasible region of Ni into q polyhedral subsets N i1, . . . , N ik. For each
i = 1, . . . , q, let zik = zi and add subproblems N ik to L, and go to step 2.

With different implementations of the elements of branch and bound, various branch-

and-bound algorithms can be obtained. If we add valid inequalities to the LP relaxations

during node processing, then we have branch and cut. If we add variables to the LP

relaxations during node processing, then we have branch and price. If we add both

constraints and variables to the LP relaxations when processing nodes, then we have
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branch, cut, and price. In this study, we are mainly interested in branch and cut, since it

is the most effective method for solving generic MILPs. In Chapter 3, we describe the

details of the basic elements of branch and cut.

1.3 Classes of Tree Search Problems

In this section, we introduce two majors classes of problems (mathematical program-

ming and constraint satisfaction problems) that can be solved by tree search.

1.3.1 Mathematical Programming Problems

Definition. Mathematical programming refers to the study of problems in which one

seeks to minimize or maximize a real function by systematically choosing the values of

real or integer variables from within an allowed feasible region. [8]. For mathematical

programming problems, we want to search for an optimal solution that minimizes (or

maximizes) the objective function, and often can be solved by tree search algorithms

like branch and bound (see Section 1.2.2).

A mathematical programming problem can be formulated as

min f(x)

s.t. gj(x) ≤ 0 , j = 1 . . .m,
(1.1)

where function f(x) is called an objective function or cost function and the vector x

represents a vector of variables whose value are to be determined when solving the

problem. The functions gj(x), j = 1 . . .m, determines the constraints that define the

feasible region.
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If all x ∈ A are restricted to discrete values, such as integers, then the problem

is a discrete optimization problem. If the objective function f is linear and the set of

constraints gj(x), j = 1 . . .m are linear, we have a linear program (LP). For an LP,

if some or all variables are restricted to integer values, then the LP is a mixed integer

linear program (MILP). If all variables are restricted to integer values, we have a (linear)

integer program (IP).

Many classes of mathematical programming problems can be classified as discrete

optimization problems. Examples include MILPs (like the knapsack problem), permu-

tation assignment problems (such as the traveling salesman problem), and set covering

and node packing problems.

Example: The Knapsack Problem. As an example to show how to formulate mathe-

matical programming problems as tree search problems, we how introduce the knapsack

problem. Given a set of items, each with a weight and a value, the knapsack problem is

the problem of determining the number of each item to include in a knapsack so that the

total weight is not greater than the capacity of the knapsack and the total value is as large

as possible [72]. The 0-1 knapsack problem restricts the number of each item to zero or

one. If the number of items is n. then the 0-1 Knapsack problem can be formulated as

follows.

• States: Each state represents a subset A of items that must be placed in the knap-

sack and a subset B of the items that must not be placed in the knapsack. Note

that we must have A ∩B = Ø.

• Initial state: No item has either been included in or excluded, i.e., A = Ø and

B = Ø.
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• Successor function: This takes a given state and produces two new states: one

state results from including an item i in A and the other state results from adding

the item in B. Note i /∈ A ∪B.

• Goal test: Are we at a state where the capacity of the knapsack is not exceeded by

the items in A, and all items are either in A and B?

• Path cost: The total value of items that are in A.

In this formulation, the number of states in the state space is on the order of 2n. As

n increases, the number of states increases exponentially. Searching for an optimal

solution for knapsack problem can be very difficult. Unfortunately, this is true for most

interesting problems. How to search effectively is a very active research area, and also

one of the main subjects of this research.

1.3.2 Constraint Satisfaction Problems

Constraint satisfaction is the process of finding a solution to a set of constraints that ex-

press the allowed values for the variables [56]. Constraint satisfaction problems (CSPs)

are problems in which one needs to find solutions that satisfy a set of constraints. In

contrast to optimization problems, the goal of a CSP is to find a feasible solution. A

CSP can be formally defined as a triple 〈X,D,C〉, where X is a set of variables, D is a

domain of values, and C is a set of constraints. Every constraint is in turn a pair 〈t, R〉,

where t is a tuple of variables and R is a set of tuples of values, all these tuples having

the same number of elements. As a result R is a relation. An evaluation of the vari-

ables is a function from variables to domain v : X → D. Such an evaluation satisfies a

constraint 〈(x1, . . . , xn), R〉 if (v(x1), . . . , v(xn)) ∈ R. A solution is an evaluation that
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satisfies all constraints.

Examples of CSPs include the eight queens puzzle, the map coloring problem, su-

doku, and boolean satisfiability (SAT). Such problems are generally solved via tree

search, usually some form of depth-first search or local search [10]. Constraint prop-

agation is also a common method applied to CSPs. Constraint propagation enforces a

form of local consistency, with respect to the consistency of a group of variables and/or

constraints. Typical local consistency includes arc consistency, hyper-arc consistency,

and path consistency. Detailed description of constraint satisfaction problems can be

found in [10, 43, 107, 56]

1.4 Parallel Computing

The demand for greater computing power is essentially limitless. No matter what com-

puting power current systems have, there will always be applications that require still

more. The speed of a single-processor computer is physically limited by the speed of

light and the rate of heat dissipation. Although the speed of single-processor computers

has increased greatly during recent years, use of a single processor is still not the best

way to obtain massive computing power because of the technical difficulty and cost of

improving the power of single-processor computers. One practical alternative is to use

multiple processors instead of just using one “super” processor. This idea is what we call

parallel computing. In parallel computing, the problem to be solved is first partitioned

into smaller parts. Then, each part is analyzed on separate processors simultaneously.

To develop parallel algorithms, it is important to identify the existing various forms of

parallelism and then express them in programs that can be run on parallel platforms.
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There are many important issues in parallel computing. Here, we focus on the as-

pects that we believe are important in the context of our research.

1.4.1 Definitions

In this section, we introduce some definitions and notations related to parallel comput-

ing. Detailed introduction to parallel computing can be found in [5, 20, 35, 42, 44, 63,

71, 112].

Definition 1.27 A processor is a silicon integrated circuit that may contain either a

single core or multiple cores. A core mainly consists of a physical microprocessor,

cache, cache controller, and paths to the system front-side bus. Processors interpret

computer program instructions and process data, and are the “brains” of computers.

As to personal computers, the terms processor and CPU are used interchangeably.

Definition 1.28 A process is a set of instructions that, when executed, causes the com-

puter to behave in a predetermined manner.

Definition 1.29 A task is a part of a set of instructions that solves a problem or accom-

plishes an assignment. Tasks may refer to analysis, communication, computation, or

scheduling.

Definition 1.30 Wall-clock time, also called real time or wall time, is the elapsed time

from beginning to end of the program as determined by a chronometer such as a wrist-

watch or wall clock. When several programs are running simultaneously on a computer,

the wall time for each program is determined separately.
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Definition 1.31 CPU time is the amount of time that the CPU is actually executing

instructions of a program. During the execution of most programs, the CPU mainly

sits idle while the computer fetches data from the keyboard or disk, or sends data to an

output device. The CPU time of an executing program, therefore, is generally much less

than the wall-clock time of the program.

Definition 1.32 Parallel overhead is the extra work associated with parallel version

compared to its sequential code, mostly the extra time and memory space requirements

from synchronization, data communications, parallel environment creation and cancel-

lation, etc.

Definition 1.33 Granularity is a qualitative measure of the ratio of computation to com-

munication:

Granularity =
Computation T ime

Communication T ime
. (1.2)

Coarse granularity means that there are relatively large amounts of computational work

are done between communication events; while fine granularity means that there are

relatively small amounts of computational work done between communication events.

1.4.2 Parallel Computers

To do parallel computing, we need a parallel computer on which we can execute our

parallel program. A parallel computer is a large collection of processing elements that

can communicate and cooperate to solve large problems quickly [5]. It can be a specially

designed system containing multiple processors or a number of independent computers

interconnected through certain network technologies.
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Depending on how their processors, memory, and interconnects are laid out, par-

allel computers can be classified in many different ways. Generally speaking, parallel

computers can be grouped into two major categories based on how memory is allocated

[23].

• Shared-memory computer: Each processor can access any memory module. Pro-

cessors communicate through variables stored in a shared address space. Com-

munication among processors is easy. The drawback is that it is difficult for all

processors to access all of the shared memory quickly if the number of processor

is large. A typical example of a shared-memory computer is a symmetric multi-

processor (SMP).

• Distributed-memory computer: Each processor has its own local memory and

can only access locations in its own memory directly. Processors communicate

with each other over a physical network. Distributed-memory computers physi-

cally scale better than shared-memory computers. Programming on distributed-

memory computers, however, requires explicit message-passing calls, which cause

communication overhead. Types of distributed-memory computers include mas-

sively parallel processors (MPP), clusters, and computational grids.

Some researchers have also proposed the concepts of distributed shared-memory

and shared virtual memory systems, which gives the illusion of shared-memory when

memory is actually distributed. Interested readers are referred to [68, 111] for details.

Symmetric Multiprocessors

Symmetric multiprocessors (SMPs) generally have 2 to 64 processors [23] and are con-

trolled by a single central operating system. The processors share computing resources
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such as the bus, memory and I/O systems, and communicate through shared-memory.

Some examples of popular SMPs are the IBM RS/6000 R30, the Silicon Graphics Power

Challenge, and the Sun Microsystems SPARCcenter 2000. Programming on SMPs is

attractive, since sharing data is relatively easy. There exist special parallel program-

ming languages like High Performance Fortran (HPF) that are well-suited to deploy-

ment on SMPs. HPF was invented in 1993 to provide a portable syntax for expressing

data-parallel computations in Fortran. With HPF, users can write parallel programs in

a way that is similar to writing serial programs. Threads [22] and OpenMP [25] are

also widely-used protocols for programming on SMPs. The main problem with SMPs

is that the hardware scalability is generally poor due to physical limitations. Also, if one

processor fails, the entire SMP must be shut down.

Massively Parallel Processors

A massively parallel processor (MPP) is usually a large parallel machine in which the

processors do not share computing resources. It typically has several hundred processing

elements (nodes) interconnected through a high-speed interconnection network/switch.

The nodes of an MPP can have various hardware configurations, but they generally con-

sist of a main memory and one or more processors. Special nodes, in addition, can

allow peripherals, such as disks, printers, or a backup system to be connected. Every

node runs a separate copy of the operating system. In order to utilize MPPs effectively,

jobs must be broken down into pieces that can be processed simultaneously. It is rela-

tively easy to recognize jobs that are well-suited for execution on MPPs. For instance,

certain simulations and mathematical problems can be split apart and each part can be

processed independently.
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MPPs usually have a dedicated, high-bandwidth network that scales well with the

number of processors so that the communication performance is good. MPPs also have

global system view, which means that parallel programs run on several nodes as a single

entity, rather than as an arbitrary collection of processes. However, MPPs have several

weakness. First of all, they are expensive to manufacture due to low volume. Second,

it generally takes quite a long time to build an MPP and put it to market. Moreover,

MPPs require many specialized components, which can cause maintenance problems.

In spite of these disadvantages, MPPs still play an important role in parallel computing.

By the time of November, 2006, 21.60% of the world’s top 500 fastest supercomputer

were MPPs [101].

Clusters

In the last decade, many parallel programming tools, such as the message-passing pro-

tocols MPI and PVM, and the parallel programming language HPF, were standardized.

Also, communication network technology was improved dramatically. Huge numbers of

PCs and workstations are now connected through various networks. Today, computers

in most companies and schools are networked together. Moreover, the performance-

cost ratio of workstations has improved much faster than that of supercomputers. It is

claimed that the performance-cost ratio of workstations is increasing at a rate of 80%

per year, while that of supercomputers is only increasing 20 − 30% per year [7]. All

these factors have helped to bring the idea of cluster computing into reality.

A cluster is a collection of PCs, workstations, or SMPs that are interconnected via

some network technology. This includes networks of workstations (NOWs) [11] and

clusters of workstations (COWs) [109]. A cluster works as an integrated collection of

24



1.4. PARALLEL COMPUTING
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Figure 1.3: Generic Cluster Architecture

resources. As Figure 1.3 shows, a typical cluster consists of multiple high-performance

computers, networks/switches, cluster middleware (single system image, etc.), a pro-

gramming environment (compiler, parallel programming libraries, etc.), and applica-

tions.

Clusters have a number of advantages, including that the cost is low, existing soft-

ware can be used, and new processors can easily be added to the system. It is not surpris-

ing to observe that parallel computing is moving away from expensive, specialized su-

percomputers to cheaper, commoditized clusters. The number of clusters in the world’s

top 500 fastest computers has increased from 28 to 361 in six years (from November

June 2001 to November 2006) [101].

Representative types of clusters are the Berkeley NOW [11] and the Beowulf clus-

ters [103]. A Berkeley NOW consists of a number of commodity workstations and

switch-based network components. NOWs are frequently used to harvest unused cy-

cles on workstations on existing networks. Programming in this environment requires
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algorithms that are extremely tolerant of hardware failure and large communication la-

tency. A Beowulf cluster is a collection of PCs interconnected by commodity network-

ing technology running any one of the open source Unix-like operating system [104]. A

Beowulf cluster is distinguished from a NOW by several subtle but significant charac-

teristics. First, the nodes in the cluster are dedicated only to the cluster. This helps ease

load balancing problems, because the performance of individual nodes is not subject to

external interference. Also, the network load is determined only by the applications be-

ing run on the cluster because the interconnection network is isolated from the external

network. The communication latency is not as long as in NOWs and all the nodes in a

cluster are under the control of a single system administrator, while those in a NOW are

usually not.

Computational Grids

Many large organizations today are sitting on an enormous quantity of unused com-

puting power. Mainframes are typically idle 40% of the time, while Unix servers are

typically serving something less than 10% of the time. Most desktop PCs are idle for

95% of a typical day [59]. On the other hand, there is always a demand for greater com-

puting power to solve larger-scale problems or perform more realistic simulations. The

construction of computational grids allow users to utilize the idle cycles of the poten-

tially hundreds of thousands of connected computers and provide the desired computing

power.

A computational grid is a collection of distributed, possibly heterogeneous resources

that can be used as an ensemble to execute large-scale applications. Computational grids

are also called “metacomputers”. The term computational grid comes from the analogy
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Figure 1.4: A Generic Grid Architecture

with the electric power grid.

Figure 1.4 shows the generic architecture of a grid. A computational grid basically

has the following components.

• Grid nodes (computers). The grid nodes can join or leave the grid whenever they

choose to.

• Network and communication software. Grid nodes are physically connected via

certain networking technologies. Communication software facilitate the actual

communication between computers, as well as between computers and people.

• Grid middleware. This software offers services such as remote process manage-

ment, allocation of resources, storage access, and security.

• Grid resource broker. This software is responsible for resource discovery, re-

source selection, finding of software, data and hardware resources, and initiating
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computation.

• Programming environment. The environment includes compilers, parallel pro-

gramming libraries, and editors.

A number of computational grid infrastructures are available or under development,

examples are

• Condor: a high-throughput scheduler [105],

• Globus: an integrated toolkit based on a set of existing components [41], and

• Legion: a single, coherent virtual machine model constructed from new and exist-

ing components [48].

1.4.3 Parallel Programming Tools

A parallel programing tool specifies what type of operations are available without rely-

ing on specific details of the hardware and software. In theory, any programming tool

can be used on any modern parallel machine. However, the effectiveness of a specific

tool depends on the gap between the tool and the machine [49]. Sometimes multiple

tools can be used together to develop an algorithm. We will briefly describe some com-

mon tools. For more information, please refer to [49, 24].

Early Tools

During the early period (1970s) of parallel computing, parallel programs were writ-

ten with very basic primitives, most of which were based on ideas in operating sys-

tem design. When processes communicate via shared-memory, the tools often used are
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semaphores, monitors, and conditional critical regions. These tools provide different

approaches for mutually exclusive access to resources. When processors communicate

via message-passing, the popular tools are socket and remote procedure call. A socket

is a software endpoint that establishes bidirectional communication between a server

program and one or more client programs. The server program is associated with a

specific hardware port on the machine where it runs by a socket, so any client program

with a socket associated with that same port can communicate with the server program

in the network. Socket is one of the most popular forms of inter-process communica-

tion. Remote procedure call is another powerful technique for developing distributed,

client-server based applications. It is based on extending the notion of conventional

local procedure calling. The called process need not exist in the same address space

as the calling process. The two processes may be on the same system, or they may

be on different systems with a network connecting them. By using remote procedure

call, programmers avoid the details of the interface with the network when developing

distributed applications.

Threads

A thread is a sequence of instructions that can run independently. A thread can directly

share data with other threads. Threads can be distinguished by the value of their program

counters and stack pointers. Threads share a single address space and a set of global

variables. Threads allow a program to split itself into two or more simultaneously run-

ning tasks, and provide a practical way to write parallel programs on a shared-memory

computer. Threads are not, however, straightforward to use, since they requires pro-

gramming at a level lower than many programmer would prefer. The POSIX Standard
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[22] specifies the most widely used thread model called pthreads. The Java language

also has a thread programming model via its Thread and ThreadGroup classes.

OpenMP

OpenMP is a standard application programming interface (API) that supports multi-

platform shared-memory parallel programming. OpenMP provides a set of directives,

library routines, and environment variables that are used to control the parallelization

and runtime characteristics of a program. OpenMP is based on threads. The languages

supported by OpenMP are Fortran, C, and C++.

OpenMP was designed to exploit certain characteristics of shared-memory comput-

ers, which have the ability to directly access memory throughout the system. Computers

that do not have a shared-memory architecture may provide hardware or software layers

that present the appearance of a shared-memory system, but often at the cost of higher

latencies and some limitations.

Message Passing

Message-passing protocols assume that processes have only local memory and can only

communicate with each other by sending and receiving messages. When data is trans-

ferred from one process to another, message-passing requires both processes to partici-

pate. Message-passing was initially defined for client/server applications running across

a network. Today, most hardware architectures support message-passing, and people

generally use message-passing to program on distributed-memory computers.

Message-passing facilitates the development of parallel programs. Without know-

ing many low level programming techniques, programmers can write parallel programs
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that run on parallel computers. Message-passing has become a popular style of paral-

lel programming. However, message-passing generally is still difficult to use in some

cases. Also, message-passing does not support incremental parallelization of an existing

sequential program. A number of message-passing protocols can be used in developing

message-passing programs. MPI [49] and PVM [44] are among the most popular ones.

Parallelizing Compilers

A parallelizing compiler can automatically transform a given sequential program into a

form that runs efficiently on a parallel computer. Parallelizing compilers have been suc-

cessfully applied on shared-memory computers. There is still much ongoing research in

this area. For instance, the Polaris [21] compiler is designed to automatically parallelize

Fortran Programs so that they can run on shared-memory computers. The PARADIGM

[16] compiler is designed to automatically parallelize sequential programs and compile

them for efficient execution on distributed-memory machines.

Parallel Languages

There are a number of languages that can be used to write parallel programs. However,

most of them are not attractive to programmers, partially due to complicated syntax. Re-

cently, High Performance Fortran (HPF) [71] has attracted some attention. HPF extends

ISO/ANSI Fortran 90 to support applications that follow the data parallel programming

paradigm. Some applications written in HPF perform well, but others do not, due to

the limitation of the HPF language itself or the compiler implementation. Also, HPF

focuses on data parallelism, which limits its appeal. HPF is still struggling to gain wide

acceptance among parallel application developers and hardware vendors.
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1.4.4 Parallel Algorithm Paradigms

A paradigm is a class of algorithms that have the same basic control structure [54].

Paradigms are useful in designing parallel algorithms since they make it easy for pro-

grammers to construct the basic flow of algorithms. Many types of parallel computing

paradigms have been proposed [24, 54, 83, 112]. This section briefly describes the most

commonly used ones.

Single-Program Multiple-Data (SPMD)

In the SPMD paradigm, each process executes the same code but using different data

sets. Figure 1.5 illustrates the basic structure of this paradigm. SPMD is also called

data parallelism, domain decomposition, or geometric parallelism. SPMD is a popu-

lar paradigm because of its simplicity. This paradigm can be very efficient if the data

are well distributed or there is a good load balancing scheme. It is also a good choice

problems with many huge data sets like weather forecasting. Many problems have un-

derlying structures that allows the use of SPMD.

Data Pipelining

This paradigm is based on functional decomposition. Programs are divided into parts

that can be executed concurrently by different processes (see Figure 1.6). The processes

are organized in a pipeline. Each process is a stage of the pipeline and works on a

particular part of the program. Data pipelining has a very structured and clear commu-

nication pattern: only adjacent stages have interaction. Data pipelining is a good choice

for image processing or data reduction problems. Its efficiency depends primarily on

the effective decomposition of the program’s functions.
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Split and
Dsitribute

Data
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Figure 1.5: SPMD Paradigm

Process 1 Process 2 Process n

Stage 1 Stage 2 Stage n

Input Output

Figure 1.6: Data Pipelining Paradigm

Task-Farming (Master-Worker)

In this paradigm, the pool of processes consists of a master and a number of workers (see

Figure 1.7). The master process decomposes the problem-solving task into smaller tasks

and allocates them to a farm of worker processes. Workers do the actual computation.

After the computation has been done, the master gathers the results. Usually, there are

many more tasks than workers. To balance the workload of workers, the task-farming

approach generally requires a load-balancing scheme, which can adjust the workload of
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Figure 1.7: Master-Worker Paradigm

each process so that processors are not idle. This paradigm is an excellent choice for

inherently recursive algorithms such as many types of tree search algorithms. Although

the master process can become a communication bottleneck if a large number of workers

are used.
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1.4.5 Scalability Analysis

Scalability

Scalability is defined as how well a parallel system (parallel algorithm and parallel

computer) takes advantage of increased computing resources. Amdahl’s law [6] and

Gustafson’s law [53] are often used to analyze scalability of an algorithm. Let s be the

time for executing the part of a program that cannot be parallelized, and p be the time

for executing the part of a program that can be parallelized on a single processor. For

algebraic convenience, let s+p = 1 so that s and p can be viewed as the fractions of the

total computation of the serial part and parallel part. Suppose the number of processes

used is n. Amdahl’s law assumes that the sequential part is independent of problem size

and that the sequential part can be perfectly separated from the the parallel part. Thus

the maximum possible speedup according to Amdahl’s law is

S(n) =
s+ p

s+ p/n
=

1

s+ (1− s)/n. (1.3)

According to Amdahl’s law, the speedup is limited to 1/s no matter how large a number

of processes are used. Amdahl’s law overlooks the fact that larger parallel computers

can solve larger problems and the serial portion of execution tends to decrease as the

problem size increases. Thus, Amdahl’s law is generally not accurate in practice.

Gustafson’s law assumes that the serial section of the code does not increase as the

problem size increases. Thus, the maximum speedup factor is

S(n) =
s+ np

s + p
= n+ (1− n)s = s+ (1− s)n. (1.4)
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Gustafson’s law correct the problems with Amdahl’s law and is more reasonable in

analyzing the speedup factor of an algorithm, but even its assumptions are not very

reasonable in practice.

Isoefficiency Analysis

Isoefficiency analysis [47, 63] is also used in characterizing the scalability of paral-

lel systems. The key in isoefficiency analysis is to determine an isoefficiency function

that describes the required increase of the problem size to achieve a constant efficiency

with increasing computer resources. A slowly increasing isoeffficiency function implies

that small increments in the problem size are sufficient to use an increasing number of

processors efficiently; thus, the system is highly scalable. The isoefficiency functions

does not exist for some parallel systems if their efficiency cannot be kept constant as

the number of processors increases, no matter how fast the problem size increases. Us-

ing isoefficiency analysis, one can test the performance of a parallel program on a few

processors, and then predict its performance on a larger number of processors. It also

helps to study system behavior when some hardware parameters, such as the speeds of

processor and communication, change. Isoefficiency analysis is more realistic in char-

acterizing scalability than other measures like efficiency, although it is not always easy

to perform the analysis.

Parallel Overhead

The amount of parallel overhead essentially determines the efficiency of a parallel algo-

rithm. Therefore, efficiency demands that parallel overhead should be reduced as much

as possible and should also be a key focus in the parallel algorithm design. The overhead
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of parallel algorithms can be classified generally into the following categories.

• Communication: Time spent in transferring knowledge from one process to an-

other, i.e., packing the information into the send buffer and unpacking it at the

other end.

• Handshaking/Synchronization: Time spent idle while waiting for information re-

quested from others or waiting for others to complete a task.

• Redundant Work: Time spent in performing the work that would not appear in the

serial algorithm.

• Ramp-up/Ramp-down: Time at the beginning/end of the algorithm during which

there is not enough useful work for all processes to be kept busy.

Sharing the right knowledge at the right time can significantly reduce parallel overhead.

However, knowledge sharing itself can be a major cause of parallel overhead. This is

the basic tradeoff that must be analyzed in parallel algorithm design.

1.4.6 Performance Measures

In general, there are two types of performance metrics, i.e., resource performance met-

rics and system performance metrics. Resource performance metrics are used to measure

the performance of specific resources and include measures such as processor speed,

communication latency, and network bandwidth. The common resource performance

metrics include the following.

• FLOPS: Floating point operations per second is a common benchmark measure

for rating the speed of processors.
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• IPS: Instructions per second is used to measure processor speed.

• BYTES: bytes per second is used to measure communication latency or network

bandwidth.

Floating point operations include any operations involving decimal numbers. Such op-

erations take much longer than operations involving only integers. Some people believe

that FLOPS, IPS and BTYES are not relevant measures because they fail to take into

account factors such as the condition under which the processor is running (e.g., heavy

or light loads) and exactly which operations are included as floating-point operations.

System performance metrics measure the performance of the combination of a par-

allel algorithm and the computer on which the program runs. The performance of re-

sources, as well as the design of the algorithm itself, combine to determine the per-

formance of an algorithm. The most commonly used system performance metrics are

Speedup Factor and Efficiency.

Definition 1.34 Speedup is a measure of relative performance between a multiproces-

sor system and a single processor system. It is defined as

S(n) =
T ime using one processor

T ime using a parallel computer with n processors
=
ts
tn
, (1.5)

where ts is the execution time using one processor and tn is the execution time using a

multiprocessor computer with n processors.

In theory, the maximum speedup with n processors referred to as linear speedup is n.

When S(n) > n, this is called super-linear speedup. Supperlinear speedup is unusual
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and occurs due to a suboptimal sequential algorithm or some unique feature of the ar-

chitecture and algorithm that favors parallel execution. It is also possible for a parallel

algorithm to take longer than its sequential counterpart (so called speedup anomalies)

[30] .

Definition 1.35 Efficiency is defined as

E =
T ime using one processor

T ime using a parallel computer × number of processors =
ts

tn × n
. (1.6)

If the efficiency of a parallel algorithm can be maintained at a desired level when the

number of processors increases, provided that the problem size also increase, we call it

a scalable parallel algorithm.

Other Measures for Tree Search

Speedup and efficiency are the standard metrics for measuring performance. However,

there are situations in which these standard metrics are not applicable. These situations

include:

• heuristic search: a search whose goal is to quickly find a “good” solution. Heuris-

tic search generally does not guarantee to find a solution if one exists; and

• incomplete search: a search that terminates before searching through the whole

search space due to resource limits, such as time or memory.

For heuristic or incomplete search, a serial algorithm and its parallel counterpart

might behave differently in terms of the state space searched and the number of nodes

expanded. Speedup and efficiency alone cannot accurately measure the performance
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of the parallel algorithm. For instance, this is the case if both the serial and parallel

programs terminate because they exceeded the time limit and the parallel program finds

a better solution than the serial one. Although the parallel program does not have any

meaningful speedup, it does find a better solution. We need some other metrics to prop-

erly evaluate the performance of parallel algorithms in these situations. The following

are a number of metrics can be considered to use when speedup and efficiency are not

applicable.

• Quality of solution: This metric looks at the quality of the best solutions found

by the serial and parallel algorithms. There are two main issues with this metric.

First, it is difficult to quantify the comparison of quality. Second, it is not clear

what to do if neither the serial or parallel program finds a solution. In this case,

solution quality information is not complete for comparison.

• Amount of work done: In some cases, it is enough to consider the total number

of nodes generated in the search graph. This metric considers all contributions to

parallel overhead. If no redundant work is being done, it is a good choice. This

metric overlooks the information about quality of solutions.

• Amount of work before the best solution: This metric considers the number of

nodes generated before the best solution is found. This metric considers solu-

tions and is reasonable if the quality of best solutions found by serial and parallel

programs are same.

• Time per node: This metric measures the average time spent in processing a node.

This method considers parallel overhead, but does not consider solution quality.
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1.4.7 Termination Detection

It is important to terminate an algorithm as soon as it finishes the search and output

results. For parallel programs that have a centralized control scheme, it is not difficult

to determine that the computation has come to an end. However, when computation

is distributed and the algorithm is asynchronous, detecting termination is sometimes

difficult. Without timely, global, and centralized knowledge, it is not easy to detect that

the algorithm has already finished. In theory, an algorithm should terminate when the

following condition holds [20]:

• all processes satisfy application-specific local termination conditions, and

• all messages sent have been received

A number of methods have been proposed for detecting termination for asynchronous

distributed computation. For example, Mattern [73] proposed several methods like

the four counter method, sceptic algorithm, and channel counting method. Mattern’s

termination-detection methods are all based on the idea of messaging counting, which

states that a distributed system is defined as being terminated if all messages sent are

also received. The four counter method has been proven to work well in practice [34].

There are also other methods described in [20, 111]. Mattern proved that the system is

idle and program can exit if the following three conditions are satisfied:

• the system appears to have no work left,

• the number of message sent is equal the number of message received, and

• the numbers of message sent and received before termination check are equal the

numbers of message sent and received after termination check.
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1.5 Scalability Issues

As we have seen in Section 1.2, the basic structure of a tree search algorithm is ex-

tremely simple. Tree search algorithms are also excellent candidates for parallel pro-

cessing because there is a good match between the structure of tree search algorithms

and master-worker programming paradigms. Many specific implementations, and gen-

eral frameworks have been developed for tree search algorithms. Algorithm 1.3 shows

a naive master-worker type of parallel tree search algorithm.

Algorithm 1.3 A Naive Parallel Tree Search Algorithm
1: One process (The master) generates a number of nodes and distribute them to other

processes (workers).
2: Each worker adds the nodes from the master into its priority queue.
3: Workers search for solutions according to the generic Tree Search Algorithm de-

scribed in Algorithm 1.1.
4: The search terminates when all workers have no node left for processing.

This naive tree search algorithm is formally correct, but is not scalable because it will

likely be very inefficient. Hence, although tree search algorithms looks straightforward,

there are actually quite a number of issues to be studied and challenges to be overcome.

We discuss these issues in the following sections.

1.5.1 Levels of Parallelism

There are three primary levels of parallelism that we can employ when parallelizing tree

search algorithms. Ranked from coarse to fine based on granularity, they are tree level,

node level and operation level.

At the tree level, several trees can be searched in parallel and the knowledge gen-

erated when building one tree can be used for the construction of other trees. In other
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words, several tree searches are looking for solutions in the same state space at the same

time. Each tree search algorithm can take a different approach, e.g., different succes-

sor function, search strategy, etc. For example, Pekny [80] developed a parallel tree

search algorithms for solving the Traveling Salesman Problem, where the trees being

built differed only in the successor functions.

At the node level, a single tree can be searched in parallel by processing multiple

nodes simultaneously. There may be a master process to coordinate the search so that

nodes are not processed more than once. This is the most widely used type of paral-

lelism for tree search algorithms. This level of parallelism is appropriate for distributed

computers and the master-worker paradigm, since the processing of a tree is perfectly

separable into independent node processing tasks.

At the operation level, the parallelism may be introduced by performing the pro-

cessing of a single node in parallel. This level of parallelism is more appropriate for a

shared-memory computer.

1.5.2 Parallel Algorithm Phases

Conceptually, a parallel algorithm consists of three phases. The ramp-up phase is the pe-

riod during which work is initially partitioned and allocated to the available processors.

In our current setting, this phase can be defined loosely as lasting until all processors

have been assigned at least one task. The second phase is the primary phase, during

which the algorithm operates in steady state. This is followed by the ramp-down phase,

during which termination procedures are executed and final results are tabulated and re-

ported. Defining when the ramp-down phase begins is slightly problematic, but we will

define it here as the earliest time at which one of the processors becomes permanently
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out of work. The division of the algorithm into phases is to highlight the fact that ramp-

up and ramp-down portions of the algorithm cannot be fully parallelized simply because

the granularity cannot be made fine enough. For certain algorithms, such as branch and

bound, the ramp-up and ramp-down periods can take long time. Thus, good scalability

becomes difficult to achieve.

1.5.3 Synchronization and Handshaking

Inevitably, there are situations in which a process must wait until one or more other pro-

cesses have reached a particular reference point before proceeding. This action is called

synchronization, and usually happens when processes need to proceed simultaneously

from a known state. Synchronization often happens when a serial section of work must

be done by all processes. There are many applications that require synchronization. Fox

[42] reported that 70% of the first set of applications that he studied used some synchro-

nization. Synchronization can be achieved either by using a barrier or by some kind

of counting scheme [111]. A barrier is a mechanism that prevents processes from con-

tinuing past a specified point in a parallel program until certain others processes reach

this point. The problem with synchronization is that some processes might reach the

synchronization point much more quickly than others and will waste time in waiting for

other processes to reach the same state.

Asynchronous algorithms do not have any synchronization points and reduce over-

head by reducing the time that processes spend idle. An asynchronous execution mode is

appropriate for algorithms running on NOWs and computational grids, where synchro-

nization is hard to achieve. A major issue with asynchronous algorithms is that there is

typically no process that has accurate information about the overall state of the search.
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This can cause difficulties in effectively balancing workload and detecting termination.

Load balancing and termination detecting schemes should have the ability to deal with

such inaccurate information issue.

1.5.4 Knowledge Sharing

Knowledge is the information, such as solutions and path costs, generated during the

course of a search or input by users. Knowledge can be used to guide the search, e.g.,

by determining the order in which to process available states. Global knowledge is

knowledge that is valid for the whole state space. Local knowledge is knowledge that is

only valid for a specific part of the state space.

With knowledge about the progress of the search, the processes participating in the

search are able to make better decisions. When useful knowledge is shared among pro-

cesses, it is possible to avoid part or all of the performance of redundant work, because

the progress of a parallel search can be executed in much the same fashion as its serial

counterpart. If all processes have complete knowledge, then in principle no redundant

work will be performed.

There are several challenges associated with knowledge sharing, however. First,

knowledge sharing may change the shape of the search tree dynamically, which makes

load balancing difficult. The workload of each process might change more frequently

and drastically in the presence of knowledge sharing. For instance, many of the nodes

that a process has in its queue may suddenly be pruned if another process finds a good

solution whose value is better than the path costs of those nodes. Knowledge sharing re-

quires load balancing schemes that are able to respond to these kinds of change quickly.
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Secondly, knowledge sharing has significant impact on parallel overhead. Communi-

cation overhead and handshaking are essentially the cost of sharing knowledge, while

redundant work is the cost of not sharing knowledge. This highlights the fundamental

trade-off inherent in knowledge sharing: it reduces the performance of redundant work,

but comes at a price. The goal is to strike the proper balance in this trade-off. Trienekens

and Bruin [106] give a detailed description about of the issues involved in knowledge

generation and sharing.

1.5.5 Implementation Paradigms

The master-worker is the most widely used paradigm for implementing tree search be-

cause a search tree can be easily partitioned into a number of subtrees. In fact, there

are not many studies in parallel tree search that use other paradigms other than master-

worker. When designing the control strategy of the algorithm, we can either let the

master have a central node pool storing all the generated nodes or let workers also have

their own local node pools. However, a major problem with the master-worker paradigm

is that the tree manager can become overburdened with requests for knowledge of var-

ious type. Moreover, most of these requests are synchronous, which means that the

requesting process is idle while waiting for a reply. As the number of processes that

participate in the search increases, this problem becomes more serious. To overcome

this, some new ideas have been proposed, such as the multiple master-worker paradigm

used by PEBBL and PUBB [34, 99].
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1.5.6 Task Granularity

Generally, a node is treated as a basic work unit in tree search algorithms due to the fact

that the processing of a node is a separable task. Most currently available parallel tree

search packages, such as SYMPHONY [88] and PEBBL [34], treat a node as a work

unit. As we know, increasing the granularity of task is a useful way to cut down on com-

munication overhead, though it may increase redundant work. Also, large granularity

helps to reduce the amount of work that might need to be transferred and also decrease

the frequency to sharing workload. Hence, it is important to consider increasing task

granularity.

1.5.7 Static Load Balancing

Static load balancing is also referred to as mapping and is a method for initially dis-

tributing tasks to processes. As we know, a tree search generally starts with a single root

node. Hence, the first task is to create enough candidate nodes to ensure all processors

are busy with useful work. Static load balancing should allocate tasks as evenly as pos-

sible, given available knowledge about potential workload, so that resource utilization

is maximized. In some cases, a well-designed static load balancing scheme can be very

effective [95].

Henrich [55] describes and compares four different initialization methods: root ini-

tialization, enumerative initialization, selective initialization and direct initialization.

Each method has its advantages and disadvantages.

When applying the root initialization method, one process expands the root of the

search tree and creates a required number of nodes. The descendants of the root are then

distributed to other processes according to certain rules. Root initialization is the most
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common approach due to the fact that

• it is easy to implement; and

• it is effective when the number of nodes created during initialization is large.

A major shortcoming of root initialization is that many of the processes are idle while

waiting to receive their allocation of nodes.

Enumerative initialization broadcasts the root node to all processes, which then ex-

pand the root according to the sequential algorithm. When the number of leaf nodes on

each process is at least the number of processes, processes can stop expanding. The ith

process then keeps the ith node and deletes the rest. In this method, all processes are

working from the very beginning and no communication is required. On the other hand,

there is redundant work because each process is initially doing an identical task. This

method has been successfully implemented in PEBBL [34].

Selective initialization starts with broadcasting the root to each process. Each pro-

cess then generates one single path from the root. The method require little communi-

cation, but requires a sophisticated scheme to ensure processes work on distinct paths.

Direct initialization does not build up the search tree explicitly. Instead, each process

directly creates a node from a certain depth of the search tree. The number of nodes at

this depth should be no less than the number of processes. This method require little

computation and communication, but it works only if the structure of the search tree is

known in advance.
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1.5.8 Dynamic Load Balancing

Although static load balancing is effective in certain cases, the uneven processor utiliza-

tion, processor speed, memory size, and the change of tree shape due to the pruning of

subtrees can make the workloads on processes gradually become unbalanced, especially

in distributed computing environments. This necessitates the need for dynamic load bal-

ancing, which involves reallocating workload among the processes during the execution

of a parallel program. Dynamic load balancing needs to consider both quality and quan-

tity of work when redistributing workload. Following are the definitions of quality and

quantify of work:

Definition 1.36 The quality of work is a numeric value to measure the possibility that

the work (node or a set of nodes) contains good solutions.

Definition 1.37 The quantity of work is a numeric value to measure the amount of work.

It can be the number of nodes to be processed. The unit of the workload can be a node

or a subtree.

A number of methods have been proposed to dynamically balance workloads [64, 67,

76, 94, 97, 100]. A parallel program may use several schemes to dynamically balance

the workload. Kumar, et al. [64] studied several dynamical load balancing schemes:

asynchronous round robin, nearest neighbor, and random polling.

In an asynchronous round robin scheme, each process maintains an independent

variable target, which is the identification of the process to ask for work, i.e., whenever

a process needs more work, it sends a request to the process identified by the value of

the target. The value of the target is incremented each time the process requests work.

Assuming P is the number of processes, the value of target on process i is initially
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set to (i+1) modulo P . A process can request work independently of other processes.

However, it is possible that many requests are sent to processes that do not have enough

work to share.

The nearest neighbor scheme assigns each process a set of neighbors. Once a process

needs more work, it sends a request to its immediate neighbors. This scheme ensures

locality of communication for requests and work transfer. A disadvantage is that the

workload may take a long time to be balanced globally.

In the random polling scheme, a process sends request to a randomly selected pro-

cess when it need work. The possibility of selection of any process is the same. Al-

though it is very simple, random polling is quite effective in some applications [64].

1.6 Previous Frameworks and Applications

During the last two decades, a number of software package, for implementing tree search

algorithms have been developed. However, to our knowledge, the only other framework

for parallel general tree search algorithms is the Parallel Implicit Graph Search Library

(PIGSeL), which was developed by Peter Sanders [96, 93]. The library PIGSeL includes

several layers:

• machine layer: specifies the hardware, the operating system, the compiler and its

parallel libraries that the library has to adapt to;

• machine interface layer: defines the messaging and I/O functions that specific to

the machine;

• load balancing layer: contains all the components required for parallelizing the
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search including the load balancing algorithm and the components for handling

solutions and tree pruning procedures;

• sequential search layer: implements a generic search module; and

• application interface layer: provides a number of interfaces for developing appli-

cations.

At the beginning of the search, every process expands the root node locally. When

the number of leaf nodes on each process is at least the number of processes, the ith

process keeps the ith node and delete the rest. Then, each process works on the retained

node. If a process is out of work, it randomly chooses another process to ask for work.

Sanders developed two applications, one for the Golomb ruler problem, and one for

the knapsack problem and tested them on a cluster with 1024 processors. Near linear

speedup was achieved for the Golomb ruler problem and good speedup was achieved

for the knapsack problem. The overall parallel execution time for 1024 processors was

1410 times smaller than the sequential time when solving knapsack instances. Sanders

claimed that the good speedups were due to the load balancing scheme, bottleneck-free

implementation and termination detection algorithm.

There have also been some study of the design and implementation of parallel con-

straint satisfaction algorithms. Platzner and Rinner [82] developed a parallel algorithm

for CSP based on partitioning the search space of a CSP into independent subspaces. A

backtracking algorithm was used to search for solutions in parallel in these subspaces.

They used the master-worker paradigm and implemented the parallel CSP algorithm on

an MPP system. The experiments showed reasonable speedup up to 8 processors. Feeley
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et al. [36] designed a parallel CSP algorithm to determine the three dimensional struc-

ture of nucleic acids. The algorithm was based on a standard backtracking algorithm.

Initially, the master process created nodes for the slaves. Then, the slaves searched for

solutions in parallel. A dynamic load balancing method was used to balance the work-

load. They found the speedup was dependent on the data set. For one data set, nearly

linear speedup was obtained up to 64 processors, but for another data set, the speedup

was 16 when using 64 processors.

A number of researchers have studied parallel game tree search. Feldmann et al.

[37] developed a distributed algorithm for searching game trees with massively parallel

systems. They implemented a distributed chess program called ZUGZWANG, which

was introduced in Chapter 1. In ZUGZWANG, one process starts searching the game

tree by expanding the root node. An idle processor can ask for work from any other

processor. After a process has finished the evaluation of its subproblem, it returns the

results to its master. Feldmann et al. claimed that ZUGZWANG achieved a speedup

of 344 when using 1024 processors. Hopp and Sanders [58] described an approach to

parallelize game tree search on SIMD machines. They used multiple masters to manage

workers. At the beginning of the search, every process expands the root node and keeps

a designated portion of search spaces once there is enough work for all processes. The

workload among processes are dynamically balanced. They achieved speedups of 5850

on a MasPar MP-1 with 16, 000 processors.

For parallel branch and bound, there are a number of frameworks that are available

for developing specific applications, such as BoB [18], COIN/CBC[70], PARINO [69],
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PEBBL [34, 33], PPBB-Lib [108], and SYMPHONY [88]. Here, we introduce SYM-

PHONY and PEBBL because they both significantly influenced our research. SYM-

PHONY is an open source solver for mixed integer linear programs (we discuss mixed

integer linear programs in more details in Chapter 3). The core solution methodol-

ogy of SYMPHONY is a highly customizable branch-and-bound algorithm that can be

executed sequentially or in parallel [90]. SYMPHONY handles inter-process commu-

nication via PVM [44] and employs the master-worker paradigm. The master maintains

a single central node pool from which nodes are distributed to each worker. This sim-

plifies certain aspects of the parallel implementation, such as load balancing, but the

scalability of this approach is somewhat limited because the central pool can becomes a

bottleneck when a large number of workers are dedicated to node processing. Eckstein,

et al. developed PEBBL [34, 33], a package to construct serial and parallel branch-and-

bound algorithms. PEBBL is designed to run in a generic message-passing environment.

In PEBBL, processes are grouped into clusters. Each cluster consists of a hub and a set

of workers. PEBBL does not have an explicit master process to manage the search. The

main features of PEBBL include dynamic load balancing, on-processor multitasking

and checkpoints.

As discussed previously, little research about frameworks for developing general

scalable tree search algorithms has been undertaken. Also, there are few studies we

know of that emphasize scalability for data-intensive applications. in which describ-

ing the state of the search requires a large amount of data. Data-intensive applications

can cause memory problems and incur increased communication overhead if not imple-

mented carefully. There are few studies concerning how to store data compactly and how

to effectively handle data management for this type of search algorithm. SYMPHONY
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uses a scheme called differencing, which stores partial information under certain cir-

cumstances. In what follows, we study this scheme in more detail.

1.7 Research Objectives and Thesis Outline

The overall objectives of this research are as follows.

• To study the factors that have a major impact on scalability. These factors in-

clude the implementation paradigm, load balancing strategy, asynchronicity, task

granularity, knowledge sharing mechanism, etc.

• To study the methods for handling data-intensive applications effectively. We

analyze a differencing scheme in which we only store the difference between the

descriptions of a child node and its parent. Also, we study methods for efficiently

handling duplicated and redundant knowledge.

• To develop a framework that supports implementation of scalable parallel tree

search algorithms. We make no assumption about the algorithm to be imple-

mented only that it is based on tree search.

• To use the framework to implement a parallel MILP solver and to study its scala-

bility.

In Chapter 1, we have introduced the background of tree search algorithms and paral-

lel computing, then we discuss the key issues in parallelizing tree search and review

the current state-of-art of parallel tree search. In Chapter 2, we present the main ideas

and techniques used to develop scalable parallel tree search algorithms. We discuss the
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master-hub-worker programming paradigm, load balancing schemes, termination de-

tection, and task management. We also describe the design and implementation of the

ALPS library, which handles the parallel tree search. In Chapter 3, we focus on the

branch-and-cut algorithms that are typically used to solve MILPs. We first discuss how

we handle data-intensive application, then present ways to develop scalable branch-and-

cut algorithms when the relaxation scheme is based on linear programming (LP). We

present the design and implementation of the BiCePS library, which implements the

data-handling routines for a wide variety of relaxation-based branch-and-bound algo-

rithms, and the BLIS library, which is a specialization of the BiCePS library in which

the relaxation scheme is based on the solution of LP. In Chapter 4, we present com-

putational results, including the overall scalability analysis resulting from our efforts to

solve the knapsack problem, generic MILPs, and the vehicle routing problem. We also

tested the effectiveness of the methods that were used to improve scalability. In Chapter

5, we conclude with a discussion of proposed future research.

55



Chapter 2

A Framework for Parallel Tree Search

In the first part of our work, we have formalized and extended the concept of knowledge-

based tree search. In knowledge-based tree search, all information generated during the

tree search is represented as knowledge, which is stored in knowledge pools and shared

during the search. We have developed a framework, the Abstract Library for Parallel

Search (ALPS), to implement our ideas involving knowledge-based tree search. ALPS

uses knowledge to guide the progress of tree search and to reduce parallel overhead and

improve scalability.

ALPS is the search-handling layer of the COIN-OR High-Performance Parallel Search

(CHiPPS) framework. We focus on the ALPS library in this chapter and describe the

other two libraries that are part of CHiPPS in Chapter 3. In ALPS, there is no assump-

tion about the algorithm that the user wishes to implement, except that it is based on a

tree search. ALPS is designed for deployment in a distributed computing environment

and assumes processors can communicate with each other through network technolo-

gies. In the following sections, we elaborate on the design and implementation of our

knowledge-based parallel tree search framework, and the techniques that are used to
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improve scalability.

2.1 Implementation Paradigm

ALPS is designed to be deployed on distributed architectures, such as clusters or grids,

and is targeted at large-scale computing platforms where the number of processors par-

ticipating in the search can be very large. To effectively share knowledge and handle

the search, ALPS proposes a new programming paradigm called the master-hub-worker

paradigm.

2.1.1 The Master-Hub-Worker Paradigm

Compared to the traditional master-worker paradigm, the Master-Hub-Worker Paradigm

adds a level of coordination (hub level) between the master and its workers. Figure 2.1

shows the basic structure of the master-hub-worker paradigm. A similar idea has been

used in PEBBL [34] and PUBB [99], each of which has multiple master-worker clusters.

In the master-hub-worker paradigm, the master process manages a set of hubs, and

each hub is responsible for managing a set of workers. A hub and the set of workers that

it manages form a cluster. The master is responsible for the entire search, while each

cluster is responsible for searching solutions corresponding to a particular part of the

state space. The master generally does not communicate directly with workers. Each

cluster works roughly in a traditional master-worker fashion. By limiting the number of

workers in each cluster, we prevent the hub from becoming a communication bottleneck.

As the number of processors increases, we simply add more clusters to compensate.

The master-hub-worker paradigm is a decentralized paradigm. It moves some of
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Figure 2.1: Master-Hub-Worker Paradigm

the communicational and computational burden from the master process to the hubs.

The communicational and computational burden to the hubs themselves can be further

reduced by increasing the task granularity in a manner that we describe later.

2.1.2 Process Clustering

To implement the master-hub-worker paradigm, ALPS groups the processes into dif-

ferent clusters. Each cluster has one hub and at least one worker. To some extent, a

cluster functions as a master-worker system. The hub allocates tasks to its workers and

controls the search process, while the workers follow the hub’s instruction and do the
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Figure 2.2: Processes Clustering

actual work. What makes a cluster different from a stand-alone master-slave system is

that the hub does not have complete control over its workers, since it must also follow

the instructions of the master during the search. Figure 2.2 illustrates the structure of

the process clustering.

To group processes, ALPS first needs to decide the size of a cluster. Given the value

of runtime parameters processNum and hubNum, ALPS can calculate the cluster size

S. ALPS determines S by finding the minimal S satisfying following inequality

hubNum× S ≥ processNum. (2.1)

The processes ranked from 0 to S − 1 are assigned to the first cluster, and in general

form, the process ranked from kS to (k+ 1)S are in cluster k, k = 1, . . . ,hubNum− 2.

The last cluster has processes ranked from (hubNum− 1)S to processNum− 1. The

size of last cluster might be less than S.

It should be pointed out that the parameter hubNum is only a suggested value, which

means that ALPS can override the value of hubNum when it is better to do that. For

instance, if the actual size of the last cluster is 1, ALPS will reduce hubNum by one and

recalculate the size of each cluster. It repeats this procedure until the size of last cluster

is greater than one.
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According to its rank in a cluster, one of the processes is designated as a hub and

is marked as AlpsProcessHub. The rest of the processes in that cluster are workers

and marked as AlpsProcessWorker. The hub of one of the clusters is designated as

the master and marked as AlpsProcessMaster. To save resources, the master also

functions as a hub.

2.2 Knowledge Management

We propose a novel knowledge management system to efficiently handle knowledge ac-

quisition, storage and distribution. The system consists of three components: knowledge

objects, knowledge pools and knowledge brokers.

2.2.1 Knowledge Objects

As defined earlier, knowledge is the information generated during the search or input

by users. Knowledge is the key components of knowledge-based tree search. In this

section, we discuss the basic types of knowledge, how to add new types of knowledge,

and how to encode and decode knowledge.

In ALPS, a tree search either takes as input or generates four basic types of knowl-

edge: model, node, solution and subtree. A model contains the data to describe the

problem being solved. A node represents a state in the state space. A solution rep-

resents a goal state. A subtree contains the description of a hierarchy of nodes with

a common root. Subtrees can be stored efficiently using differencing (see Chapter 3),

which is the main reason that we make subtree a separate knowledge type. Specific tree

search algorithms might have other types of knowledge.
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Users can create new types of knowledge and ask ALPS to manage them. New

types of knowledge must first be registered so that ALPS knows how to handle them.

Each knowledge type has a compact encoded format, represented as a string, so that

it can be easily shared. There is a default encoding function for knowledge in ALPS,

which packs the member data of a knowledge object into a message buffer, which is

sent to other processes by the knowledge broker. This default implementation can be

used if the memory of data members is continuously allocated. If a knowledge ob-

ject has data members whose memory is not continuously allocated, such as pointers,

std::vector or std::map, then the default encoding function cannot be used. In

this case, users have to define a customized encoding function for this knowledge type.

The encoded representation of a knowledge object can also be hashed to generate

an “index” useful for identifying duplicate knowledge objects. In ALPS’ default im-

plementation, the hash value is the sum of the decimal numbers associated with the

characters in the string obtained by encoding. By comparing the hash values of

various knowledge objects, duplicated knowledge can easily be identified.

ALPS use the decoding function to reconstruct a knowledge object after it has been

encoded. ALPS does not provide default decoding functions, since it has no idea about

the representation scheme for particular knowledge types. Each type of knowledge type

must define its own decoding function for parallel execution.

2.2.2 Knowledge Pools

A knowledge pool (KP) functions simply as a repository for a specific type of knowl-

edge. For instance, a node pool stores a set of nodes. The generated knowledge can be

stored locally or sent to a knowledge pool residing on another process. A knowledge
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pool might also request knowledge from other knowledge pools. Within a local process,

each type of knowledge may be stored in one or several associated knowledge pools.

Some knowledge pools might only store global knowledge, while other only store local

knowledge.

2.2.3 Knowledge Brokers

A knowledge broker (KB) is an agent responsible for sending, receiving, and routing

all knowledge associated with a local process. Each process has one knowledge broker

that manages a set of knowledge pools. In order to maintain platform independence,

knowledge pools do not communicate directly with each other. Instead, requests and

responses are passed through the broker. A KB encapsulates all the necessary platform-

dependent communication subroutines. For instance, if the communication is via MPI

[49], then the KB has interface functions based on MPI. Different communication pro-

tocols require different types of knowledge brokers. Although the implementation of

different knowledge brokers might be different, they all provide the same API.

A knowledge broker associated with a knowledge pool may issue two types of re-

quests: (1) a request to insert a new knowledge object into a knowledge pool, and (2) a

request to retrieve a knowledge object from a knowledge pool. A knowledge pool may

also choose to “push” certain knowledge to another knowledge pool, even though no

specific request has been made. It is even possible for one knowledge pool to request

that another knowledge pool send knowledge to a third knowledge pool

Figure 2.3 shows the architecture of the knowledge management system that has
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Figure 2.3: Knowledge Management System

been implemented in ALPS. All knowledge is collected and stored in associated knowl-

edge pools. This makes classifying and prioritizing knowledge much easier. Also, du-

plicate and invalid knowledge can be identified quickly. With the concept of knowl-

edge brokers, supporting different computing platform becomes easier. The flexibility

of ALPS’ knowledge management system is very powerful in today’s rapidly changing

computing environment.

2.3 Knowledge Sharing

For a parallel tree search, knowledge generated by one process may not be known by

other processes and may be useful to the global search. It is important to make this

kind of knowledge easily available to all processes so that the utility of the generated

knowledge is maximized. In its default implementation, ALPS shares the four basic

types of knowledge. Next, we briefly discuss the mechanism by which each of them is

shared.
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Model. At the beginning of search, the master either reads in the model from a data

file or creates the model based on user input. It broadcasts the model to all other KBs.

This is the only time during execution when original model data is shared.

Nodes. Nodes are shared in distinctly different ways during the ramp-up and primary

phases of the algorithm. During the ramp-up phase, nodes are shared individually ac-

cording to the specific static load balancing scheme being employed. During the primary

phase, nodes are no longer shared individually, but as elements of subtrees. How sub-

trees are shared is determined by the dynamic load balancing scheme and is discussed

next.

Subtrees. During the search, ALPS redistribute the workload among processes by dy-

namically sharing subtrees. The reason for sharing subtrees rather than individual nodes

is to enable the possible use of an efficient method for encoding groups of nodes that

can be represented as a single subtrees (see Section 3.4.1). ALPS has several dynamic

load balancing schemes, described in Section 2.5.2.

Solutions. Solutions generated during the search are shared as quickly as possible

with all other KBs by the use of a binary communication tree. When a process k finds a

solution, ALPS forms all process into a binary tree with process k as the root. Process k

sends the solution to its two children, and then its children send the solution to its chil-

dren’s children, and so on. in this way, the solution is broadcast quickly and efficiently,

so that all KBs will have upper bound information that is as up-to-date as possible.
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Other Knowledge. For other knowledge generated during search (like the pseudocost

and valid inequalities that we discuss in Chapter 3), ALPS periodically checks if there

are objects of those types to be shared. If there are, ALPS shares them in a way similar

to the way solutions are shared. To share generated knowledge, the user simply defines

where to retrieve the knowledge to be shared and where to store the received knowledge.

ALPS takes care of the communication and distribution tasks.

2.4 Task Management

The knowledge broker associated with each process is responsible for managing the

tasks involved in a parallel tree search. The KBs schedule the execution of various tasks

and need to balance the time spent in communication tasks (those involving message

passing, like load balancing) and the time spent in computation tasks (those involving

actual searching). The task management system of ALPS is built on the concept of task

(or thread) and scheduler. A similar idea has been used in PEBBL[34, 33]. Each task

exists in one of the three states:

• ready: the task is waiting for a message to trigger it to run;

• running: the task is running; and

• blocked: the task is not allowed to run at this time.

2.4.1 Multi-level Task Management System

The master, hubs, and workers play different roles in a parallel tree search, and they

have their own sets of tasks to achieve different functionality. ALPS divides those tasks
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into three levels: master level, hub level and worker level. The master only manages the

tasks that belong to master level. Similarly, the hubs and workers only manage the tasks

that belong to their levels.

Master Task Management

The master monitors the overall progress of the search. It periodically balances the

workload among clusters and decides whether it should perform a termination check.

The KB of the master needs to schedule the following tasks.

• Balance Hubs: The master balances the workload among hubs. The load balanc-

ing scheme used has been described before.

• Termination Checking: A process checks whether the termination conditions are

satisfied.

• Update System State: The master receives the state information for the cluster

from the message buffer and updates the system state.

• Unpack and Set Solution: A process unpacks a solution and then updates solution

information.

• Receive a Subtree: A process unpacks and reconstructs a subtree that was sent by

another process.

Figure 2.4 shows the task management system of the master. First, the master listens

and processes messages for a defined period of time (determined automatically by the

search or adjusted manually by users). The messages may contains the state information

of a cluster, a feasible solution, or a shared subtree. Then, the master checks whether the
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Figure 2.4: Master Task Management

termination conditions (see section 2.4.2) are satisfied. If those conditions are satisfied,

the master starts the terminate check and checks whether the system is idle. If the

system is idle, the master asks all processes to terminate the search and collects final

search results. If the termination conditions are not satisfied or the system is not idle, the

master balances the workload among hubs, and continues to listen and process messages

for one period. This procedure repeats until the terminations conditions are satisfied or

the system is idle.

Hub Task Management

The hubs manage a set of workers and periodically balance the workload among work-

ers. The KBs of the hubs need to schedule the following tasks.

• Balance Workers: The hub balances the workload of its workers. It first checks
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whether there are workers that have no work. If there are, it will do a quantity

balance. If not, it will do a quality balance.

• Termination Checking: The hub checks whether the termination conditions are

satisfied.

• Do One Unit of Work: The hub explores a subtree for a certain number of nodes or

a certain period of time. The same subtree will be explored next time if it still has

unexplored nodes. The hub performs the task only if the hub is also functioning

as a worker. By default, hubs do not perform this task, but there is a parameter for

users to make hubs perform this task.

• Report Cluster State: The hub reports its status (workload and message counts) to

the master.

• Hub Update Cluster State: After receiving the state of a worker, the hub updates

its cluster’s status.

• Unpack and Set Solution: The hub unpacks a solution and the identification of the

process that found the solution. It then updates solution information.

• Receive a Subtree: The hub unpacks and reconstructs a subtree that was sent by

another process.

• Share Work: After receiving the master’s request to donate work, the hub finds

its most loaded worker and asks it to donate a subtree to another hub, whose

information (process id and quantity of work) is packed in the message buffer.

• Allocate Donation: The hub allocates the donated subtree to the worker in its

cluster that has the smallest workload.
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Figure 2.5: Hub Task Management

Figure 2.5 shows the task management system of a hub. First, the hub listens and pro-

cesses messages for one period of time (automatically determined by the search or man-

ually adjusted by users). The messages may contains the state information of a worker,

a feasible solution, a shared subtree, or work request for a worker. If there is a termina-

tion check request from the master, the hub asks its workers to report their latest state,

and sends this state information to the master. If the master asks the hub to terminate,

the hub in turn asks its workers to terminate. If there is no termination check request,

the hub explores a subtree for a certain number of nodes or a certain period of time.

After exploring the subtree, the hub balances the workload among its workers, reports

the state of the cluster to the master, and continues to listen and process messages for

one period. This procedure repeats until the hub is asked to terminate by the master.
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Worker Task Management

Workers search for solutions and periodically report their state to their associated hubs.

The KBs of the workers need schedule following tasks:

• Donate Work: The worker donates a subtree to another worker.

• Worker Report State: The worker reports its state to its hub.

• Ask for Work: The worker ask its hub for more work.

• Do One Unit of Work: The worker explores a subtree for a certain number of

nodes or a certain period of time. The same subtree will be explored next time if

it still have unexplored nodes.

• Termination Checking: The worker checks whether the termination conditions are

satisfied.

• Unpack and Set Solution: The worker unpacks a solution and then updates solu-

tion information.

• Receive a Subtree: The worker unpacks and reconstructs a subtree that was sent

by another process.

Figure 2.6 shows the task management system of a worker. First, the worker listens and

processes messages until there are no more left. The messages may contains a feasible

solution, a shared subtree, or a request to share a subtrees. If there is a termination check

request from the master, the worker reports its state to its hub. If it is asked to terminate

by its hub, the worker terminate search; otherwise, it continues to listen and process

messages. If there is no termination check request, the worker checks whether it has
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Figure 2.6: Worker Task Management

work. If it has no work, it asks its hub for more work and continues to listen and process

messages. If it has work, the worker explores a subtree for a certain number of nodes or

a certain period of time, and continues to listen and process messages. This procedure

repeats until the worker is asked to terminate by its hub.

2.4.2 Key Tasks

In this section, we discuss several important tasks in detail so that we can give a clear

picture of what the specific tasks are and how they are managed in ALPS.
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Node Processing

Within a subtree, the nodes that are candidates for processing and expansion are stored

in a node pool as a priority queue. ALPS has the notion of a quality threshold. Any node

whose quality falls below this threshold can be pruned without actually processing it.

ALPS assigns each node a status. There are five possible stati indicating what state

the node is in.

• Candidate: Indicates the node is a candidate for processing, i.e., it is a leaf node

in the search tree.

• Evaluated: Indicates the node has been processed, but expansion has not been

performed. Note that evaluation may change the quality of the node.

• Pregnant: Indicates an action has already been chosen to expand the node and the

children can be produced when instructed.

• Branched: Indicates that expansion has been performed, i.e., the children of the

node have been produced and added to the appropriate node pool.

• Pruned: Indicates the node has been pruned. This means that (1) the quality of

the node fell below the quality threshold, (2) it was determined that the node is in-

feasible, i.e., does not contain any solutions, (3) the node has expanded and all its

children have been created. In most cases, pruned nodes are deleted immediately,

and hence, there are typically no nodes with this status in the tree.

In terms of these stati, processing a node involves converting its status from candidate to

evaluated, pregnant or pruned. A node whose processing results in the status evaluated

is put back into the queue with its new quality to be branched upon when next selected
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for processing. Within the context of ALPS, expansion simply means creating the chil-

dren of the current node and determining their initial quality measures. After expansion,

the node’s status is set to branched and the stati of each of the node’s descendants is set

to candidate.

Node Selection

ALPS provides the following five built-in search strategies to select the node to be pro-

cessed next: Best-first search, Best-estimate search, Breadth-first search, Depth-first

search, and Hybrid search. ALPS’ best-first search, breadth-first search, and depth-first

search are standard strategies, which are described in textbooks such as [92]. In best-

estimate search, ALPS choose the node with the best solution estimate as the next node

to explore. The default value of the estimate is the same as the path cost, which means

that, by default, best-estimate search is the same as the best-first search. The user can

provide a more accurate solution estimate scheme to assign an estimate to each node if

desired. In the hybrid search strategy, ALPS selects one of the children of the currently

processed node as the next node until the currently processed node is pruned, then it

selects a sibling (if it is not pruned) as the next one to process. It stops diving if all

the siblings of the currently processed node are pruned or the quality of the children or

siblings is worse than the best available by a certain threshold. The hybrid strategy is the

default search strategy of ALPS. Two of the provided search strategies (breadth-first and

depth-first) do not require user-defined quality measures. The best-first, best-estimate,

hybrid search strategies require user-defined quality measures.

ALPS does not have a central pool to store the nodes to be processed. Each process

has its own subtree pool and each subtree has its own node pool. When searching
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in parallel, each KB can only guarantee that the requirements of a search strategy are

satisfied for the part of search tree that is explored by the KB. ALPS does not have

search strategies that can be applied to the whose tree mainly because of its totally

decentralized design.

Termination Detection

In ALPS, we use Mattern’s four counter method for termination detection. Figures 2.7,

2.8, and 2.9 list the main steps that the master, hubs, and workers take during termination

checking. Figure 2.10 shows the message flow during the termination checking.

The user can set a maximum number of nodes that ALPS can process and a max-

imum wallclock time that ALPS can spend in the search. If either of these limits is

reached, the master forces the system to terminate. It sends a force termination mes-

sage to all hubs, and then hubs send the same message to the workers. After receiving

the message, the workers delete all their work. The system then does the termination

checking in the normal way.

2.5 Load Balancing

2.5.1 Static Load Balancing

ALPS has two static load balancing schemes: two-level root initialization and spiral

initialization. Based on the characteristics of the problem to be solved, users can choose

either one to initialize the search.

74



2.5. LOAD BALANCING

1. The master will activate the termination check task if it finds that the follow-

ing conditions hold (we say it is pseudo-idle):

(a) there are no messages left in its message buffer,

(b) all hubs have reported their status (workload and counts of messages

sent and received.) at least once,

(c) the system workload appears to be zero, and

(d) the message sent count equals the message received count.

2. The master first sends a message with tag AlpsMsgAskPause to the hubs

and asks them to do termination checking, and then waits for the clusters to

report new stati.

3. After obtaining the stati of all clusters, the master sums up the quantities of

work, and the numbers of message sent and received. If the three conditions

of the four counter method are satisfied, then the system is truly idle and the

master informs hubs to terminate. Otherwise, the master sends a message to

the hubs to ask them to continue to work. The master blocks the termination

check task and does a round of load balancing.

Figure 2.7: Termination Checking of the Master
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1. After receiving a message with tag AlpsMsgAskPause, the hub activates

its termination check thread and informs its workers to do termination check-

ing.

2. The hub receives and sums up the status information sent by its workers.

3. The hub sends the updated cluster status to the master.

4. The hub waits to be notified of whether to terminate or continue by the master.

If the instruction is to terminate, then it sets the terminate flag to true,

otherwise, it sets the terminate flag to false and blocks the termination

check thread. It also forwards the instruction to its workers.

Figure 2.8: Termination Checking of the hubs

1. Once receiving a message with tag AlpsMsgAskPause, the worker acti-

vates its termination check thread

2. If all messages have been processed, the worker reports its current status to

its hub.

3. The worker then waits for instruction from its hub to decide whether to ter-

minate. If the instruction is to terminate, the worker sets the terminate

flag to true, otherwise, it sets the terminate flag to false and blocks

the termination check task.

Figure 2.9: Termination Checking of the worker
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Figure 2.10: Message Flow in Termination Checking

Two-level Root Initialization

Two-level root initialization is based on the idea of root initialization [55]. Figure 2.11

shows the main steps of this scheme. Unlike root initialization, two-level root initializa-

tion allows more than one process to help in initializing the search. By doing so, we are

able to reduce the ramp-up time. The implementation of two-level root initialization is

straightforward. Also, experiments show that if the number of nodes created and allo-

cated to each worker is large enough, the workload will be reasonably balanced, at least

for certain classes of problems.

ALPS uses a formula to determine the proper number of nodes to be generated dur-

ing initialization. The formula is a function of node processing time and the number

of launched processes. The shorter the node processing time is, the larger the num-

ber of nodes to be generated. In cases where processing a node takes significant time,

the two-level root initialization scheme might take a long time, even if it generates few

nodes.
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1. The master expands the root and creates a set of new nodes. The master then

selects a new node and expand it again. This procedure continues until the

number of leaf nodes is not less than a pre-specified number. In this step, the

master is essentially conducting a serial tree search. For easy problems, the

master might fail to generate the pre-specified number of nodes and complete

the search by itself.

2. The master distributes the leaf nodes to the hubs in a round-robin fashion.

3. After receiving the nodes sent by the master, the hubs generate a pre-specified

number of nodes for theirs workers just as the master did for them.

4. The hubs send the leaf nodes to their workers in a round-robin fashion.

5. The workers receive nodes and form subtrees from each received node.

Figure 2.11: Two-level Root Initialization

Spiral Initialization

Spiral initialization is designed for circumstances in which processing a node takes a

long time or where creating a large number of nodes during ramp up is difficult. Fig-

ure 2.12 shows how spiral initialization works. Spiral initialization is similar to the

initialization strategies used by some packages with the master-worker paradigm, such

as SYMPHONY. The advantage of spiral initialization is that as many KBs as possible

can help to partition the state space initially by expanding nodes. The initialization is

generally faster than the two-level root initialization. The major objective of spiral ini-

tialization is to ensure all KBs have work to do as quickly as possible. Once every KB
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1. Given the root, the master expands it and creates a set of new nodes.

2. The master distributes the new nodes to other KBs in a round-robin fashion.

The master records which processes have been sent a node.

3. After receiving a node sent by the master, a KB expands the received node. If

this results in multiple nodes, it informs the master that it can donate nodes;

otherwise, it tells the master that it can not.

4. The master asks the processes having extra nodes to donate a node to the

processes that have not yet been sent a node. If all KBs (except the master)

have been sent at least one node, the master tells other KBs that the static load

balancing is completed.

Figure 2.12: Spiral Initialization

has nodes to work on, spiral initialization stops. It does not take into account the quality

of work at each KB. Therefore, spiral initialization requires dynamic load balancing to

redistribute work more evenly as the search proceeds.

2.5.2 Dynamic Load Balancing

Dynamic load balancing includes both quantity balancing and quality balancing. Quan-

tity balancing ensures that all worker have work to do, while quality balancing ensures

that all workers are doing useful work. During the search, the master periodically bal-

ances the workload in each cluster. This is done by maintaining skeleton information

about the full search tree in the master process. This skeleton information only includes
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what is necessary to make load-balancing decisions, primarily the quality of subtrees

available for processing on each cluster. Each hub is responsible for balancing the load

among its workers. In dynamic load balancing, subtrees are shared instead of nodes. We

must be more careful about how we perform load balancing in order to keep subtrees to-

gether (this is important to allow implementation of our differencing scheme, described

later). The dynamic load balancing scheme of ALPS consisting of

• Intra-cluster dynamic load balancing, and

• Inter-cluster dynamic load balancing

These two dynamic load balancing schemes work together to ensure that the workload

is balanced among the processes that participate in the tree search.

Intra-cluster Dynamic Load Balancing

Intra-cluster dynamic load balancing is used to dynamically balance the workload among

processes that are in the same cluster. We propose two schemes to perform intra-cluster

dynamic load balancing. One is the receiver-initiated scheme and the other is the hub-

initiated scheme. In these load-balancing schemes, ALPS assumes that a worker does

not know the workload information of other workers, while the hub roughly knows the

workload information of its workers because they periodically report their workload

quality and quantity to it. The hub is in the position to do both quality and quantity

balancing, but the workers are only able to initiate quantity balancing.

In the receiver-initiated balancing operation, a worker that needs more work requests

its hub to find another worker that can share some of its work. The goal of the receiver-

initiated scheme is only to balance the quantity of workload among the workers. A

high-level description of the receiver-initiated scheme is shown in Figure 2.13.
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1. Once the quantity of the workload of a worker is below a predetermined

threshold, this worker (receiver) sends a message to inform the hub of this

situation.

2. Upon receiving the message, the hub knows the receiver needs more work

and tries to choose a worker (donor) to donate work. If the hub finds that no

worker can donate, it sends an empty message to the receiver. Otherwise, it

sends a message to the donor and asks it to donate a subtree to the receiver.

3. After the donor receives the message from the hub, it checks its workload. If

it has no extra workload, it sends an empty message to the receiver to let the

receiver know that it cannot donate a subtree. If it only has one subtree, it

will split the subtree into two parts and send one part to the receiver. If it has

more that one subtree, it sends the subtree with best quality to the receiver.

4. The receiver either receives an empty message or a subtree. If it receives

an empty message, it knows there is not enough work in this cluster and it

stops asking for workload temporarily; otherwise, the receiver unpacks the

message, reconstructs the subtree, and puts it in its subtree pool.

Figure 2.13: Receiver-initiated Dynamic Load Balancing
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When a donor has several subtrees, it donates its the subtree with the best quality.

When a donor just has one subtree, it splits the subtree into two parts. The way in which

ALPS splits a subtree is as follows

1. Check how many nodes are in the subtree. If the subtree contains only one node,

then the splitting procedure fails.

2. Find the node Nj with the best quality.

3. Backtrack from node Nj, and stop at node Nk if

• the number nodes in the subtree with root at Nk is roughly the half of the

total number nodes in the original subtree, or

• the number nodes in the subtree with root at Nk reaches a prescribed max-

imum. This maximum is determined by the message buffer size and the

estimated size of a node.

After splitting the subtree, the donor sends the new subtree, whose root is Nk, to the

receiver. Sharing high quality subtrees reduces the frequency of performing dynamic

load balancing.

In the hub-initiated intra-cluster dynamic load balancing, the hub identifies workers

that need extra work and the workers that have extra work. This scheme balances the

work in terms of both quantity and quality. Figure 2.14 shows the main steps in the

hub-initiated scheme. Figure 2.15 shows the algorithm flow of this scheme.

Inter-cluster Dynamic Load Balancing

The workload can also become unbalanced between clusters, though this should happen

much more slowly. During the tree search, the hubs periodically report their workload
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1. Periodically, the hub checks the quality and quantify of work among its work-

ers. The hub chooses receivers whose workload quality is less than the av-

erage workload quality by a pre-specified factor and donors whose workload

quality is greater than the average workload quality by a pre-specified factor.

2. Let the number of donors be d and the number of receivers be r. The hub then

pair the first n = min{d, r} donors and receiver. If n is 0, the hub terminates

from the load balancing procedure.

3. The hub sends a message to each donor. The message has a receiver’s identi-

fication and workload information.

4. Once a donor has received the message, it first checks its workload. If it

has no work to share, it sends an empty message to the receiver and lets the

receiver know that it cannot donate a subtree. If it has only one subtree, it

splits the subtree into two parts and sends one part to the receiver. If it has

more than one subtree, it sends the subtree with best quality to the receiver.

5. After receiving the reply from its donor, the receiver unpacks the message,

reconstructs the subtree, and stores it in its subtree pool if the message is not

empty.

Figure 2.14: Hub-initiated Dynamic Load Balancing
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Figure 2.15: Algorithm Flow of The hub-initiated Scheme

information to the master. The master has a rough idea of the system workload and the

workload of each cluster. Periodically, the master balances the workload among clusters

in terms of both quality and quantity. The inter-cluster load balancing scheme is similar

to the hub-initiated intra-cluster load balancing scheme. The main steps of this scheme

are shown in Figure 2.16.

In the inter-cluster load balancing scheme, the master determines when and how to

balance both the quality and quantity of workload between clusters. The hubs choose

which workers should donate or receive work. The master and hubs need to know the

system workload information in order to effectively balance the work.
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1. Periodically, the master checks the workload among each cluster. First, the

master chooses the clusters whose quantities of work are less than a certain

pre-specified level as receivers. If the master cannot find any receivers, then it

chooses clusters whose quality of work is less than a pre-specified level. If the

master still cannot find receivers, it quits from the load balancing procedure.

Otherwise, the master select the clusters whose workload is greater than the

pre-specified level as donors.

2. Let the number of donors be d and the number of receivers be r. The master

then pair the first n = min{d, r} donors and receivers. If n is 0, the master

terminates the load balancing procedure.

3. The master sends a message to each donor hub to ask it to share its work. The

message has a receiver’s identification and workload information.

4. Once the donor hub receives the message, the hub tries to identify its most

loaded worker. If it is successful, the hub asks the worker to sends a subtree

the receiver hub; otherwise the hub sends an empty message to the receiver

hub.

5. After receiving the message from the donor, the receiver hub forwards the

message to its most lightly loaded worker, which reconstructs the subtree if

the message is not empty.

Figure 2.16: Inter-cluster Dynamic Load Balancing
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2.6 Class Hierarchy of ALPS

Figure 2.17 shows the class hierarchy of ALPS. The class names with prefix Alps

belongs to ALPS library, while the class names with prefix User are the class that the

user need derive when developing an application. Figure 2.17 shows that ALPS consists

of three parts.

• Knowlege:

– AlpsSolution,

– AlpSubTree,

– AlpTreeNode, and

– AlpModel.

• Knowlege pools:

– AlpSolutionPool,

– AlpSubTreePool, and

– AlpNodePool.

• Knowege brokers:

– AlpKnowledgeBrokerSerial, and

– AlpKnowledgeBrokerMPI.

As mentioned previously, ALPS has four basic types of knowledge: model, node, sub-

tree, and solution. The AlpsModel class stores a logical or mathematical representa-

tion of the problem to solve. The AlpsTreeNode class has the bookkeeping infor-

mation for a node, such as the index, depth, quality, parent index, etc. Two member
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Figure 2.17: Class Hierarchy of ALPS
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functions, process() and branch(), are virtual and required to be defined by users

so that ALPS knows how to process and how to create the successors of a node. The

AlpsSolution class is used to describe a solution. The base class has no member

data because ALPS does not know what a solution looks like for a particular applica-

tion. The AlpsSubTree class holds node pools that store the nodes that comprise the

subtree. It defines the functions that implement exploration of a subtree.

The AlpsNodePool, AlpsSolutionPool, and AlpsSubTreePool classes

define the knowledge pools supported by ALPS. These pools are managed either based

on priority queues or store knowledge in a sorted fashion. ALPS provides two types of

knowledge brokers to manage knowledge pools and handle inter-process communica-

tion for parallel execution.

• AlpsKnowledgeBrokerSerial is for single-process execution, in which knowledge

is passed via memory directly.

• AlpsKnowledgeBrokerMPI provides facilities for communication over a network

using the message passing interface MPI.

2.7 Developing Applications

2.7.1 Procedure

To develop applications based on ALPS, the user needs to follow two steps:

• derive problem-specific subclasses from ALPS’ base classes and

• write a main() function.
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In deriving these classes, the user needs provide problem specific information such as

how to define an instance: how to describe, process, and expand a node; and how to

represent a solution. The base classes that the user must derive from are

• AlpsModel,

• AlpsTreeNode,

• AlpsNodeDesc, and

• AlpsSolution.

If the application has custom parameters, the user can also derive a subclass based on

the class AlpsParameterSet. The user-derived subclasses contain problem-specific

data and define a set of functions that are needed to solve the problem. If the user wants

to use other communication protocols besides MPI, then a new knowledge broker based

on ALPS’s base knowledge broker class is needed. Next, we use the knapsack problem

solver KNAP as an example of developing applications based on ALPS.

2.7.2 Example: The KNAP Application

As described in Chapter 1 , the knapsack problem is to find the maximum total value

without exceeding the capacity constraint. It has the following mathematical formula-

tion,

max{
m∑

i=1

pixi :

m∑

i=1

sixi ≤ c, xi ≥ 0 integer, i = 1, 2, . . . , m}, (2.2)

where
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pi = the unit value of item i;

xi = the number of item i in the knapsack;

si = the unit size of item i;

c = the capacity of the knapsack.
If additional constraints xi ∈ {0, 1}, i = 1, 2, . . . , m are added, then it is the 0-1

knapsack problem. The knapsack problem is a classical discrete optimization problem

and has a wide range of applications. It is also the most elementary form of MILP, in the

sense that there is only one constraint. The knapsack problem belongs to the complexity

classNP−hard. Therefore, in principle, any MILP can be transformed into a knapsack

problem. The knapsack problem is one of the most important optimization problem.

Two basic approaches to finding solutions to the knapsack problem are dynamic pro-

gramming and branch-and-bound. Dynamic programming is a technique often used to

solve sequential, or multi-stage, decision problems. Dynamic programming recursively

decomposes certain hard problems into smaller pieces that make it easier to find solu-

tions. The book by Bertsekas [19] provides an extensive description about the theory and

application of dynamic programming. Branch and bound, introduced in in Chapter 1, is

another popular way to solve the knapsack problem.

In the rest of this section, we describe KNAP, an application built using ALPS for

solving the 0-1 knapsack problem. The algorithm used by KNAP is a branch-and-bound

tree search algorithm. Following is a brief description of the main elements of the KNAP

application.

• Processing method: Computes the path cost as the sum of the values of items

that are in the knapsack. It also tests whether the current solution is optimal by

checking if the optimality gap is zero or the number of leaf nodes is zero.
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• Successor function: Expands a node into two successors by deciding whether to

put the given item into the knapsack or not.

• Pruning rule: Decides whether a node can be pruned based on whether it can

produce a solution whose path cost is lower than that of the current best solution.

Based on the procedure for developing applications, we derived four subclasses

(KnapModel, KnapTreeNode, KnapNodeDesc, and KnapSolution) from ALPS’

base classes. Those subclasses provide problem specific-data and functions that are re-

quired to solving knapsack problem.

The Model Subclass

The member data of the user’s model class are simply the data needed to describe the

problem to be solved. Subclasses (KnapModel is derived from AlpsModel. Its main

data members include the following:

• int capacity : specifies the capacity of the knapsack and

• std::vector< std::pair<int, int> > items : stores the sizes and

profits of the items.

KnapModel has various access and modification member functions. Since the math-

ematical description of the model must be broadcast to all processes for parallel exe-

cution, KnapModel also defines encode() and decode() functions to convert the

model data into a string and re-construct a model from a string.
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The Tree Node Subclass

The tree node subclass KnapTreeNode contains member data to specify the position

of a node in the search tree. It has additional member data branchedOn to indicate

which item is involved in the branching decision. KnapTreeNode overrides some

functions in ALPS’ base tree node class, including

• evaluate(): Computes the path cost and checks if the current state is a goal

state;

• branch(): Defines how to expand a node; and

• createNewTreeNode(): Creates the children of a node after expanding.

KnapTreeNode also defines functions encode() and decode() for running in

parallel.

The Node Description Subclass

KNAP’s node description subclass KnapNodeDesc stores the actual information about

the state in the search space that is contained in the tree node. The data members of the

class include the following.

• KnapVarStatus* varStatus : Keeps track of which variables (items) have

been fixed by branching and which are still free. Type KnapVarStatus can

takes values not decided, fixed to be in the knapsack or fixed not to be in the

knapsack.

• int usedCapacity : The total size of the items fixed to be in the knapsack.
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• int usedValue : The total value of the items fixed to be in the knapsack.

KnapNodeDesc provides a set of functions to access and modify the description of a

node, and defines encode() and decode().

The Solution Subclass

A solution is a sequence of actions that map the initial state to a goal state. In the user’s

solution class, there must be member data that can store the actions, and the member

functions to access and modify member data. KnapSolution has the following data

members:

• int* solution : indicates whether put each item in the knapsack (1) or leave

it out of the knapsack (0) and

• int value : the total value of the items that are in knapsack.

KnapSolution provides a set of functions to access and display the solution, and

defines encode() and decode().

The main() Function

A main() function for KNAP is shown in figure 2.18 and is based on the template

provided by ALPS. The main() function is quite simple. To run parallel code, the

user needs to declare a parallel broker, such as AlpsKnowledgeBrokerMPI; to run

serial code, the user needs to declare a AlpsKnowledgeBrokerSerial broker.

If desired, the registration of knowledge types and root formulation steps can be moved

into other functions so that main() function can be further simplified. Then, the broker

searches for solutions and prints search results.
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int main(int argc, char* argv[])

{

KnapModel model;

#if defined(SERIAL)

AlpsKnowledgeBrokerSerial broker(argc, argv, model);

#elif defined(PARALLEL_MPI)

AlpsKnowledgeBrokerMPI broker(argc, argv, model);

#endif

broker.registerClass("MODEL", new KnapModel);

broker.registerClass("SOLUTION", new KnapSolution);

broker.registerClass("NODE", new KnapTreeNode);

broker.search();

broker.printResult();

return 0;

}

Figure 2.18: Main() Function of KNAP
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Chapter 3

A Framework for Parallel Integer

Programming

In this chapter, we discuss the tree search algorithms that have been successfully used

to solve difficult mixed integer linear programs (MILPs). Also, we study methods to

improve scalability when solving MILPs in parallel.

3.1 Branch and Cut

Branch and cut is an extension of the basic branch-and-bound algorithm described in

Section 1.2.2. During the processing step in branch and cut, if solving the linear pro-

gramming relaxation of the given subproblem results in a solution that does not satisfy

the integrality constraints, we try to find linear inequalities valid for all integer solu-

tions of the subproblem but violated by the solution to the current linear programming

relaxation. If we find such inequalities, we add them to the formulation and resolve the

linear program. This procedure continues until no additional inequalities can be found
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or a pre-specified limit on the number of passes is reached. With the exception of the

processing step, branch and cut works exactly like branch and bound.

Algorithm 3.1 LP-based branch-and-Cut Algorithm
1: Initialize.
L = {N0}. zu =∞. xu = ∅.

2: Terminate?
If L = ∅ or optimality gap is within certain tolerance, then the solution xu is opti-
mal. Terminate the search.

3: Select.
Choose a subproblem N i from L.

4: Process.
Solve the linear programming relaxation of N i. If the problem is infeasible, go to
step 2, else let zi be its objective value and xi be its solution. If xi does not satisfy
the integrality restrictions, try to find constraints that violated by xi. If any are
found, add the constraints to the description of N i and go to step 3.

5: Prune.
If zi ≥ zu, go to step 2. Otherwise, if xi satisfies the integrality restrictions, let
zu = zi, xu = xi, delete from L all problem j with zj ≥ zu, and go to step 2.

6: Branch.
Partition the feasible region of Ni into q subsets N i1, . . . , N ik. For each i =
1, . . . , q, let zik = zi and add subproblems N ik to L, go to step 2.

Algorithm 3.1 describes an LP-based branch-and-cut algorithm. There are a number

of decisions to be made in branch and cut. These decisions include which node to be

selected for processing next, how to divide the feasible region, what kinds of constraints

should be added to formulation, and how to improve upper bounds on the value of an

optimal solution. We now try to answer these questions.

3.1.1 Branching Methods

The most common way to expand a node is to branch on disjunctions defined by hy-

perplanes, so that the resulting subproblems are also MILPs. Typically, the hyperplanes
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are unit vectors, in which case they divide the feasible range for a single variable. This

is called branching on a variable or variable branching. Given a fractional solution x̂

of the subproblem formulated at the node and a set of integer variables G that have a

fractional value in the current LP solution x̂, we can branch on a variable j ∈ G and

create two subproblems, one by adding the trivial inequality xj ≤ bx̂jc and the other by

adding the trivial inequality xj ≥ dx̂je. Often, the cardinality of the setG is greater than

1, so we need a method to choose which variable to be branched on. Besides branching

on variables, there are more complicated branching methods that branch on other types

of disjunctions and are sometimes used for specific instances. We introduce the most

commonly used branching methods below.

Infeasibility Branching

A simple way to choose the branching variable is to look at degree of violation of inte-

grality for each integer variable. When choosing the variable that is farthest from being

integer valued, the method is called maximum infeasibility branching. When choosing

the variable that is closest to being integer value, the method is called minimum infea-

sibility branching. Achterberg, et al. [2] found that choosing branching variables based

on maximum infeasibility is no better than simply choosing at random. Generally, the

performance of infeasibility branching is not very good because it ignores the fact that

variables are often not equally important. Since the information used by infeasibility

branching is limited to the LP solution, no special handling is needed for parallel search.
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Strong Branching

Strong branching was introduced in CONCORDE [9], a software package for solving

the traveling salesman problem. The main idea of strong branching is to estimate the

effect of branching on each fractional variable before actually selecting one to branch

on. To estimate the objective change that would occur by branching on a given variable,

the solver tentatively branches on each candidate variable and evaluates the resulting

LP relaxations of the children. Applegate, et al. [9] showed that strong branching is an

effective method for solving the traveling salesman problem. Estimating the importance

of a candidate in this way is relatively expensive, so in strong branching one generally

does not calculate estimates for all candidates. There are two ways to reduce the com-

putational overhead associated with the estimation: either (1) select a limited number

of candidates (usually based on fractionality of integer variables) or (2) do not solve

the LP relaxations to optimality. Strong branching is well-suited for difficult combina-

torial problems. For parallel branch and bound, there is generally no special handling

required.

Pseudocost Branching

Pseudocost branching is a less expensive way to estimate the effect of branching on

integer variables [14]. For each variable, we associate two quantities, P−
j (down pseu-

docost) and P+
j (up pseudocost), which are the estimates of the increase of the objec-

tive value after fixing variable j to its floor and ceiling values respectively. One way

to compute the pseudocost of variable j is to use the actual change in objective value

changes when variable j is chosen as the branching variable. For a given subproblem,

let fj = x̂j − bx̂jc, zLP be the objective value of a subproblem, z−LP be the objective

98



3.1. BRANCH AND CUT

value of the child when fixing variable j to its floor, and z−LP be the objective value of

the child when fixing variable j to its ceiling. Then, the up pseudocost is

P−
j =

z+
LP − zLP
1− fj

, (3.1)

and the down pseudocost is

P−
j =

z−LP − zLP
fj

. (3.2)

Each time variable j is chosen as a branching variable, the pseudocosts of variable j

can be updated to include this latest information. A common way of doing this is by

averaging all observations. Based on up and down pseudocosts, we can assign variable

j a score

Pj = µmax {P+
j (1− fj), P−

j fj}+ (1− µ) min {P+
j (1− fj), P−

j fj}, (3.3)

where µ is a non-negative scalar. Achterberg et al. suggest using µ = 1/6 [1]. Pseu-

docost branching chooses the variables with the largest score as the branching variable.

The advantage of pseudocost branching is that it tries to branch on important variables

first in order to improve the lower bound quickly. Most solvers use pseudocost branch-

ing or a variant as the default branching method. However, the estimation of pseudocosts

is based on historic information, which might not be accurate for future search. Also,

at the beginning of the search, there is no information available to initialize pseudo-

costs. Therefore, we need a method to initialize them. Some methods use the objective

coefficients, while others use strong branching to initialized pseudcosts.
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Reliability Branching

Achterberg et al. [2] proposed a branching method called reliability branching, in which

strong branching is used not only on variables with uninitialized pseudocosts, but also

on variable with unreliable pseudocosts. Let η−j be the number of times that variable j

has been branched down (creating a child by setting the upper bound of the variable to

the floor of the LP solution value of this variable), η+
j be the number of times that vari-

able j has been branched up (creating a child by setting the lower bound of the variable

to the ceiling of the LP solution value of this variable), and ηrel be the reliability pa-

rameter. Variable j is said to be unreliable if min {η−j , η+
j } < ηrel. After comparing the

performance of maximum infeasibility branching, strong branching, pseudocost branch-

ing, and reliability branching, Achterberg et al. conclude that reliability branching is the

best. For parallel search, pseudocosts can be shared among processes as discussed pre-

viously.

SOS Branching

Special Ordered Sets (SOS) were originally used to efficiently handle multiple choice

and separable non-convex problems [17] . A Special Ordered Set of Type I (SOS1) is

a set of variables (integral or continuous) from which no more than one member may

be non-zero. A Special Ordered Set of Type II (SOS2) is a set of variables from which

no more than two members may be non-zero, and for which the two variables with

non-zero values must be adjacent if there are two. The order relationship of SOS is

specified by the weight of each member variable. The weights can simply be sequence

numbers or entries in some row of the constraint matrix, which is called the reference

row. SOS branching is a special branching method that uses SOS information to create
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subproblems. Here, we only introduce a classic case in which the problem formulation

has a constraint like
∑n

i=1 xi = 1,

xi ∈ {0, 1}.
(3.4)

We can choose an interval (xr, xr+1), where 1 ≤ r ≤ n − 1 and branch on the set of

variables by forcing
∑r

i=1 xi = 0 in one branch and
∑n

i=r+1 xi = 0 in the other branch.

A common way to decide the interval (xr, xr+1) is to first compute the weighted average

of the SOS

w̄ =

∑n
i=1 wixi∑n
i=1 xi

, (3.5)

then choose xr, xr+1 such that

wr ≤ w̄ ≤ wr+1. (3.6)

In the presence of this problem structure, the branch-and-bound tree is more balanced

when branching on an SOS instead of a variable. However, if there is no logical order

among the variables, SOS branching does not usually help [31].

General Hyperplane Branching

Branching on variables may not be effective in certain cases. Cornuéjols, et al. [27]

designed a set of Market Split instances that are very difficult to solve if branching on

variables, but easy to solve when branching on constraints. Research on generalized

branching methods has increased recently. Most of this research has focused on branch-

ing on general disjunctions obtained from hyperplanes. Karamanov and Cornuéjols [61]
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show that branching on the disjunctions defining mixed integer Gomory cuts at an op-

timal basis of the linear programming relaxation is more effective than branching on

variables for many test instances. Mehrotra and Li [74] study the problem of finding a

good branching hyperplane. They propose a heuristic method of generating branching

hyperplanes and show good results on solving dense difficult Market Split instances.

3.1.2 Search Strategy

For branch-and-bound algorithms, we would like to select a node that can help with

improvement of both the upper and lower bounds. To reduce solution time, it is also

important to select a node whose setup costs is not very expensive. Overall, node quality,

memory requirements and setup cost are the main criteria in selecting a node. The

most common search strategies include depth-first, best-first, best-estimate and hybrid

methods. Below, we review the advantages and disadvantages of each of them in the

context of solving MILPs serially. As discussed in Chapter 2, when searching in parallel,

we can only implement a given search strategy locally for the subtree that is being

explored. The global search strategy involves a number of other factors, primarily the

load balancing strategy.

Depth-first Search

Depth-first search selects the node at maximum depth in the current tree as the next to

be processed. Compared with other types of search, depth-first search has the following

advantages:

• feasible solutions can be found quickly because such solution are usually found

deep in the tree;
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• the setup cost (loading basis, refactorization, updating variable bounds in the LP

solver, etc.) involved in solving a new subproblem is small when solving the new

LP relaxation because there is not much change in the LP relaxation to be solved

from parent to child (generally just a change in bound for one of the variables);

and

• the storage required to implement a depth-first strategy is low. The set of candidate

subproblems is generally smaller than with other strategies.

A disadvantage of the depth-first strategy is that it usually results in the processing of

nodes that would otherwise have been pruned. Depth-first has the potential to become

“stuck” in one portion of the search tree, and if that portion of the search tree does not

contain good solutions, then many low quality nodes may be processed and computa-

tion time may be wasted. Therefore, in practice, depth first is not the preferred search

strategy for solving MILPs unless users just want a feasible solution or lack of memory

is a big issue.

Best-bound Search

The best-bound search strategy chooses the next node to be processed to be the one

with highest quality, where quality is usually measured as the negation of the objective

value of the LP relaxation. This strategy has the advantage that it tends to minimize the

number of nodes processed overall and improves the lower bound quickly. By employ-

ing a best-bound strategy, tree search will never process a node whose lower bound is

greater than the optimal value. However, the best-bound search strategy does not focus

on improvement on the upper bound and its memory usage is high because the set of

subproblems waiting to be processed is usually larger than that of depth-first search. In
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addition, the setup cost to process a new node is high since the best-bound search tends

to choose nodes in different parts of the tree. The best-bound search strategy is still

widely used but with some modification to overcome these deficiencies.

Best-estimate Search

Best-estimate search strategies attempt to combine the advantages of depth-first and

best-bound strategies, while at the same time avoiding the disadvantages. The idea is

to try to select a node with high probability of producing a good solution by computing

an estimate of the optimal value of each candidate subproblem. Bénichou et al. [14]

and Forrest et al. [40] describe how to compute the estimated values for a given node

N i. The node with lowest estimate value is then selected to be processed next. The

estimated value is defined as

Ei = zi +
∑

j∈I

min(|P−
i fi|, |P+

i (1− fi)|)). (3.7)

This estimate takes into account the fractionality and pseudocosts of the integer vari-

ables, and attempts to balance the goals of improving both the upper and lower bounds.

However, this method has some of the disadvantages of best-bound search, such as high

setup cost and memory usage.

Hybrid Search

Another way of balancing the advantages of depth-first or best-bound search strategies

is to use a hybrid strategy. For instance, Forrest et al. [40] propose a two-phase method

that first selects nodes according to the best-estimate criterion and switches to a method
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that chooses nodes maximizing a different criterion called percentage error once a fea-

sible solution is found. For a node i, the percentage error (PEi) is defined as

PEi = 100× zu − Ei
zi − zu

. (3.8)

Percentage error can be thought of as the amount by which the estimate of the solution

obtainable from a node must be in error for the current solution to not be optimal.

Next, we discuss an useful hybrid strategy. This method first chooses a best node

based on lower bound or estimate. The search continues in a depth-first fashion until

the node to be processed next is worst than the best node in active node set L by a

pre-specified percentage. The backtracking method then chooses the best node in L in

a fashion similar to backtracking in depth-first search. Depending on the pre-specified

percentage, this method can be made to behave either like depth-first or best-bound.

As discussed in Chapter 2, the default search strategy of ALPS is a hybrid one.

Also, many MILP solvers (like CPLEX, SYMPHONY, and XPRESS) use some kinds

of hybrid search strategies as their defaults.

3.1.3 Valid Inequalities

A linear inequality defined by (a, b) ∈ Rn×R called a valid inequality if ax ≤ b, ∀x ∈

F , where F is the feasible region of the solution x. Valid inequalities are mainly used to

improve the lower bounds yielded by solving an LP relaxation. A valid inequality is said

to be violated by x̂ ∈ Rn if ax̂ > b. Valid inequalities violated by the solution of the

current LP relaxation are also called cutting planes or cuts, because adding the violated

valid inequalities to the formulation “cuts off” the solution to the LP relaxation and
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improves lower bound produced by the LP relaxation in most cases. Given a solution to

the current LP relaxation that is not feasible to the MILP, the separation problem is to

find a valid inequality violated by that solution. Sometimes, the separation problem can

be expensive to solve. We also have to be careful not to add too many valid inequalities

to the formulation or the LP relaxations can become difficult to solve. We need balance

the trade-off between the benefits of applying valid inequalities and the cost of finding

and using them.

Valid inequalities can be divided into two broad classes. The first group are the

valid inequalities that are based only on the integrality of variables, and do not use any

problem structure. The second group exploits partial or full problem structure. Next, we

briefly introduce the typical inequalities used in branch-and-cut.

Gomory’s Mixed Integer Inequalities

Consider an integer programminx∈P∩Z+
cTx, where andP = {x ∈ R |Ax = b, x ≥ 0},

A ∈ Qm×n, b ∈ Qm, c ∈ Qn. Suppose x∗ is an optimal solution of the LP re-

laxation of this integer program, B ⊆ {1, . . . , n} is the set of basis variables and

N = {1, . . . , n}\B is the set of nonbasic variables. Let AB be the submatrix formed

only by selecting the columns corresponding to the basic variables from matrix A and

letAN be the submatrix formed only by selecting the columns corresponding to the non-

basic variables from matrix A. Also, let x∗B = A−1
B − A−1

B ANX
∗
N . If x∗ is not integral,

then at least one of the components of x∗B is fractional. Let i ∈ B be such that x∗i /∈ Z.

Since every feasible integral solution x ∈ X satisfies xB = A−1
B − A−1

B ANxN , we have

A−1
i. b−

−1∑

j∈N

A−1
i. A.jxj ∈ Z ∀x ∈ P. (3.9)
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Note the term on the left of (3.9) remains integral when adding integer multiples of xj ,

j ∈ N , or an integer to A−1
i. b. Now if we let f(α) = α− bαc, for α ∈ R, then we get

f(A−1
i. )−

−1∑

j∈N

f(A−1
i. A.j)xj ∈ Z ∀x ∈ P. (3.10)

Since 0 ≤ f(·) ≤ 1 and P ∈ R+, we obtain

f(A−1
i. )−

−1∑

j∈N

f(A−1
i. A.j)xj ≤ 0 ∀x ∈ P. (3.11)

Let āj = A−1
i. A.j, b̄ = A−1

i. b, fj = f(āj), f0 = f(b̄), and N+ = {j ∈ N : āj ≥ 0} and

N− = N\N+. Expression (3.9) is equivalent to
∑

j∈N ājxj = f0 + k for some k ∈ Z.

We now consider two cases: if x̂ ∈ P is such that
∑

j∈N ājx̂j ≥ 0, then

∑

j∈N+

ājx̂j ≥ f0 (3.12)

must hold. Otherwise, we must have
∑

j∈N− ājx̂j ≤ f0 − 1, which is equivalent to

− f0

1− f0

∑

j∈N−

ājx̂j ≥ f0. (3.13)

Let P1 = P ∩ {x :
∑

j∈N ājxj ≥ 0} and P2 = P ∩ {x :
∑

j∈N ājxj ≤ 0}. Suppose

(a1, b1) and (a2, b2) are valid inequalities for polyhedron P k for k = 1, 2, then we have

n∑

i=1

min(a1
i , a

1
i )xi ≤ max(α1, α2) (3.14)

for all x ∈ P1 ∪P2 and x ∈ conv(P1,P2). Applying this observation to the inequalities
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(3.12) and (3.13) valid for P1 and P2 respectively, we obtain the inequality

∑

j∈N+

ājxj −
f0

1− f0

∑

j∈N−

ājxj ≥ f0, (3.15)

which satisfied for all x ∈ P . This inequality can be strengthened in the following

way. Note the derivation of 3.15 remains valid if adding integer multiples to the integer

variables, By adding integer multiplies, we may put each integer variable either in the

set N+ or N−. If a variable is in N+, the final coefficient in (3.15) is āj and the best

possible coefficient after adding integer multiplies is fj = f(āj). In the variable is in

N−, the final coefficient in (3.15) is − f0
(1−f0)āj

and f0(1−f0)
1−f0

is the best choice. Overall,

we obtain the best possible coefficient of the variable by using min(fj,
f0(1−fj )

1−f0
). This

gives us a Gomory’s mixed integer inequality

∑
j:fj≤f0
xj∈Z

fjxj +
∑

j:fj≥f0
xj∈Z

f0(1−fj)

1−f0
xj+

∑
j∈N+

xj∈Z

ājxj −
∑

j∈N−

xj∈Z

f0
1−f0

āj ≥ f0 ∀x ∈ P.
(3.16)

Gomory [45] showed that an algorithm based on iteratively adding these inequalities

solves min{cTx : x ∈ P ∩ Z} in a finite number of steps.

Knapsack Cover Inequalities

The concept of a cover has been used extensively in the literature to derive valid in-

equalities for (mixed) integer sets. In this section, we first show how to use this concept

to derive cover inequalities for a 0-1 knapsack set. We then discuss how to extend these

inequalities to more complex mixed integer sets.
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Consider the 0-1 knapsack set

P = {x ∈ BN :
∑

k∈N

akxk ≤ b}

with non-negative coefficients, i.e., ak ≥ 0 for k ∈ N and b ≥ 0. The set C ⊆ N is a

cover if

λ =
∑

k∈C

ak − b > 0. (3.17)

In addition, the cover C is said to be minimal if ak ≥ λ for all k ∈ C. To each cover C,

we can associate a simple valid inequality that states “not all decision variables xk for

k ∈ C can be set to one simultaneously”.

Let C ⊆ N be a cover.
∑

k∈C xk ≤ |C| − 1 is a cover inequality and satisfied by

every x ∈ P . If C is minimal, then the inequality defines a facet of conv(PC) where

PC = P ∩ {x : xk = 0, k ∈ N\C}. Cover inequalities are generally not facet-

defining, but they can be strengthened through sequential or simultaneous lifting. More

information about cover inequality and lifting procedures can be found in [52, 78, 110,

113].

Flow Cover Inequalities

It is quite common that MILPs have special structures called single node flow model,

such as that shown in Figure 3.1. The single node flow model has following representa-

tion

X = {(x, y) ∈ Rn
+ ×Bn :

∑

k∈N+

xk −
∑

k∈N−

xk ≤ d, xk ≤ mkyk, k ∈ N}, (3.18)
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N+ N−

d

0 ≤ xj ≤ mjyj 0 ≤ xj ≤ mjyj

Figure 3.1: Single Node Flow Model

where N = N+ ∪ N− and n = |N |. The x variables are arc flows that need satisfy

external demand of d and the variable upper bound constraints. mk is the arc k and yk

is a binary variable that indicates whether arc j is open.

Let C+ ⊆ N+ and C− ⊆ N−. Then, the set C = C+ ∪ C− is called a flow cover if
∑

k∈C+ mk −
∑

k∈C−mk = d+ λ with λ > 0. The inequality

0 ≤ d+
∑

k∈C−

mk −
∑

k∈C+

xk −
∑

k∈C++

(mk − λ)(1− yk) +
∑

k∈L−

λyk +
∑

k∈L−−

xk, (3.19)

where C++ = {k ∈ C+ : mk > λ} L− = {k ∈ N−\C− : mk > λ} and L−− =

N−\(L− ∪ C−), is called a simple generalized flow cover inequality (SGFCI) and is

satisfied by every (x, y) ∈ X .

A SGFCI can be strengthened through a lifting procedure known as sequence in-

dependent lifting. When applying the lifting procedure to a SGFCI, we obtain a lifted
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simple generalized flow cover inequality (LSGFCI)

∑
k∈C+ xk −

∑
k∈C++(mk − λ)(1− yk) +

∑
k∈N+\C+ αxk −

∑
k∈N+\C+ βyk

≤ d′ −∑
k∈C− g(mk)(1− yk) +

∑
L− λyk +

∑
k∈L−− xk ∀(x, y) ∈ X,

(3.20)

where g is a superadditive lifting function. Generally, LSGFCI have better performance

that SGFCI. Gu, et al. [51] study flow cover inequalities and superadditive lifting func-

tions in more detail.

Clique Inequalities

The constraints of many MILPs imply logical relationships between binary variable,

such as xj = 1⇒ xk = 0, xj = 1⇒ x̄k = 0, x̄j = 1⇒ xk = 0 and x̄j = 1⇒ x̄k = 0,

where xj and xk are variables, and x̄j = 1−xj is the complement of xj and x̄k = 1−xk
is the complement of xk [98]. Such logical implications can be used to generate clique

inequalities, which are composed of a set of binary variables.

Consider an integer programminx∈P∩Z+
cTx, where andP = {x ∈ R |Ax = b, x ≥

0}, A ∈ Qm×n, b ∈ Qm, c ∈ Qn. A clique inequality is an inequality of the form

∑

k∈C

xk ≤ 1, xk ∈ {0, 1} ∀x ∈ P, (3.21)

which states no more than one of the variables xk and k ∈ C can take value 1. The basic

idea of finding set C is to first use the logical implications of the constraints defining

P to construct a conflict graph G = (Bo ∪ Bc, E), where Bo is the set of original

binary variables, Bc is the set of complemented binary variables, and E is the set of

edges. In the conflict graph, there is an edge between two variables if they cannot both
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have the value 1 at the same time. The logic implications used to construct the conflict

graph may be present in the original formulation or can be derived from preprocessing

[13, 98]. Every clique C of G defines a valid clique inequality. One way of using the

conflict graph is to find all cliques during preprocessing and store them in a clique table,

or find cliques dynamically during search. Atamtürk, et al. [13] performed a number of

tests on how to generate and use clique inequalities.

3.1.4 Primal Heuristics

Besides improving the lower bound by adding valid inequalities, another important as-

pect of branch-and-cut algorithms is improving the upper bound by finding feasible

solutions. A feasible solution will eventually be found during the search, as long as one

exists, but finding a feasible solution in the early stages of the search sometimes has

tremendous impact on search efficiencies because the search may be terminated early if

the user does not require a provably optimal solution. More importantly, feasible solu-

tions help to prune low quality nodes so that fewer nodes are required to be processed.

Finally, some search techniques may require feasible solutions in order to be success-

fully employed. A typical example is reduced cost tightening, which uses the reduced

costs of the LP to fix or tighten variables.

There are several ways to accelerate the process of finding good feasible solutions.

For instance, we have already mentioned that employing depth-first search usually helps

find feasible solutions quickly. Patel and Chinneck [79] propose a branching method that

helps find the first feasible solution as quickly as possible. However, the most commonly

used techniques are primal heuristics, which are procedures dedicated specifically to

finding solutions quickly. There are a variety of existing primal heuristics, many of
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which use LP solutions as input and try to find solutions by correcting the integer infea-

sibility. The well-known rounding [75], diving [60], pivot and shift [15], and feasibility

pump [38] heuristics belong to this category. Others take feasible solutions as input and

try to come up with better feasible solution. This category includes local branching [39]

and relaxation induced neighborhood search (RINS) [28].

Some heuristics, like rounding, are computationally inexpensive, and can be called

frequently during search, while others like diving and RINS, are relatively expensive.

For the expensive heuristics, dedicated control schemes are required to balance the cost

of spending time executing heuristics and the benefit of finding additional feasible solu-

tions.

3.2 Knowledge Management

There are a number of types of knowledge that must be shared in branch and cut. Note

that some knowledge types, such as bounds and pseudo-costs are not treated as abstract

knowledge types because of their simple structure and sharing mechanisms.

3.2.1 Bounds

The bounds that must be shared in branch and cut consist of the single global upper

bound and the lower bounds associated with the subproblems that are candidates for pro-

cessing. Knowledge of lower bounds is important mainly for load balancing purposes

and is shared according to the scheme described in Chapter 2. Distribution of informa-

tion regarding upper bounds is mainly important for avoiding performance of redundant
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work, i.e., processing of nodes whose lower bound is above the optimal value. Distri-

bution of this information is relatively easy to handle because relatively few changes in

upper bound typically occur throughout the algorithm. In our implementation, a work-

ers periodically sends its lower bound information to its hub, which periodically sends

the lower bound information of the cluster as a whole to the master. The upper bound is

broadcast to other processes immediately once a process finds a feasible solution.

3.2.2 Branching Information

If a backward-looking branching method, such as one based on pseudo-costs, is used,

then the sharing of historical information regarding the effect of branching can be im-

portant to the implementation of the branching scheme. The information that needs to

be shared and how it is shared depends on the specific scheme used. Linderoth [69]

studies the methods and effect of sharing pseudocosts among processes. In his study,

pseudocosts were shared in a buffered-distributed manner with buffer sizes of 1, 25, 100,

and∞. A buffer size of 1 means that new pseudocosts will be broadcast immediately;

a buffer size of 25 means that new pseudocosts will be broadcast once the number of

new pseudocosts reaches 25; and a buffer size of ∞ means that pseudocosts are not

shared among the processes. His study showed there is no need to share pseudocost if

the node processing time is short, and pseudocost should be shared for problems with

long node processing time. Eckstein [32] also found that sharing pseudocost can be very

important. We use a scheme similar to that in PARINO [69]. Pseudocosts are shared in

a buffered-distributed manner. Users can adjust the frequency with which pseudocosts

are shared by changing the buffer sizes. Also, users can choose to sharing pseudocost

only during rampup.
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3.2.3 Objects

An Object is an entity that has a domain. Typical objects include variables and con-

straints. Objects are treated as knowledge during the search. The main usage of objects

is to describe tree nodes. A node description consists mainly of

• a list of variables that are in the formulation of subproblem; and

• a list of constraints that are in the formulation of the subproblem.

For data-intensive applications, the number of objects describing a tree node can be

huge. However, the set of objects may not change much from a parent node to its child

nodes. We can therefore store the description of an entire subtree very compactly using

a differencing scheme. We discuss the details of the object handling and differencing

schemes in section 3.4.1.

One of the advantages of branch and cut over generic LP-based branch and bound

is that the inequalities generated at each node of the search tree may be valid and use-

ful in the processing of search tree nodes in other parts of the tree. Valid inequalities

are usually categorized as either globally valid (valid for the convex hull of solutions to

the original MILP and hence for all other subproblems as well), or locally valid (valid

only for the convex hull of solutions to a given subproblem). Because some classes of

valid inequalities are difficult to generate, inequalities that prove effective in the current

subproblem may be shared through the use of cut pools that contain lists of such in-

equalities for use during the processing of subsequent subproblems. The cut pools can

thus be utilized as an auxiliary method of generating violated valid inequalities during

the processing operation.
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Figure 3.2: Objects Handling

3.3 Task Management

3.3.1 BiCePS Task Management

BiCePS assumes that applications employ an iterative bounding scheme. During each

iteration, new objects might be generated to enhance the problem formulation. The

newly generated objects are either stored in object pools or used to augment the cur-

rent model. Since the number of objects can be huge, so duplicate and weak objects

can be removed based on their hash keys and their effectiveness. It also possible that

some objects are dominated by the others, which means we can safely remove these ob-

jects to save storage space. Furthermore, invalid and ineffective objects can be purged

periodically. Figure 3.2 shows the object handling scheme of BiCePS.

3.3.2 BLIS Task Management

In BLIS, there are a number of distinct tasks to be performed and these tasks can be

assigned to processors in a number of ways. Figure 3.3 is a simplified flowchart that

shows how the main tasks are scheduled. In the rest of the section, we briefly discuss

the tasks to be performed in BLIS.
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Figure 3.3: BLIS Tasks

Bounding. From the description of a candidate node, the bounding procedure pro-

duces either an improved lower bound or a feasible solution to the original MILP. The

lower bound is obtained by solving the linear relaxation of the subproblem formulated

at the candidate node.

Branching. From the description of a processed node, the branching procedure is used

to select a method of branching and subsequently producing a set of children to be added

to the candidate list.

Constraint generation. From a solution to a given LP relaxation produced during

node processing, the cut generation procedure produces a violated valid inequality (ei-

ther locally or globally valid).
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Heuristic Searching. From a the given state, the heuristics are used to search for

feasible solutions, which provide upper bounds to the original MILP.

3.4 The Class Hierarchies of BiCePS and BLIS

The Branch, Constrain, and Price Software (BiCePS) and the BiCePs Linear Integer

Solver (BLIS) are the two libraries, in addition to ALPS, that comprise the CHiPPS hier-

archy. Figure 3.4 shows the complete library hierarchy of CHiPPS. BiCePS implements

the so-called branch, constrain, and price algorithm and is the data-handling layer of

CHiPPS for relaxation-based descrete optimization. BiCePS is the data-handling layer

for relaxation-based discrete optimization. It introduce the concept of objects and as-

sumes an iterative bounding procedure. BLIS is a concretization of BiCePS and specific

to models with linear constraints and linear objective function.

3.4.1 BiCePS

Figure 3.5 shows the class hierarchy of BiCePS. The class names with prefix Alps

belongs to ALPS library, while the class names with prefix Bcps are the classes in Bi-

CePS. BiCePS introduces a new type of knowledge called BcpsObject from which

BcpsConstraint and BcpsVariable are derived. Also, BiCePS adds a new type

of knowledge pool BcpsObjectPool from which BcpsConstraintPool and

BcpsVariablePool are derived. BiCePS also derives subclasses BcpsSolution,

BcpsTreeNode, BcpsNodeDesc, and BcpsModel from the base classes in ALPS.

Data-intensive applications are those in which the amount of information required

to describe each node in the search tree is very large. An efficient storage scheme is
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Figure 3.4: Library Hierarchy of CHiPPS

required to avoid memory issues and increased communication overhead. In the BiCePS

library, we have developed compact data structures based on the ideas of objects and

differencing.

BiCePS Objects

In BiCePS, we introduce the concept of objects, which are divided into two groups: core

objects and extra objects. Core objects are active in all subproblems, which means that

they are in the formulation of all subproblems. Extra objects can be added and removed.

Since core variables are always in the problem formulation, no bookkeeping is required

and communication overhead is small. However, problem size can become very large if

a lot of objects are designated as core objects.
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Figure 3.5: Class Hierarchy of BiCePS
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The extra objects are also subdivided into two categories: indexed objects and algo-

rithmic objects. A indexed object has a unique global user index assigned by the user.

This index represents the object’s position in a “virtual” global list known only to the

user. For instance, in problem like the TSP, where the variable correspond to the edges

of an underlying graph, the index could be obtained from a lexicographic ordering of

the edges. The indexing scheme provides a compact object representation, as well as a

simple way of moving in and out of the problem formulation. However, it requires the

user have a priori knowledge of all objects and a method for indexing them. For some

problems, like airline scheduling, the number of objects is not known in advance. In

such cases, the user can use algorithmic objects, which require an algorithm to generate

them on demand. Subtour elimination constraints for the TSP are typical examples of

algorithmic objects since there are exponential number of them (2n − 2 for an instance

with n nodes) and we may not have enough indices for them.

The Differencing Scheme

The differencing scheme we use only stores the difference between the descriptions of a

child node and its parent. In other words, given a node, we store a relative description

that has the newly added objects, removed objects and changed objects compared with

its parent. For the root of a subtree, the differencing scheme always stores an explicit

description that has all the objects active at the root. Our differencing scheme for storing

the search tree means that whenever we want to retrieve a node, we have to spend time

constructing its explicit description. This is done by working back up the tree undoing

the differencing until an explicit description of the node is obtained and exemplifies the

trade-off of saving space and increasing search time. To prevent too much time being
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template <class T> struct BcpsFieldListMod

{

bool relative;

int numModify;

int* posModify;

T* entries;

};

Figure 3.6: BiCePS field modification data structure.

spent in recovering node descriptions, the differencing scheme has the option to store an

explicit description for any node that is a specified number of levels deeper than its first

ancestor with an explicit description.

To store a relative description for a node, the differencing scheme identifies the rel-

ative difference of this node with its parent. The data structures used to record these

differences are BcpsFieldListMod and BcpsObjectListMod.

BcpsFieldListMod stores a single field modification, such as the lower bounds

of variables. Figure 3.6 lists the data members of BcpsFieldListMod. Member

relative indicates how the modification is stored. If relative is true, then it

means complete replacement; otherwise, it means it is relative to those of its parent

node. Member numModify records the number of entries to be modified. Member

posModify stores the positions to be modified. Member entries has the new val-

ues.

BcpsObjectListMod stores modifications of a particular type of objects. Mem-

ber mumRemove records the number of the objects to be deleted. Member posRemove

stores the positions of the objects to be deleted. Member numAdd records the number
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struct BcpsObjectListMod

{

int numRemove;

int* posRemove;

int numAdd;

BcpsObject **objects;

BcpsFieldListMod<double> lbHard;

BcpsFieldListMod<double> ubHard;

BcpsFieldListMod<double> lbSoft;

BcpsFieldListMod<double> ubSoft;

};

Figure 3.7: BiCePS object modification data structure.

of the objects to be added. Member objects stores the objects to be added. Mem-

ber lbHard, ubHard, ubSoft and ubSoft store the modification in the individual

fields like lower bounds and upper bounds.

3.4.2 BLIS

The BLIS library is built on top of BiCePS. It provides the functionality needed to solve

mixed integer linear programs. Figure 3.8 shows the class hierarchy of BLIS. The class

names with prefix Blis belongs to BLIS library. BLIS derived following subclasses

from their corresponding base classes in BiCePS:

• BlisConstraint,

• BlisVariable,

• BlisSolution,

• BlisTreeNode,
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• BlisNodeDesc, and

• BlisModel.

Note that we only put the classes that show the inheritance relation with ALPS and Bi-

CePS in the Figure 3.8. BLIS has a number of other classes, such as BlisHeuristic

and BlisConGenerator.

Branching Scheme

The branching scheme of BLIS is similar to that of COIN/CBC [70]. It comprises three

components:

• branching Objects: BiCePS objects that can be branched on, such as integer vari-

ables and SOS sets;

• candidate branching objects: objects that do not lie in the feasible region or ob-

jects that will be beneficial to the search if they are branched on; and

• branching methods: methods to compare objects and choose the best one.

Figure 3.9 shows the major steps of BLIS’ branching scheme. The branching method is

the core component of BLIS’ branching scheme. When expanding a node, the branching

method first chooses a set of objects as candidates, and then selects the best object

based on the rules it specifies. BcpsBranchStrategy in BiCePS provides the base

class for implementing various branching methods. BcpsBranchStrategy has the

following member data:

• BcpsBranchObject ** branchObjects : the set of candidate branching

objects,
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Figure 3.8: Class Hierarchy of BLIS
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Figure 3.9: Branching Scheme

• int numBranchObjects : the number of candidate branching objects, and

• BcpsBranchObject * bestBranchObject : the best branching object

found.

BcpsBranchStrategy also declares a number of virtual member functions:

• virtual int createCandBranchObjects(): creates a set of candi-

date branching objects,

• virtual int betterBranchObject(): compares two branching object

and identify the better one, and

• bestBranchObject(): compares a set of branching objects and identify the

best one.

By deriving subclasses from BcpsBranchStrategy, BLIS implements several branch-

ing methods include strong branching, pseudocost branching, reliability branching and

maximum infeasibility branching, as described in Section 3.1.1. Users can develop cus-

tomized branching method by deriving subclass from BcpsBranchStrategy.
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Constraint Generator

A BLIS constraint generator provides an interface between BLIS and the algorithms

in COIN/Cgl, which have all the generators to find the inequalities discussed in Sec-

tion 3.1.3. A BLIS constraint generator has the ability to specify rules to control the

generator:

• where to call the generator?

• how many constraints can the generator generate at most?

• when to activate or disable the generator?

It also contains the statistics to guide the cut generation strategy.

Class BlisConGenerator provide necessary member data and functions for im-

plementing various constraint generators. The major member data includes the follow-

ing.

• CglCutGenerator * generator : The COIN/Cgl cut generator object if

using a generator in COIN/Cgl.

• BlisCutStrategy strategy : The strategy used to generate constraints.

The strategy can be “only generating constraints at the root”, “according to certain

frequency”, “automatically decided by the search”, or “disabled”.

• int cutGenerationFrequency : The frequency of calls to the constraint

generator.

• std::string name : The name of the generator.
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Figure 3.10: Constraint Generator

• int numConsGenerated : The number of constraints generated by the gen-

erator.

• double time : The time in seconds used by the generator.

• int calls : The number of times the generator is called.

The key member function is generateConstraints, which evaluates the state of

the search and generates constraints if necessary.

As Figure 3.10 shows, BLIS stores the generated constraints in constraint pools.

Later, BLIS augments the current subproblem with some or all of the newly generated

constraints. BLIS can use all the constraint generators in COIN/Cgl, a library of cut

generation methods. Users can develop a COIN/Cgl constraint generator and then add

into BLIS by using the interface provided by the BLIS constraint generator.

Primal Heuristics

The BLIS primal heuristic class declares the methods needed to search heuristically for

feasible solutions. The class also provides the ability to specify rules to control the

heuristic, such as
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• where to call the heuristic?

• how often to call the heuristic?

• when to activate or disable the heuristic?

The methods in the class collect statistics to guide searching and provides a base class

for deriving various heuristics. Currently, BLIS has only a simple round heuristics.

Class BlisHeuristics provide necessary member data and functions for imple-

menting various heuristics. The major member data includes the following.

• BlisHeurStrategy strategy : The strategy of using the heuristic. The

strategy can be “only call the heuristic at the root”, “according to certain fre-

quency”, “automatically decided by the search”, or “disabled”.

• int heurCallFrequency : The frequency of calls to the heuristic.

• std::string name : The name of the heuristic.

• int numSolutions : The number of solutions found by the heuristic.

• double time : The time in seconds used by the heuristic.

• int calls : The number of times the heuristic is called.

The key member function is searchSolution(), which evaluates the state of the

search and searches for solutions necessary.
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3.5 Developing Applications

3.5.1 Procedure

In BLIS, users can derive problem-specific heuristics and constraint generators, and also

define their own search strategy and branching rules. Although BLIS has the flexibility

for users to control the search process, there are situations in which users might need

to develop their own applications to solve problems that cannot be solved efficiently by

a generic MILP solver. For instance, the formulation of some problems may have an

exponential number of constraints. To develop applications based on BLIS, the user

needs to follow two steps:

• derive problem-specific subclasses from BLIS’ or ALPS’ base classes, and

• write a main() function.

The base classes that the user might need to derive from include

• BlisModel,

• BlisSolution,

• BlisConstraint,

• BlisConGenerator,

• BlisVariable, and

• AlpsParameterSet.

The user-derived subclasses contain problem-specific data and functions that are needed

to formulate and solve the problem. In the following sections, we first introduce the
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background of the vehicle routing problem (VRP), then we discuss how to develop ap-

plications to solve VRPs.

3.5.2 Example: The Vehicle Routing Problem

The class of problems that we discuss here was introduced by Dantzig and Ramser

[29]. In the Vehicle Routing Problem (VRP) formulation, a quantity di ∈ Q of a single

commodity must be delivered to each customer i ∈ N = {1, . . . , n} from a central depot

{0} using k identical delivery vehicles of capacity C. The objective is to minimize total

cost, with cij ∈ Q denoting the transit cost from i to j, for 0 ≤ i, j ≤ n. We assume that

cij does not depend on the quantity transported and that the cost structure is symmetric,

i.e., cij = cji and cii = 0. A solution for this problem consists of a partition of N into k

routes R1, . . . , Rk, each satisfying
∑

j∈Ri
dj ≤ C, and a corresponding permutation σi

of each route specifying the service ordering.

We can associate a complete undirected graph with this problem. The graph consists

of nodes N ∪ {0}, edges E, and edge-traversal cost cij ∈ E. A solution is the union of

k cycles whose only intersection is the depot node. Each cycle corresponds to the route

serviced by one of the k vehicles. By associating a binary variable with each edge in the

graph, we can formulate the VRP as the following integer program:

min
∑

e∈E

cexe

∑

e={0,j}∈E

xe = 2k, (3.22)
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∑

e={i,j}∈E

xe = 2 ∀i ∈ N, (3.23)

∑

e={i,j}∈E
i∈S,j /∈S

xe ≥ 2b(S) ∀S ⊂ N, |S| > 1, (3.24)

0 ≤ xe ≤ 1 ∀e = {i, j} ∈ E, i, j 6= 0, (3.25)

0 ≤ xe ≤ 2 ∀e = {i, j} ∈ E, (3.26)

xe ∈ Z ∀e ∈ E. (3.27)

For ease of computation, we define b(S) = |(∑i∈S di)/C|, which is a lower bound on

the number of trucks needed to service the customers in set S. Constraints (3.22) ensure

that there are exactly k vehicles. Constraints (3.23) ensure that each customer is serviced

by exactly on vehicle, as well as ensuring that the solution is the union of edge sets of

routes. Constraints (3.24) ensure that every route includes the depot and that no route

has total demand greater than the capacity C.

To solve the VRP problems described above, we designed and implemented a VRP

solver. The core of the VRP solver is a branch-and-cut algorithm that has been studied

in [85, 89, 86]. Following the steps to develop a BLIS application, we first derived four

subclasses (VrpModel, VrpSolution, VrpVariable, and VrpCutGenerator

from BLIS’ base classes. Because we need special parameters to control the VRP solver,

we also derived VrpParams from ALPS’ base classes.

132



3.5. DEVELOPING APPLICATIONS

The Model Subclass

Subclass VrpModel is derived from BlisModel. Its member data includes:

• int vertnum : the number of vertices in the graph,

• int edgenum : the number of edges in the graph,

• int capacity : specifies the capacity of a vehicle, and

• int *demand : stores the demand of the customers.

VrpModel also has the member data that specifies the location of each customer. The

important member functions of KnapModel are as follows.

• readInstance(): Reads an instance from a date file and creates variables and

constraints.

• userFeasibleSolution(): Checks whether a VRP solution is feasible ac-

cording to the user’s criteria. A solution can only be accepted as a VRP solution

if it is integral and associated subgraph is connected.

In our formulation, constraints (3.22) and (3.23) are designated as core constraints,

while constraints (3.24) are designated as algorithm constraints because there are expo-

nentially many of them. Constraints (3.25) and (3.26) set the bounds of the variables.

Constraints (3.27) restrict all variable to be integral. We assume that there is an edge

between every pair of nodes in the graph, so the number of edges is n(n − 1)/2 edges.

We associate a variable with each edge, and treat all variables as core variables. There-

fore, the initial formulation of the VRP includes constraints (3.22), (3.23), (3.25), (3.26)
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and (3.27), and all variables. In order to broadcast the model to all processes for paral-

lel execution, VrpModel defines encode() and decode() functions to convert the

model data into a string and re-construct a model from a string.

The Solution Subclass

As mentioned previously, a solution for the VRP consists of a partition of customers

into several routes with each routes having a specific sequence of customers. The

VrpSolution subclass uses a linked list to store the partition of customers and the

visit sequences. It provides several functions to access and display the solution and

defines encode() and decode() functions for parallel execution.

The Variable Subclass

Since a variable in the VRP corresponds to an edge in the graph, VrpVariable stores

the endpoints of an edge by using data member int ends [2] and assigns an index

for each variable. VrpVariable defines functions to access and construct the asso-

ciated edge for a variable. VrpVariable also overrides encode() and decode()

functions.

The Constraint Generator Subclass

The cut generator in the VRP solver generates only constraint (3.24). A description of

the methods used to generate these constraints is in [89]. The generated constraints are

global valid, which means they can been added to any subproblems, and can be shared

among processes. VrpCutGenerator defines generateConstraints(), which

uses the methods described in [89] to generate constraints.
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The Parameter Subclass

The VRP parameter subclass VrpParams is derived. from ALPS’ base parameter

class, The parameters first needs to be classified into the following types:

• boolParams: the bool parameters,

• intParams: the integer parameters,

• dblParams: the double parameters,

• strParams: the string parameters, and

• strArrayParams: the string array parameters.

VrpParams have 4 boolParams parameters and 7 intParams parameters. It does not

have other types of parameters. VrpParams define several member functions to access

and modify those parameters and overrides functions encode() and decode() for

parallel execution.

The main() Function

A main() function for the VRP solver is shown in figure 3.11 and is based on the

template provided by ALPS. The main() function is quite simple. The user first de-

clares a LP solver that is going to be used. As Figure 3.11 shows, here COIN/Clp [70]

is use as the LP solver. To run parallel code, the user needs to declare a parallel broker,

such as AlpsKnowledgeBrokerMPI; to run serial code, the user needs to declare

a AlpsKnowledgeBrokerSerial broker. Then, the broker searches for solutions

and prints search results.
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int main(int argc, char* argv[])

{

// Set up lp solver

#ifdef COIN_HAS_CLP

OsiClpSolverInterface lpSolver;

lpSolver.getModelPtr()->setDualBound(1.0e10);

lpSolver.messageHandler()->setLogLevel(0);

#endif

// Create VRP model

VrpModel model;

model.setSolver(&lpSolver);

#ifdef COIN_HAS_MPI

AlpsKnowledgeBrokerMPI broker(argc, argv, model);

#else

AlpsKnowledgeBrokerSerial broker(argc, argv, model);

#endif

// Search for best solution

broker.search(&model);

// Report the best solution found and its objective value

broker.printBestSolution();

return 0;

}

Figure 3.11: Main() Function of VRP
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Chapter 4

Computational Results

We conducted a number of experiments to test the scalability of CHiPPS and the effec-

tiveness of the methods that have been implemented to improve performance. In these

experiments, we solved several sets of Knapsack, generic MILP, and VRP instances that

were either generated by us or selected from public sources. Since KNAP is built on

top of ALPS, the experiments with KNAP allowed us to look independently at aspects

of our framework having to do with the general search strategy, load balancing mecha-

nism, and the task management paradigm. Generic MILPs are what most practitioners

are interested in solving, so how well the framework scales when solving generic MILPs

is a key measure of its usefulness. The VRP is an important class of problem since it

exemplifies typical properties of combinatorial optimization problems. Testing VRP

instances provided us extra insights into the advantages and disadvantages of the frame-

work. We used both the KNAP application and BLIS to solve the knapsack instances,

BLIS to solve the MILPs, and the VRP application to solve the VRP instances.
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4.1 Hardware

We used a cluster at Clemson University for initial and small-scale testing. This cluster

has 52 nodes, each node with a single IBM Power5 PPC64 chip. Each chip has two cores

that share 4 GB RAM, as well as L2 and L3 cache. Each core has its own L1 cache and

can be hyper-threaded with two threads. The core speed is 1654 MHz. For large-scale

testing, we primarily used the Blue Gene system at the San Diego Supercomputer Center

(SDSC) [91]. The Blue Gene system has three racks with 3, 072 compute nodes (6, 144

processors) and 384 I/O nodes. Each node consists of two PowerPC processors that run

at 700 MHz and share 512 MB of memory. We also used a PC running Fedora 4 Linux

to test the differencing scheme. The PC had a 2.8 GHz Pentium processor and 2 GB of

RAM. Unless pointed out specifically, we limited each processor to one parallel process.

4.2 Test Suite

The knapsack instances were generated based on the method proposed by Martello and

Toth [72]. Three sets of instances were used. Table 4.1 shows basic statistics for the

ten easy instances when solving them sequentially. Column Item is the number of items

available to be placed in the knapsack. Column BestSol is the path cost of the best

solution found. Column Node is the number of nodes processed and column NodeLeft

is the number of node left when solving them serially using KNAP with a time limit of

7200 seconds. We chose 7200 as the time cutoff, since KNAP can solve most knapsack

instances in this amount of time. The last column Time shows the wallclock time in

seconds used for each instance.
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Table 4.1: Statistics of the Easy Knapsack Instances

Instance Item BestSol Nodes NodeLeft Time
input55 1 55 1127 859210 0 16.58
input55 2 55 1151 466579 0 7.64
input55 3 55 1163 342777 0 4.27
input55 4 55 2145 704644 0 9.31
input55 5 55 2068 629662 0 8.19
input60 1 60 1192 479314 0 9.17
input60 2 60 1234 303637 0 4.29
input60 3 60 1222 738416 0 12.49
input60 4 60 1306 342432 0 5.58
input60 5 60 1419 607930 0 15.59

Table 4.2: Statistics of the Moderately Difficult Knapsack Instances

Instance Item BestSol Nodes NodeLeft Time
input100 1 100 19387 19489172 0 3696.48
input100 2 100 15668 20630783 0 5144.68
input100 3 100 18024 7334000 346716 7200.00
input100 4 100 18073 6078869 0 428.24
input100 5 100 9367 4696000 3290611 7200.00
input75 1 75 6490 13858959 0 7004.81
input75 2 75 8271 13433001 0 6968.56
input75 3 75 8558 18260001 724141 7200.00
input75 4 75 8210 9852551 0 3006.69
input75 5 75 6315 10647047 0 1398.48
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Table 4.3: Statistics of the Difficult Knapsack Instances

Instance Item BestSol Nodes NodeLeft Time
input100 30 100 4334 450193400 0 158.94
input100 31 100 4479 295018523 0 117.01
input100 32 100 4378 374169758 0 136.46
input100 34 100 193071 355850972 0 130.14
input100 35 100 187491 381809948 0 137.68
input100 36 100 151934 684364180 0 255.75
input100 37 100 211231 440881122 0 169.57
input100 38 100 221009 399288703 0 141.76
input100 39 100 196402 366764346 0 134.63
input150 1 150 266157 1107247315 0 471.11
input150 2 150 258789 962872398 0 411.63
input150 4 150 335900 1414324008 0 766.87
input150 5 150 283645 334366142 0 144.43
input150 7 150 149820 243837878 0 106.38
input150 8 150 75449 946658511 0 456.24
input150 9 150 71315 688020337 0 298.13
input150 10 150 101254 520055323 0 213.49
input150 11 150 102443 652738452 0 275.91
input150 12 150 111715 477186428 0 191.24
input150 13 150 106253 766822612 0 366.28
input150 14 150 141827 394270918 0 173.48
input150 17 150 30261 348443929 0 135.35
input150 18 150 53463 453055347 0 188.22
input150 19 150 55784 314137323 0 131.19
input150 20 150 48727 269752458 0 111.28
input175 0 175 126364 1091614792 0 473.33

Table 4.2 shows basic statistics for the ten moderately difficult instances when solv-

ing them sequentially. The columns have the same meanings as those in Table 4.1. As

Table 4.2 shows that serial KNAP could not solve instances input100 3, input100 5, or

input75 3 within the 7200 second time limit.
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Table 4.3 shows the basic statistics for the 26 difficult instances. The columns In-

stance, Item, and BestSol have the same meaning as in Table 4.1. Column Node is

the number of processed nodes and column NodeLeft is the number of nodes left when

solving them in parallel using 64 processors on the SDSC Blue Gene system. Column

Time lists the wallclock time used to solve these instance when using 64 processors. We

used 64 processors to solve the difficult instance because the running time to solve them

sequentially would have been too long.

To test the scalability when solving generic MILPs, we selected 18 MILP instances

from Lehigh/CORAL, MIPLIB 3.0, MIPLIB 2003 [3], BCOL [12], and [81]. These

instances took at least two minutes but no more than 2 hours to be solved by BLIS

sequentially. Table 4.4 shows the problem statistics and the results of solving them

sequentially. Column Rows and Cols list the number of rows and columns of each

instance. Other columns have the same means as those in Table 4.1.

4.3 Overall Scalability

We first report results of solving knapsack instances with the simple knapsack solver

KNAP that we discussed in Chapter 2. This solver uses a straightforward branch-and-

bound algorithm with no cut generation. We tested KNAP using two different test sets,

one composed of the moderately difficult instances shown in Table 4.2 and the other

composed of the much more difficult instances shown in Table 4.3. Next, we report

results of solving a set of generic MILPs with BLIS and discuss the cause of the increase

in communication overhead. Finally, we report results of solving VRP instances with

the VRP solver that we discussed in Chapter 3. Figure 4.1 shows several important
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Table 4.4: Statistics of the Generic MILPs

Instance Rows Cols Nodes NodeLeft Time
aflow30a 479 842 1003443 0 4346.61
bell5 91 104 644677 0 882.96
bienst1 576 505 14425 0 672.99
bienst2 576 505 179059 0 6233.11
blend2 274 353 259043 0 358.61
cls 180 181 98099 0 303.72
fiber 363 1298 10335 0 101.00
gesa3 1368 1152 106071 0 2904.33
markshare 4 1 4 30 3615047 0 762.42
markshare 4 3 4 30 2446893 0 790.62
mas76 12 151 986843 0 887.84
misc07 212 260 17899 0 111.36
pk1 45 86 885313 0 729.69
rout 291 556 1001147 0 7109.07
stein45 331 45 116677 0 208.63
swath1 884 6805 50125 0 1728.45
swath2 884 6805 196163 0 5252.10
vpm2 234 378 178697 0 437.02

defaults parameter setting of the framework. Unless explicitly specified otherwise, we

used the default setting.

4.3.1 Solving Moderately Difficult Knapsack Instances

We tested the ten instances in the moderately difficult set by using 4, 8, 16, 32, and

64 processors on the Clemson cluster. The default algorithm was used to solve those

instances, except that

• the static load balancing scheme was two-level root initialization,

• the number of nodes generated by the master during ramp up was 3000, and
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1. The search strategy was the best-first strategy during the ramp up phase, and

switches to the hybrid strategy after the ramp up phase.

2. The static load balancing scheme was spiral initialization.

3. Both the inter-cluster and intra-cluster dynamic load balancing are was used.

Figure 4.1: Default Setting

• the number of nodes designated as a unit work was 300.

Although these instances were difficult to solve when using sequential KNAP, they

were all solved to optimality quite easily using just 4 processors. Table A.1 presents

the detailed results of this experiment. As shown in Table 4.2, instances input100 3,

input100 5 and input75 3 are unsolvable with sequential KNAP in 7200 seconds. How-

ever, it took KNAP 158.60 seconds, 87.50 seconds, and 56.29 seconds to solve them

respectively when using 4 processors. When we increased the number processors used

to 128, KNAP was able to solve them in 4.53 seconds, 2.81 seconds and 1.77 seconds,

respectively.

Because the results of the ten instances show a similar pattern, we aggregated the

results, which are shown in Table 4.5. The column headers have the following interpre-

tations.

• Nodes is the number of nodes in the search tree. Observing the change in the

size of the search tree as the number of processors is increased provides a rough

measure of the amount of redundant work being done. Ideally, the total number of

nodes explored does not grow as the number of processors is increased and may
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actually decrease in some cases, due to earlier discovery of feasible solutions that

enable more effective pruning.

• Ramp-up is the average percentage of total wallclock running time time each pro-

cessor spent idle during the ramp-up phase.

• Idle is the average percentage of total wallclock running time each processor spent

idle due to work depletion, i.e., waiting for more work to be provided.

• Ramp-down is the average percentage of total wallclock running time time each

processor spent idle during the ramp-down phase.

• Wallclock is the total wallclock running time (in seconds) for solving the 10 knap-

sack instances.

• Eff is the parallel efficiency and is equal to the total wallclock running time for

solving the 10 instances with p processors divided by the product of 4 and the total

running time with four processors. Note that the efficiency is being measured here

with respect the solution time on four processors, rather than one, because of the

memory issues encountered in the single-processor runs.

The parallel efficiency is very high if computed in the standard way (see Equation

(1.35)). For instance, the efficiency is 16.13 when solving input100 1 on 64 processors.

This abnormality is mainly caused by memory issues (size limitation and fragmentation)

when solving knapsack instances serially. To properly measure the scalability of ALPS,

we use the wallclock on 4 processors as the base for comparison. We therefore define
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Table 4.5: Scalability for solving Moderately Difficult Knapsack Instances

P Node Ramp-up Idle Ramp-down Wallclock Eff
4 193057493 0.28% 0.02% 0.01% 586.90 1.00
8 192831731 0.58% 0.08% 0.09% 245.42 1.20
16 192255612 1.20% 0.26% 0.37% 113.43 1.29
32 191967386 2.34% 0.71% 1.47% 56.39 1.30
64 190343944 4.37% 2.27% 5.49% 30.44 1.21

the efficiency as

Efficiency =
Wallclock time using 4 processors× 4

Wallclock time using P processors× P . (4.1)

The last column in Table 4.5 lists the efficiency of KNAP. We found that the efficiencies

were greater than 1.0 when using 8, 16, 32, and 64 processors. Efficiency should nor-

mally represent approximately the average fraction of time spent by processors doing

“useful work,” where the amount of useful work to be done, in this case, is measured

by the running time with four processors. Efficiencies greater than one are not typically

observed and when they are observed, they are usually the result of random fluctuations

in the total number of nodes processed. Here we observe that the total number of nodes

remained relatively constant, so the so-called “superlinear speedup” observed may again

be due to minor memory issues encountered in the four processor runs. In any case, it

can be observed that the overhead due to ramp-up, ramp-down, and idle time remains

low as the number of processors is scaled up. Other sources of parallel overhead were

not measured directly, but we can infer that these sources of overhead are most likely

negligible.
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4.3.2 Solving Difficult Knapsack Instances

We further tested the scalability of ALPS by using KNAP to solve the set of very difficult

knapsack instances shown in Table 4.3. The tests were conducted on the SDSC Blue

Gene system. The default algorithm was used to solve those instances except that

• the static load balancing scheme was the two-level root initialization,

• during ramp up, the number of nodes generated by the master varied from 10000

to 30000 depends on individual instance,

• during ramp up, the number of nodes generated by a hub varied from 10000 to

20000 depends on individual instance,

• the number of nodes specified as a unit work was 300, and

• multiple hubs were used (the actual number depended on the number of proces-

sors).

Table A.2 shows the detailed testing results. Table 4.6 summarizes the aggregated

results. For this test, we defined the efficiency as

Efficiency =
Wallclock time using 64 processors× 64

Wallclock time using P processors× P . (4.2)

The experiment shows that KNAP scales well, even when using several thousand pro-

cessors. This is primarily because the node evaluation time is generally short and it is

easy to generate a large number of nodes quickly during ramp-up. For these instance, the

workload is already quite well balanced at the beginning of the search. As the number of

processors is increased to 2048, we observe that the wallclock running time of the algo-

rithm becomes shorter and shorter, while ramp-up and ramp-down overhead inevitably
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Table 4.6: Scalability for solving Difficult Knapsack Instances

P Node Ramp-up Idle Ramp-down Wallclock Eff
64 14733745123 0.69% 4.78% 2.65% 6296.49 1.00
128 14776745744 1.37% 6.57% 5.26% 3290.56 0.95
256 14039728320 2.50% 7.14% 9.97% 1672.85 0.94
512 13533948496 7.38% 4.30% 14.83% 877.54 0.90
1024 13596979694 13.33% 3.41% 16.14% 469.78 0.84
2048 14045428590 9.59% 3.54% 22.00% 256.22 0.77

increase as percentages of the overall running time. This effect is known as Amdahl’s

Law [6], which predicts a limit to the efficiency that can be achieved by increasing the

number of processors used to solve a given fixed problem instance due to the inherently

sequential parts of the algorithm. Ideally, as the number of processors increases, we

should also be scaling the size of the instances to estimate the iso-efficiency function of

Kumar and Rao [65], which might be a more effective measure of scalability than the

standard measures presented here.

Both scalability experiments show that ALPS scales well when solving knapsack

problem instances. This provides support for the ideas that we are using to improve

scalability. During the experiments, we found that node evaluation time were generally

short and a large number of nodes could be generated in a short time during ramp-up,

so that the workload was already quite balanced at the beginning of the search. These

special characteristics of the knapsack problem help KNAP to obtain good parallel ef-

ficiency. In Chapter 3, we discuss ideas for achieving speedup when node evaluation

times are long and the number of nodes required to solve a problem is small. We discuss

computational results in this setting next.
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Table 4.7: Scalability for generic MILP

Instance Nodes Ramp Idle Ramp Comm Wallclock Eff
-up -down Overhead

1 P 11809956 − − − − 33820.53 1.00
Per Node − − − − 0.00286
4P 11069710 0.03% 4.62% 0.02% 16.33% 10698.69 0.79
Per Node 0.00% 4.66% 0.00% 16.34% 0.00386
8P 11547210 0.11% 4.53% 0.41% 16.95% 5428.47 0.78
Per Node 0.00% 4.52% 0.53% 16.95% 0.00376
16P 12082266 0.33% 5.61% 1.60% 17.46% 2803.84 0.75
Per Node 0.27% 5.66% 1.62% 17.45% 0.00371
32P 12411902 1.15% 8.69% 2.95% 21.21% 1591.22 0.66
Per Node 1.22% 8.78% 2.93% 21.07% 0.00410
64P 14616292 1.33% 11.40% 6.70% 34.57% 1155.31 0.46
Per Node 1.38% 11.46% 6.72% 34.44% 0.00506

4.3.3 Solving Generic MILP Instances

In the experiment, we test the scalability of BLIS by solving the MILPs shown in Table

4.4. We used four cut generators from the COIN-OR Cut Generation Library [70]:

• CglGomory,

• CglKnapsackCover,

• CglFlowCover, and

• CglMixedIntegerRounding.

Pseudocost branching was used to select branching objects. We used two hubs for the

runs with 64 processors. For all other runs, one hub was used.

Each instance was solved twice: once with two-level root initialization and once with

spiral initialization. Table 4.7 shows the results of these computations. Note that in this
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table, we have added an extra column to capture sources of overhead other than idle time,

i.e., communication overhead, since these become significant here. However, the effect

of these sources of overhead is estimated as the difference between the efficiency and

the fraction of time attributed to the other three sources. The accuracy of this estimate

is difficult to determine. Note also that in these experiments, the master process does

not do any exploration of subtrees, so an efficiency of (p − 1)/p is the best that can be

expected, barring anomalous behavior. To solve these instance, BLIS needs to process a

relatively large number of nodes and the node processing time is not too long. These two

properties tend to lead to good scalability and the results reflect this to a large extent.

However, as expected, percentage overhead increased across the board as the number

of processors increased. For this test set, it looks as though BLIS would not scale well

beyond 64 processors.

Examining each component of overhead in detail, we see that ramp-up, idle and

ramp-down grow, as a percentage of overall running time, as the number of processors

increased. This is to be expected and is in line with the performance seen for the knap-

sack problems. However, the communication overhead turns out to be the major cause of

declined efficiency. We suspect this is the case for two reasons. First, the addition of cut

generation increases the size of the node descriptions and the amount of communication

required to do the load balancing. Second, we found that as the number of processors

increased, the amount of load balancing necessary went up quite dramatically, in part

due to the ineffectiveness of the static load balancing method for these problems.

Table 4.8 summarizes the results of load balancing and subtree sharing when solving

the 18 instances that were used in the scalability experiment. The column labeled P is the

number of processors. The column labeled Inter is the number of inter-cluster balancing
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Table 4.8: Load Balancing and Subtrees Sharing

P Inter Intra Starved Subtree Split Whole
4 0 87083 22126 42098 28017 14081
8 0 37478 25636 41456 31017 10439
16 0 15233 38115 55167 44941 10226
32 0 7318 44782 59573 50495 9078
64 494 3679 54719 69451 60239 9212

operations performed (this is zero when only one hub is used). The column labeled

Intra is the number of intra-cluster balancing operations performed. The column labeled

Starved is the number of times that workers reported being out of work and proactively

requested more. The column labeled Subtree is the number of subtrees shared. The

column labeled Split is the number of subtrees that were too large to be packed into a

single message buffer and had to be split when sharing. The column labeled Whole is the

number of subtrees that did not need to be split. As Table 4.8 shows, the total number

of inter- and intra-cluster load balancing goes down when the number of processors

increases. However, worker starvation increases. Additionally, the number of subtrees

needing to be split into multiple message units increases. These combined effects seem

to be the cause of the increase in communication overhead.

In order to put these results in context, we have attempted to analyze how they

compare to results reported in paper in the literature, of which there are few. Eckstein et

al. tested the scalability of PICO [33] by solving 6 MILP instances from MIPLIB 3.0.

For these tests, PICO was used as a pure branch and bound code and did not have any

constraint generation, so it is difficult to do direct comparison. One would expect that

the lack of cut generation would increase the size of the search tree while decreasing

the node processing time, thereby improving scalability. Their experiment showed an
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efficiency of 0.73 for 4 processors, 0.83 for 8 processors, 0.69 for 16 processors, 0.65

for 32 processors, 0.46 for 64 processors, and 0.25 for 128 processors. Ralphs [87]

reported that the efficiency of SYMPHONY 5.1 is 0.81 for 5 processors, 0.89 for 9

processors, 0.88 for 17 processors, and 0.73 for 33 processors when solving 22 MILP

instances from Lehigh/CORAL, MIPLIB 3.0, and MIPLIB 2003. All in all, our results

are similar to those of both PICO and SYMPHONY. However, since we are using a

more sophisticated algorithm that is more difficult to implement scalably, this can be

seen as an improvement. Also, SYMPHONY was not tested beyond 32 processors and

it is unlikely that it would have scaled well beyond that. In section 4.4, we show this by

comparing the performance of BLIS and SYMPHONY directly when solving knapsack

problem.

4.3.4 Solving VRP Instances

In this experiment, we wanted to assess how the framework scales when solving VRP in-

stances. We performed this experiment on the Clemson Cluster. The default setting was

used except that the search strategy was best-first and the branching method was strong

branching. Table 4.9 shows the aggregated results of solving the 16 VRP instances by

using 1, 4, 8, 16, 32, and 64 processors. When using 4 processors, the VRP solver

achieved an efficiency of 0.90. However, as the number of processors increased, the

number of nodes increased significantly and the efficiency dropped dramatically. The

overhead also increased as the number of processors increased. With increased number

of processors, we found that feasible solutions were found very late in the search pro-

cess for many instances. Hence, a lot redundant work was performed. Overall, the VRP

solver does not seem to scale well for this set of VRP instances.
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Table 4.9: Scalability for VRP

P Nodes Ramp-up Idle Ramp-down Wallclock Eff
1 40250 − − − 19543.46 1.00
4 36200 7.06% 7.96% 0.39% 5402.95 0.90
8 52709 9.88% 6.15% 1.29% 4389.62 0.56
16 70865 14.16% 8.81% 3.76% 3332.52 0.37
32 96160 15.85% 10.75% 16.91% 3092.20 0.20
64 163545 18.19% 10.65% 19.02% 2767.83 0.11

4.4 Comparison with SYMPHONY

It is not straightforward to compare the performance of two parallel solvers, in part be-

cause of the fact that it is difficult to find a set of test instances appropriate for testing

both solvers simultaneously. SYMPHONY implements a highly customizable branch-

and-bound algorithm and can be used to solve the knapsack problem. Ralphs [87] re-

ported that SYMPHONY is very effective for small number of processors, but is not

scalable beyond about 32 processors. The test set that we used is the easy instance set

described in Table 4.1. We performed the experiment on the Clemson cluster.

First, we compared KNAP with SYMPHONY. To make SYMPHONY execute more

like a simple branch and bound code, we turned off reduced cost fixing and cut gener-

ation, set the number of candidates for strong branching to one and set the maximum

number of simplex iteration when solving LPs to one during strong branching. Table

4.10 shows the aggregated results using KNAP and SYMPHONY on using 4, 8, 16, and

32 processors. Column P is the number of processors. Column Solver is the solver used.

The other columns have the same meaning as those in Table 4.7. Even for these easy

instances, KNAP showed quite good efficiency. It achieved super-linear speedup when

using 4, 8 and 16 processors. The efficiency of SYMPHONY was not good for these
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Table 4.10: Scalability of KNAP and SYMPHONY for the Easy Instances

P Solver Node Ramp-up Idle Ramp-down Wallclock Eff
1 KNAP 5474601 − − − 93.11 1.00

SYM 5467094 − − − 2835.72 1.00
4 KNAP 5471538 6.67% 2.40% 1.20% 16.67 1.40

SYM 5060032 0.01% 32.73% 0.24% 1706.58 0.42
8 KNAP 5482627 12.43% 0.52% 0.65% 7.64 1.52

SYM 5060364 0.01% 48.41% 2.05% 1118.48 0.32
16 KNAP 5496753 21.50% 0.74% 2.42% 4.14 1.40

SYM 5070008 0.02% 68.75% 4.09% 913.07 0.19

instance. When using 4 processors, the efficiency of SYMPHONY was 0.42. When

using 16 processors, the efficiency of SYMPHONY went down to 0.19. The numbers

of nodes for these instances are around half a million and node evaluation time was

quite small. The number of nodes processed by KNAP was roughly the same as that of

SYMPHONY for every instance. For SYMPHONY, the master was overwhelmed by

the requests of nodes and workers spends long time waiting for instructions.

Next, we compared BLIS and SYMPHONY for solving the same knapsack in-

stances. The default settings of BLIS and SYMPHONY were used. The aggregated

results are summarized in Table 4.11. It can be seen from these results that BLIS scales

reasonably well and the overhead is relatively small. However, SYMPHONY has trou-

ble scaling as the number processors increase, since it suffers from the synchronization

bottleneck that happens when many workers are being controlled by a single master. In

SYMPHONY, the workers are not as autonomous as in BLIS and must check in with

the master much more frequently. The effect of this is seen in the results here, as the

efficiency is already extremely low with just 16 processors. BLIS also begins to show

efficiency degradation when using 16 processors, but this is mainly due to the fact that
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Table 4.11: Scalability of BLIS and SYMPHONY for Knapsack Instances

P Solver Nodes Ramp-up Idle Ramp-down Wallclock Eff
1 BLIS 450644 − − − 124.67 1.00

SYM 5465932 − − − 3205.77 1.00
4 BLIS 435990 0.08% 3.16% 2.46% 38.63 0.80

SYM 4935156 0.01% 28.40% 0.12% 1659.55 0.48
8 BLIS 347126 0.30% 4.74% 6.37% 16.65 0.94

SYM 4944232 0.49% 42.92% 1.73% 1070.03 0.37
16 BLIS 369586 0.77% 8.00% 18.32% 10.37 0.75

SYM 4957982 0.16% 62.77% 3.78% 847.43 0.23

these problems are too easy and Amdahl’s law is coming into play, as discussed ear-

lier. As a side note, BLIS appears to be much more effective on these instances than

SYMPHONY, as the number of nodes generated is an order of magnitude different. We

suspect this is due to SYMPHONY’s less effective cut generation strategy.

4.5 The Effect of the Master-Hub-Worker Paradigm

An important aspect of the scheme for scalability improvement in ALPS is the imple-

mentation of the master-hub-worker paradigm. By inserting the hubs in between the

master and the workers, we hoped that parallel overhead would be reduced. In this test,

we examine whether the use of hubs does actually help to improve performance. The

test was conducted on the SDSC Blue Gene system. We used the moderately difficult

knapsack instance set and ran KNAP on 1024 processors. Table 4.12 shows aggregated

results using 1, 2, 4, 8, 16, 32, 64 and 128 hubs. The column labeled Hubs is the number

of hubs used. Column ClusterSize is the number of processors in each cluster. From

the table, we can see that the use of multiple hubs does improve efficiency as long as
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Table 4.12: Effect of Master-hub-worker Paradigm

Hubs Cluster Size Node Ramp-up Idle Ramp-down Wallclock
1 1024 2189900404 14.78% 2.25% 38.17% 103.79
2 512 2181608684 16.43% 4.04% 29.64% 91.74
4 256 2671387391 18.76% 3.17% 18.13% 91.10
8 128 2138187406 20.45% 2.57% 17.27% 74.57
16 64 2132342280 22.38% 1.71% 11.99% 70.14
32 32 2132560921 22.61% 1.04% 11.17% 71.44
64 16 2136262257 20.38% 0.75% 13.78% 82.13
128 8 2150789246 14.69% 0.85% 14.12% 118.31

the cluster size is not too small. In particular, we see that the hubs have a difficult time

balancing the workload of workers at the end of the search if the number of hubs used

is small and the master has a difficult time balancing the workload among the clusters if

the number of hubs is large. For this test, a cluster size of 32 or 64 seems to be optimal.

4.6 Choice of Static Load Balancing Scheme

In this experiment, we compared the two static load balancing schemes implemented in

ALPS. The experiment was performed on the Clemson cluster and used 64 processors.

One hub was used. Table B.2 shows the detailed results of the 19 instances. Column

Scheme is the static load balancing scheme used. Other columns have the same meaning

as those in Table 4.7. The spiral scheme was better for 8 instances, and the two-level

root initialization scheme was better for 4 instances. The two schemes were approxi-

mately tied for 7 instances (the running time difference is less than 10%). Table 4.13

shows the total number of nodes, etc. of these instances. The two schemes are not very
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Table 4.13: Static Load Balancing Comparison

Scheme Node Ramp-up Idle Ramp-down Wallclock
Root 15876829 55.24% 4.31% 11.42% 3690.30
Spiral 15849764 1.74% 10.75% 18.21% 1419.37

different with regarding to the number of nodes processed. However, the root initializa-

tion scheme has almost 100 times more ramp-up overhead than the spiral scheme does.

For instances markshare 4 1 and markshare 4 3, root initialization had difficulty

in generating enough nodes for workers and almost all the search time spent in ramp-up

phase.

From this experiment, we found that root initialization was better for instances with

short node processing time and large search trees, while spiral initialization is better

for instances with long node processing time and small search trees. For problems

like the knapsack problem, root initialization distributes work more evenly than spiral

initialization. Overall, the performance of spiral initialization is more reliable than root

initialization. For instances with long node processing time, the ramp-up overhead of

spiral initialization is generally much smaller than that of root initialization.

4.7 The Effect of Dynamic Load Balancing Schemes

Because ALPS was a decentralized implementation, dynamically balancing the work-

load would seem to be absolutely necessary. However, we still performed an experiment

to verify this. We performed the test on the Clemson cluster and used 64 processors of

which two processors were designated as hubs. Table B.3 shows the results of searching

with and without dynamic load balancing enabled. Column Balance indicates whether
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Table 4.14: The Effect of Load Balancing

Balance Node Ramp-up Idle Ramp-down Wallclock
No 17900506 8.69% 0.00% 79.67% 9718.67
Yes 16057620 32.50% 6.81% 22.32% 2589.43

Table 4.15: Effect of inter-cluster Load Balancing

Hub Inter Node Ramp-up Idle Ramp-down Wallclock
16 Yes 2132342280 22.38% 1.71% 11.99% 70.14

No 2131879616 22.52% 1.73% 11.57% 69.85
32 Yes 2132560921 22.61% 1.04% 11.17% 71.44

No 2131980156 22.43% 0.90% 12.07% 72.01
64 Yes 2136262257 20.38% 0.75% 13.78% 82.13

No 2136236456 20.35% 0.40% 14.33% 82.34
128 Yes 2150789246 14.69% 0.85% 14.12% 118.31

No 2149541063 14.62% 0.17% 15.33% 119.01

dynamic load balancing schemes were used or not. Other columns have the same mean-

ing as those in Table 4.7. Not surprising, using the dynamic load balancing scheme

helped reduce overhead and reduce solution time for all instances. Table 4.14 shows the

aggregated results of the 18 instances. When dynamic load balancing was disabled, the

total number of nodes increased about 12.5%, and the running time increased almost

three times. These results show that dynamic load balancing is important to the perfor-

mance of parallel branch and cut. Note that there is no idle time without dynamic load

balancing since the overhead is alll counted as ramp-down time.
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Table 4.16: Effect of Intra-cluster Load Balancing

P Intra Node Ramp-up Idle Ramp-down Wallclock
64 Yes 190343944 4.37% 2.27% 5.49% 30.44

No 190344811 3.38% 0.00% 28.06% 39.35
128 Yes 190885657 7.84% 3.97% 10.14% 19.14

No 190932329 6.38% 0.00% 30.59% 23.18

4.7.1 Inter-cluster Dynamic Load Balancing

In this experiment, we wanted to assess the effectiveness of the inter-cluster load bal-

ancing mechanism. The test was conducted on the SDSC Blue Gene system. We solved

the ten moderately difficult knapsack instances with KNAP using 1024 processors. We

compared the results using inter-cluster dynamic load balancing with those when not

using it. Table 4.15 presents the aggregated results of the ten instances. The column

labeled Hubs indicates how many hubs were used. A Yes in the second column means

the inter-cluster dynamic load balancing was turned on, and a No means it was turned

off. The results show that for this test set, parallel efficiency does not change much when

inter-cluster dynamic load balancing is turned on. As we mentioned above, we suspect

that this is because the static load balancing scheme works well for these relatively well

behaved instances. However, we do not believe this result will carry over into other

domains.

4.7.2 Intra-cluster Dynamic Load Balance

We tested the effect of the intra-cluster load balancing by comparing the results obtained

with and without the dynamic load balancing schemes. For this experiment, we used

one hub and solved the ten moderately difficult knapsack instances with KNAP on 64

158



4.8. THE IMPACT OF DEDICATED HUBS

and 128 processors. The experiment was conducted on the Clemson cluster. Table

4.16 presents the aggregated results of the ten instances. A Yes in the second column

indicates that the intra-cluster dynamic load balancing was turned on, and a No means it

was turned off. The results demonstrate that the load balancing scheme is very important

in achieving scalability. Without dynamic load balancing, the wallclock running time

increases substantially. Furthermore, knapsack instances tend to be very well behaved

with respect to the effect of the initial static load balancing. This indicates that the effect

might be even more pronounced for other types of problems.

4.8 The Impact of Dedicated Hubs

In our design, hubs can also process nodes in addition to managing a cluster of workers.

In this section, we answer the question “Should a hub also explore subtrees?”. For this

test, we used the 10 instances in the moderately difficult set. The experiment was con-

ducted on the Clemson cluster and used 64 processors. Table 4.17 shows the aggregated

results. Column ClusterSize is the number of processors in each cluster. Column Work

indicates whether hubs also functioned as workers or not. Other columns have the same

meaning as those in Table 4.12. We found that the idle time and ramp-down time in-

creased significantly when hubs also functioned as workers. The reason is that hubs are

only able to process messages after completing a unit of work when they also explore

subtrees. Thus, other processors that need to communicate with the hubs have to wait.

We can change the size of a unit of work for the hubs so that they can handle messages in

a more timely fashion. However, it would require extensive performance tuning to find

a suitable size. Therefore, we suggest that hubs should be dedicated to handle messages
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Table 4.17: Effect of Hubs Work

ClusterSize Work Node Ramp-up Idle Ramp-down Wallclock
16 Yes 2296738608 0.45% 17.05% 47.49% 1015.67

No 2294060630 1.23% 0.87% 1.89% 373.94
8 Yes 2322525423 0.29% 32.67% 45.12% 1679.84

No 2370103928 1.12% 2.11% 2.27% 427.51
4 Yes 2163174835 0.22% 52.51% 32.51% 2371.59

No 2165083195 1.11% 3.09% 3.38% 481.24

and not to explore subtrees when there are a large number of processors available.

4.9 The Impact of Problem Properties

As we have mentioned several times, the properties of individual instances can signif-

icantly effect scalability, independent of the implementation of the solver itself. Table

4.18 shows the detailed results of solving three specific MILP instances with BLIS. The

test was performed on SDSC Blue Gene. We used the time for the 64-processor run as

the baseline for measuring efficiency.

Instance input150 1 is a knapsack instance. When using 128 processors, BLIS

achieved superlinear speedup mainly due to the decrease in tree size. BLIS showed

good parallel efficiency as the number processors increased to 256 and 512. Instance

fc 30 50 2 is a fixed-charge network flow instance. It exhibited very significant in-

creases in the size of its search tree (indicating the performance of redundant work) as

the number of processors increased, resulting in decreased efficiency. It was found that

the optimality gap of instancefc 30 50 2 improved very slowly during search, which
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caused a large number of node to be processed. Instance pk1 is a small integer pro-

gram with 86 variables and 45 constraints. It is relatively easy to solve. Although the

efficiency is reasonable good when using 128 processors, it is eventually wiped out by

significant increased in ramp-up and ramp-down overhead as the number of processors

increased.

The results in Table 4.18 showed that properties of each particular instance can have

tremendous impact on scalability. For instances with large tree size and short node

processing time, it is not difficult to achieve good speedup. For instances that are easy

to solve or for which the upper bounds are hard to improve, it is not easy to achieve

good speedup. When there are more processors available, we should use them solve

more difficult instances if we want to achieve good speedup. Parameter turning may

help to improve scalability. However, good scalability is difficult, if not impossible, to

achieve without suitable instances, since limiting one type of overhead may increase

another type of overhead.

4.10 The Effect of Sharing Pseudocosts

As discussed in Section 3.1.1, the pseudocost branching method uses pseudocosts to

choose branching objects. Linderoth [69] studied methods for and effect of sharing

pseudocosts. His study showed there is no need to share pseudocost if the node pro-

cessing time is short and that pseudocosts should be shared for problems with long node

processing time. Eckstein [32] also found sharing pseudocosts can be important. During

the search, ALPS periodically checks to see if there are any of pseduocosts to be shared.

If process k has pseudocosts to share, ALPS forms all processors into a binary tree with

161



4.10. THE EFFECT OF SHARING PSEUDOCOSTS

Table 4.18: Problem Properties and Scalability

Instance P Node Ramp-up Idle Ramp-down Wallclock Eff
input150 1 64 75723835 0.44% 3.38% 1.45% 1257.82 1.00

128 64257131 1.18% 6.90% 2.88% 559.80 1.12
256 84342537 1.62% 5.53% 7.02% 380.95 0.83
512 71779511 3.81% 10.26% 10.57% 179.48 0.88

fc 30 50 2 64 3494056 0.15% 31.46% 9.18% 564.20 1.00
128 3733703 0.22% 33.25% 21.71% 399.60 0.71
256 6523893 0.23% 29.99% 28.99% 390.12 0.36
512 13358819 0.27% 23.54% 29.00% 337.85 0.21

pk1 64 2329865 3.97% 12.00% 5.86% 103.55 1.00
128 2336213 11.66% 12.38% 10.47% 61.31 0.84
256 2605461 11.55% 13.93% 20.19% 41.04 0.63
512 3805593 19.14% 9.07% 26.71% 36.43 0.36

process k as the root. Process k then sends the pseudocosts to its two children, and its

children send the pseudocosts to its children’s children, and so on.

We performed a test to find out if there is any benefit of sharing pseudocost during

the ramp-up phase. The test was conducted on the Clemson cluster and 64 processors

were used. Table 4.19 also has the aggregated results. In column Share, No means no

pseudocost were shared, while Yes means pseudocost were shared. Here we only shared

pseudocost during ramp-up phase, since branching decisions are more important at the

top of the tree. In term of total tree sizes and running time, sharing pseudocost is slightly

better than not sharing. However, the difference is not significant. Table B.4 has the

detailed testing results. For some instances, such as aflow30a and swath2, sharing

pseudocosts helped improve performance, but for instances like rout, not sharing is

better.
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Table 4.19: The Effect of Sharing Pseudocost

Share Node Ramp-up Idle Ramp-down Wallclock
No 16839373 0.94% 11.16% 18.47% 1431.04
Yes 15865523 0.96% 10.87% 17.69% 1394.76

4.11 The Impact of Hardware on Performance

In this experiment, we studied the impact of hardware on parallel overhead and load bal-

ancing. We selected 8 relatively easy instances from the generic MILP test set described

in section 4.3.3, and solved them with BLIS by using 64 processors on the Clemson

Cluster and the SDSC Blue Gene system. One hub was used for this experiment.

Table 4.20 shows the results of solving these instances on the two machines. Because

the Clemon cluster has faster processors and more memory than the Blue Gene system,

it was not surprising to find that solving the instances on the Blue Gene system took

longer than on the Clemson cluster. However, it was surprising to find that overall

overhead when solving on the Blue Gene system was much larger than that when using

the Clemson cluster. Although ramp-up overhead is small, idle and ramp-down overhead

become a severe issue when solving these instances on the Blue Gene system.

We suspect that the reason for the loss of performance for the Blue Gene system run

is due to a lack of effectiveness of the dynamic load balancing. We collected statistics

on dynamic load balancing (see Table 4.21). Column Intra is the number of intra-cluster

balancing completed. Column Asked is the number of requests that workers made. Col-

umn Subtree is the number of subtrees shared. Column Split is the number of subtrees

split, and Column Whole is the number of subtrees shared without splitting. The number

of subtrees shared is equal to the sum of the number of subtrees split and the number of
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Table 4.20: The Hardware Impact on Overhead

Instance Machine Nodes Ramp-up Idle Ramp-down Wallclock
bell5 Clemson 188717 6.66% 11.81% 12.48% 6.01

BlueGene 227133 0.75% 25.85% 50.34% 60.97
bienst1 Clemson 44527 1.66% 5.87% 11.09% 55.37

BlueGene 52687 3.79% 23.18% 23.71% 443.95
cls Clemson 382121 7.10% 12.33% 11.66% 38.59

BlueGene 638267 1.03% 50.31% 8.25% 439.9
gesa3 Clemson 56553 11.91% 9.95% 29.89% 20.91

BlueGene 118513 0.48% 24.33% 63.98% 856.22
mas76 Clemson 1758445 0.94% 5.61% 7.73% 25.48

BlueGene 2074333 0.34% 38.36% 5.11% 123.27
misc07 Clemson 14337 10.07% 12.03% 27.09% 11.22

BlueGene 11743 1.99% 10.81% 56.94% 64.4
pk1 Clemson 1559947 0.70% 8.79% 9.30% 21.28

BlueGene 3101103 0.32% 42.76% 19.47% 282.53
vpm2 Clemson 443899 6.74% 9.12% 7.30% 24.79

BlueGene 895465 1.24% 38.06% 6.07% 195.65
Total Clemson 4448546 4.78% 8.70% 12.98% 203.64

BlueGene 7119244 1.26% 32.34% 33.64% 2466.89

whole subtree. Note that ALPS will do intra-cluster balancing only after the previous

intra-cluster balancing has been completed. Workers will ask for a new subtree only if

the previous request has been completed.

As Table 4.21 shows, ALPS was able to complete significantly more intra-cluster

load balancing for 7 out of 8 instances when running on the Clemson cluster. The

number of subtrees shared when running on the Clemson cluster is 3 times larger than

that when running on the Blue Gene system. Considering the fact that total wallclock

time when running on the Clemson cluster was less than 10% of that on the Blue Gene

system, we can conclude that our suspicion that the performance loss was caused by

ineffective load balancing makes sense. This raises another question as to why dynamic
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Table 4.21: The Hardware Impact on Dynamic Load Balancing

Instance Machine Intra Asked Subtree Split Whole
bell5 Clemson 58 1436 1729 1523 206

BlueGene 8 596 570 544 26
bienst1 Clemson 96 902 1324 966 358

BlueGene 15 484 470 453 17
cls Clemson 367 4152 4366 4252 114

BlueGene 1839 520 576 552 24
gesa3 Clemson 278 2472 2484 2449 35

BlueGene 9 719 763 748 15
mas76 Clemson 340 5211 6289 6030 259

BlueGene 198 1218 1323 1264 59
misc07 Clemson 28 355 352 304 48

BlueGene 9 289 236 227 9
pk1 Clemson 154 2613 3966 3123 843

BlueGene 12 1940 2008 1945 63
vpm2 Clemson 186 4590 5289 5013 276

BlueGene 13 1238 1264 1235 29
Total Clemson 1507 21731 25799 23660 2139

BlueGene 2103 7004 7210 6968 242

load balancing on the Blue Gene system is not as effective as on the Clemson cluster.

We found that the Blue Gene system uses a three-dimensional (3D) torus network in

which the nodes are connected to their six nearest-neighbor nodes in a 3D mesh, while

the Clemson cluster employs a high-speed Myrinet networking system. Myrinet is a

lightweight protocol with little overhead that allows it to operate with throughput close

to the base signaling speed of the physical layer [102]. Myrinet is well-known for its

low latency and high throughput performance. We believe the difference in networking

systems of the two machines caused the performance difference.
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1. The search strategy is the default one of ALPS (hybrid method) in which

one of the children of a given node was retained as long as its bound did not

exceed the best available by more than a given threshold.

2. The branching method is pseudocost branching.

3. Four cut generators from the COIN-OR Cut Generation Li-

brary [70], CglMixedIntegerRounding, CglKnapsackCover,

CglFlowCover, and CglGomory, are used.

4. A rounding heuristic is used.

Figure 4.2: Setting for Testing Differencing

4.12 The Effectiveness of Differencing

As described above, the differencing scheme is an important aspect of the implementa-

tion of BiCePS for handling data-intensive applications. Here, we test the effect of it on

a set of MILP instances using serial BLIS. Figure 4.2 lists the important settings.

Table B.1 lists the number of nodes, execution time and peak memory required to

solve each instance with and without the differencing scheme. For every instance, the

number of nodes required with the differencing scheme is the same as that without

differencing. This is the expected behavior, since the differencing scheme does not affect

the search order. There is little difference between the solution times (CPU seconds)

with and without the differencing. However, the memory required to solve each instance

is quite different. For almost all instances, using the differencing scheme require less

memory.
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Table 4.22: The effect of Differencing

Without Differencing With Differencing Geometric mean
Total Time 2016 seconds 1907 seconds 1.0
Total Peak Memory 1412 MB 286 MB 4.3

We added up the solution times and memory usage of all instances. Table 4.22 shows

the aggregated results. The total solution time is 2016 seconds without differencing,

while the total solution time is 1907 seconds with differencing. The geometric mean

of the solution time ratios is 1.0, which means there is no discernable difference in

solution time. The total peak memory usage is 1412 MB without differencing, while the

total peak memory usage is 286 MB when with differencing. The geometric mean of

the peak memory usage ratios is 4.3. The results show that using differencing can save

a significant amount of memory.

4.13 Search Strategies and Branching Methods

In this experiment, we tested different search strategies and branching methods for solv-

ing the VRP sequentially by using the VRP solver that we developed. We wanted to

determine the best search strategy and branching method for solving VRP instances.

For the test, we selected 16 instances from [84]. The time limit was 4 hours. Table

4.23 shows the results of solving the instances by using the default, best-first, and best-

estimate search strategies (see Section 3.1.2). Note strong branching was used to choose

branch variables and the running time is in seconds. The values in Total only include

those of the instances that can be solved by all strategies, so instances B-n45-k6 and

B-n57-k7 are excluded in computing values in the Total row. As the table shows,
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Table 4.23: Search Strategies Comparison

Default Best-First Best-Estimate
Instance Nodes Time Nodes Time Nodes Time
A-n37-k6 5781 743.65 2981 510.81 2687 341.63
A-n39-k6 845 64.12 283 29.22 537 46.02
A-n44-k6 4859 1133.13 2835 811.36 2829 616.19
A-n45-k6 659 158.88 241 76.27 587 145.41
A-n48-k7 7903 1995.49 5293 1668.53 19377 4275.19
A-n53-k7 1995 973.92 601 360.04 761 388.59
A-n55-k9 7041 1554.09 1873 519.48 1829 423.17
A-n65-k9 16245 9853.71 6467 4427.57 17569 8706.63
B-n43-k6 501 64.75 251 47.87 1297 144.88
B-n45-k6 1237 242.10 1577 399.75 99614 TimeLimit
B-n57-k7 2215 532.27 1233 247.63 33708 TimeLimit
B-n57-k9 28441 8723.16 14083 9408.07 8645 2309.73
dantzig42 3603 688.80 309 91.39 563 116.86
P-n101-k4 157 183.35 107 194.91 297 397.75
P-n50-k7 4753 1105.54 1971 532.13 3719 850.67
P-n76-k4 683 873.50 145 218.43 223 274.65
Total 83466 28116.09 37440 18896.08 60920 19037.37

best-first search required the fewest number of node, and shortest running time. Best-

estimate search was faster for the difficult instance B-n57-k9, but it could not solve

two instances in the time limit. The default search solved all instances, but took longer

than the best-first search.

Table 4.24 shows the results of using 3 different branching methods: strong branch-

ing, pseudocost branching, and reliability branching (see Section 3.1.1). Note that the

best-first search strategy was used in all cases. Strong branching solved all instances and

used less computing time than either pseudocost branching or reliability branching. Re-

liability branching was better than pseudocost in terms of the overall running time, but

it still failed to solve two instances. It looks as though the best strategy is to always use
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Table 4.24: Branch Methods Comparison

Strong Pseudocost Reliability
Instance Nodes Time Nodes Time Nodes Time
A-n37-k6 2981 510.81 24293 1693.37 9113 875.70
A-n39-k6 283 29.22 8925 465.23 1263 57.87
A-n44-k6 2835 811.36 27675 4683.02 13991 2344.72
A-n45-k6 241 76.27 14289 3002.47 4741 845.44
A-n48-k7 5293 1668.53 23619 7927.34 7877 2483.22
A-n53-k7 601 360.04 6939 3129.83 3315 1585.75
A-n55-k9 1873 519.48 32369 TimeLimit 20718 TimeLimit
A-n65-k9 6467 4427.57 11164 TimeLimit 9843 TimeLimit
B-n43-k6 251 47.87 3957 381.27 717 93.39
B-n45-k6 1577 399.75 8053 1858.38 1753 270.86
B-n57-k7 1233 247.63 4595 490.58 2247 466.65
B-n57-k9 14083 9408.07 47180 TimeLimit 28917 4953.88
dantzig42 309 91.39 23685 2963.86 3795 490.23
P-n101-k4 107 194.91 2361 1603.27 515 466.80
P-n50-k7 1971 532.13 20575 2839.64 10191 1916.23
P-n76-k4 145 218.43 1127 891.19 2143 2297.62
Total 17827 5199.34 170093 31929.45 61661 14194.48

the latest pseudocosts (as strong branching does) when choosing branching objects for

VRP instances. As discussed in Section 3.1.1, both pseudocost and reliability branch-

ing will stop computing pseudocosts when certain conditions are satisfied , while strong

branching always computes and uses the latest pseudocosts.
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Chapter 5

Conclusions

5.1 Contributions

This is a computationally oriented thesis in which we have studied many algorithmic

and implementational issues arising in the design of parallel tree search algorithms. In

Chapter 2, we discussed a number of techniques to improve the scalability of parallel

tree search. These techniques include the master-hub-worker paradigm, the knowledge

management system, the three-tier load balancing schemes, and the mechanism for ad-

justing granularity. We illustrated the steps involved in implementing applications based

on ALPS by describing the development of a knapsack solver.

In Chapter 3, we extended our search framework to handle discrete optimization

problems. We proposed an object handling system and a differencing scheme for storage

to handle large-scale optimization problem. We developed a MILP solver (BLIS) that

employs a branch-and-cut algorithm and can be used to solve general MILPs. BLIS uses
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the COIN/Cgl cut generators and provides base classes for users to develop problem-

specific cut generators. BLIS also has it own primal heuristics routines and provides

interface for users to add their new ones. We demonstrated the procedure for imple-

menting applications based on BLIS by developing an application that can be used to

solve both vehicle routing problem and the symmetric traveling salesman problem.

In Chapter 4, we described a number of experiments performed to test the scalability

of our framework and the effectiveness of the methods that have been implemented

to improve performance. In these experiments, we solved several sets of knapsack,

generic MILP, and VRP instances. Our results show that overall scalability is relatively

easy to achieve when solving the knapsack instances. We were able to obtain good

scalability even when using several hundreds or thousands of processors. However, we

failed to achieve good scalability for the VRP instances due to the fact that the number

of nodes increases significantly as the number of processors increases. For generic

MILPs, overall scalability was quite instance dependent. We have achieved almost linear

speedup for some instances, but we got poor results for others.

In addition to testing overall scalability, we also tested the effectiveness of some of

the specific scalability features of the framework. The results of our experiments show

that effective knowledge sharing is the key to improving parallel scalability. An asyn-

chronous implementation, along with effective load balancing is the most essential com-

ponent of a scalable algorithm. The Master-hub-worker programming paradigm pro-

vides extra improvement for large-scale parallel computing. The differencing scheme

that we use to handle data-intensive applications can significantly reduce memory usage

without slowing down the search. We performed an experiment to test the effect of shar-

ing pseudocosts during ramp-up. Finally, we tested the impact of hardware on scalability
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and our results shows that hardware has significant impact on scalability, especially fast

communication helps

5.2 Future Research

5.2.1 Improving Current Implementation

There a number of further investigations we hope to take up in future research. First of

all, the current implementation of ALPS still needs some improvement. For example,

in dynamic load balancing, the current implementation only allow the donor cluster to

send one subtree to the receiver cluster. We need to study whether donating more that

one subtree is helpful. Also, we need study rules for picking which subtree to share.

Our results show the differencing scheme is useful for sequential search; however, we

need verify and make sure it is still effective for parallel search. Furthermore, we plan

to generalize the current implementation of BLIS in order to better support column

generation and related algorithms, such as branch and price.

5.2.2 Overhead Reduction

Ramp-up overhead is one of the most important scalability issues for data-intensive ap-

plications because it may take long time to process a node. We have implemented the

spiral initialization scheme to reduce ramp-up time. However, there are still several

more ideas that we can try. We can use different branching rules (produce more chil-

dren) or branch more quickly to expedite ramp-up phase. It is also possible that, during

the ramp-up phase, workers can do other useful work instead of waiting idle. For exam-

ple, workers may try to find good initial solutions via heuristics or test different search

172



5.2. FUTURE RESEARCH

settings.

Ramp-down time is also a big scalability issue. Currently, we do not adjust or use

different load balancing schemes during ramp down. Probably, we can perform load

balancing more frequently or use different load balancing schemes as the number of

nodes available decreases.

Our experiment shows that the “communication overhead” became significant for

MILPs as the number of processor increases. We guess it is caused by load balancing

overhead such as splitting subtrees. We still need investigate more deeply to see if there

are other reasons and study the methods that can be used to deal with this issue.

5.2.3 Fault Tolerance

Some applications are expected to run for days or even weeks on thousands of pro-

cessors. Because of the large number of processors, the complexity of the computing

platforms, and the long execution times, it is reasonable to expect at least one failure (un-

responsive node or network failure) to occur during any single run. Right now, there is

no routine to efficiently deal with failures, so when one occurs, the application crashes.

The possible solutions are

• to periodically save the search state (checkpoint), or

• to replicate the search state.

However, supporting fault tolerance will increase overhead. That is a trade-off we need

balance.

173



5.2. FUTURE RESEARCH

5.2.4 Grid Environment

We plan to make the framework useful in implementing applications that run on com-

putational grids. One approach to achieve this is to derive a knowledge broker subclass

from AlpsKnowledgeBroker. This subclass will use the MW tool [46] that support

grid computing applications.
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Tables of KNAP Experimental Results
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Table A.1: Scalability of KNAP for the Moderately Difficult
Instances

Instance P Node Ramp-up Idle Ramp-down Wallclock
input100 1 4 19490283 0.28% 0.02% 0.00% 60.14

8 19490687 0.60% 0.16% 0.08% 25.12
16 19491621 1.18% 0.76% 1.43% 11.9
32 19498171 2.28% 1.47% 5.70% 6.14
64 19531215 3.91% 5.03% 11.45% 3.58

128 19626565 7.73% 6.76% 11.11% 2.07
input100 2 4 20631005 0.25% 0.02% 0.00% 63.72

8 20631687 0.52% 0.07% 0.04% 26.71
16 20630851 1.13% 0.16% 0.24% 12.35
32 20631425 2.12% 0.65% 1.79% 6.13
64 20632389 3.94% 1.82% 5.76% 3.3

128 20636123 7.80% 3.90% 12.68% 2.05
input100 3 4 50683752 0.11% 0.04% 0.01% 158.6

8 50517810 0.23% 0.08% 0.14% 66.06
16 50212121 0.46% 0.17% 0.07% 30.17
32 49844536 0.95% 0.54% 1.09% 14.69
64 48052067 1.83% 1.97% 6.16% 7.63

128 48069313 3.53% 4.64% 7.73% 4.53
input100 4 4 6081321 0.97% 0.05% 0.05% 18.62

8 6082149 2.03% 0.00% 0.00% 7.88
16 6078083 4.04% 0.27% 1.08% 3.71
32 6087963 6.86% 1.96% 1.96% 2.04
64 6104790 12.28% 2.63% 8.77% 1.14

128 6203162 18.29% 2.44% 13.41% 0.82
input100 5 4 28988167 0.18% 0.02% 0.00% 87.5

8 28988539 0.38% 0.03% 0.03% 36.56
16 28992879 0.77% 0.12% 0.18% 16.9
32 29004061 1.58% 0.36% 0.36% 8.23
64 29026767 2.93% 1.81% 3.16% 4.43

128 29095310 5.34% 2.49% 12.81% 2.81
input75 1 4 13859837 0.39% 0.00% 0.00% 41.08

8 13862388 0.82% 0.06% 0.00% 17.15
16 13869359 1.64% 0.13% 0.25% 7.92
32 13883137 3.29% 0.51% 0.51% 3.95
64 13896876 6.16% 1.42% 4.74% 2.11

Continued on next page
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Table A.1 – continued from previous page
Instance P Node Ramp-up Idle Ramp-down Wallclock

128 13922154 10.56% 4.23% 9.86% 1.42
input75 2 4 13435041 0.41% 0.03% 0.00% 39.14

8 13436166 0.85% 0.12% 0.24% 16.55
16 13439373 1.70% 0.13% 0.00% 7.65
32 13443556 3.41% 0.79% 0.52% 3.81
64 13461398 6.10% 1.88% 3.29% 2.13

128 13536843 8.97% 2.76% 12.41% 1.45
input75 3 4 19146699 0.28% 0.00% 0.00% 56.29

8 19077120 0.60% 0.04% 0.00% 23.49
16 19017985 1.20% 0.28% 0.18% 10.83
32 19020815 2.43% 0.56% 0.56% 5.35
64 19053853 4.71% 0.72% 1.45% 2.76

128 19150187 8.47% 4.52% 6.21% 1.77
input75 4 4 9853803 0.55% 0.03% 0.00% 28.94

8 9853319 1.15% 0.08% 0.00% 12.21
16 9853237 2.30% 0.18% 0.18% 5.64
32 9858999 4.45% 0.34% 0.68% 2.92
64 9883815 8.23% 1.90% 2.53% 1.58

128 9955088 14.29% 2.86% 7.62% 1.05
input75 5 4 10887585 0.49% 0.03% 0.03% 32.87

8 10891866 1.02% 0.22% 0.22% 13.7
16 10670103 2.20% 0.47% 1.10% 6.36
32 10694723 4.14% 0.64% 1.27% 3.14
64 10700774 7.30% 3.37% 5.62% 1.78

128 10690912 12.71% 3.39% 10.17% 1.18
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Table A.2: Scalability of KNAP for the Difficult Instances

Instance P Node Ramp-up Idle Ramp-down Wallclock
input100 30 64 450193400 0.99% 1.54% 1.13% 158.94

128 447704010 1.90% 3.17% 4.44% 82.67
256 440847253 2.33% 4.33% 10.92% 44.59
512 441705395 6.13% 5.66% 16.50% 25.45

1024 443356768 11.37% 3.23% 23.81% 14.87
2048 454050799 7.17% 2.76% 23.72% 7.25

input100 31 64 295018523 0.21% 6.17% 6.79% 117.01
128 294993812 2.97% 1.96% 3.45% 53.6
256 295029677 3.06% 6.52% 18.42% 34.04
512 295346607 8.77% 3.35% 19.83% 17.9

1024 297443751 16.01% 3.48% 27.42% 11.49
2048 296750161 9.96% 3.52% 25.59% 5.12

input100 32 64 374169758 1.17% 2.89% 2.77% 136.46
128 374191065 2.36% 2.61% 2.97% 67.79
256 374190786 2.75% 5.77% 9.99% 38.15
512 374232687 7.37% 5.40% 14.65% 21.3

1024 374350599 13.92% 3.97% 24.85% 13.36
2048 374870108 5.10% 6.23% 32.44% 7.06

input100 34 64 355850972 1.24% 3.27% 2.32% 130.14
128 345678249 2.34% 10.26% 3.79% 68.91
256 341502395 5.57% 4.45% 16.79% 38.23
512 293980068 7.43% 7.10% 28.82% 21.41

1024 312696260 14.42% 5.22% 30.63% 12.83
2048 316668953 4.79% 6.29% 43.09% 7.31

input100 35 64 381809948 1.17% 2.66% 1.58% 137.68
128 381542889 2.26% 4.12% 3.97% 71.35
256 382584306 5.68% 5.10% 5.29% 37.84
512 383189419 6.83% 7.00% 18.22% 23.44

1024 388970274 14.22% 4.26% 20.23% 13.15
2048 399546872 6.95% 3.21% 33.16% 7.48

input100 36 64 684364180 0.63% 5.14% 2.23% 255.75
128 679456710 1.17% 6.45% 8.80% 137.7
256 676044591 3.13% 8.15% 5.54% 68.09
512 677306425 6.27% 8.26% 16.99% 42.61

1024 681981001 12.43% 5.71% 16.65% 21.56
Continued on next page
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Table A.2 – continued from previous page
Instance P Node Ramp-up Idle Ramp-down Wallclock

2048 691970626 4.09% 6.40% 32.92% 12.97
input100 37 64 440881122 0.97% 5.73% 4.55% 169.57

128 441118207 1.82% 6.62% 9.19% 90.02
256 438120922 4.40% 7.35% 14.06% 49.09
512 432528103 8.72% 5.35% 26.66% 31.21

1024 441967447 17.70% 4.60% 19.94% 15.65
2048 461446346 5.91% 5.70% 34.72% 9.13

input100 38 64 399288703 1.14% 2.04% 1.25% 141.76
128 396777320 2.22% 4.08% 3.04% 73
256 416006687 4.89% 4.22% 11.70% 43.32
512 370375938 6.89% 7.93% 18.40% 22.94

1024 392728769 13.78% 4.59% 21.85% 13.5
2048 397019339 7.30% 4.92% 29.21% 7.12

input100 39 64 366764346 1.21% 4.37% 1.75% 134.63
128 352189300 2.32% 7.63% 6.58% 70.4
256 377854493 5.36% 5.79% 11.17% 39.93
512 354283715 11.59% 5.34% 18.53% 23.2

1024 365731001 12.54% 4.29% 33.13% 14.91
2048 324128459 6.82% 4.98% 43.77% 7.63

input175 0 64 1091614792 0.39% 0.58% 0.44% 473.33
128 1099282426 0.61% 17.42% 4.34% 299.42
256 898334310 1.23% 1.10% 3.63% 99.46
512 310337557 16.68% 1.82% 6.38% 20.38

1024 329269870 18.43% 1.30% 11.57% 11.5
2048 823706045 14.15% 0.32% 2.99% 12.37

input150 1 64 1107247315 0.39% 3.08% 0.56% 471.11
128 1106901522 0.75% 4.29% 3.74% 244.14
256 1107133612 0.78% 12.04% 13.63% 153.82
512 1111310554 4.86% 4.23% 10.46% 69.57

1024 1110490269 5.89% 5.40% 15.20% 36.65
2048 1123112986 6.30% 3.51% 19.31% 19.37

input150 10 64 520055323 0.82% 1.72% 1.21% 213.49
128 520342395 1.55% 4.58% 3.72% 112.36
256 521419528 1.77% 9.34% 10.36% 64.87
512 523450894 9.72% 3.17% 9.93% 32.82

1024 525028667 11.32% 3.79% 16.49% 18.19
Continued on next page
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Table A.2 – continued from previous page
Instance P Node Ramp-up Idle Ramp-down Wallclock

2048 533194171 5.38% 4.69% 27.08% 10.23
input150 11 64 652738452 0.63% 3.83% 0.83% 275.91

128 652991048 1.23% 4.10% 3.72% 141.45
256 653578790 2.73% 4.60% 17.16% 83.85
512 655240782 8.38% 4.02% 11.05% 41.54

1024 661342072 8.78% 4.35% 17.65% 22.78
2048 664773821 4.22% 4.91% 29.32% 13.03

input150 12 64 477186428 0.89% 2.53% 1.93% 191.24
128 487239170 1.73% 3.52% 2.54% 98.64
256 462070673 4.68% 2.02% 4.85% 48.06
512 422860938 10.86% 2.55% 18.00% 29

1024 443618162 14.50% 2.87% 13.89% 14.62
2048 428534193 6.64% 2.01% 28.45% 7.98

input150 13 64 766822612 0.46% 5.97% 8.12% 366.28
128 769348911 0.79% 5.60% 21.91% 216.41
256 734038137 2.32% 7.96% 15.89% 96.09
512 723551622 6.13% 4.61% 20.46% 51.02

1024 772499481 16.45% 1.91% 10.48% 24.62
2048 674117750 9.68% 2.94% 19.01% 11.57

input150 14 64 394270918 1.12% 0.09% 0.12% 173.48
128 355312724 2.51% 0.18% 0.42% 77.74
256 251750819 4.55% 0.42% 1.48% 28.38
512 348058879 9.05% 1.08% 3.82% 21.21

1024 102825860 43.71% 0.19% 5.03% 5.17
2048 271476227 13.90% 0.23% 3.87% 4.39

input150 17 64 348443929 1.28% 0.72% 0.50% 135.35
128 368502776 2.33% 1.32% 3.97% 74.3
256 309026062 3.53% 2.08% 5.73% 32.28
512 315576256 9.40% 1.59% 9.56% 18.2

1024 275223835 21.07% 1.39% 10.37% 9.35
2048 269492098 23.96% 0.83% 9.38% 4.8

input150 18 64 453055347 0.95% 3.15% 0.94% 188.22
128 453367417 1.79% 5.20% 4.21% 99.43
256 454095303 4.23% 5.48% 12.66% 56.25
512 456442211 10.09% 4.11% 17.09% 32.6

1024 459135871 11.96% 4.23% 22.39% 17.73
Continued on next page
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Table A.2 – continued from previous page
Instance P Node Ramp-up Idle Ramp-down Wallclock

2048 457358640 14.02% 2.90% 19.35% 8.63
input150 19 64 314137323 1.38% 2.79% 2.04% 131.19

128 314345732 2.57% 4.27% 6.82% 70.33
256 315316104 3.09% 9.59% 8.51% 38.78
512 317732319 7.89% 8.59% 16.48% 22.7

1024 320513829 16.48% 3.96% 19.41% 12.62
2048 325350109 19.12% 2.53% 15.01% 6.33

input150 2 64 962872398 0.43% 3.23% 0.75% 411.63
128 963209404 0.83% 6.86% 2.61% 215.67
256 963948282 0.97% 8.55% 9.45% 121.03
512 967535513 5.32% 4.07% 13.67% 62.2

1024 965626180 13.18% 3.12% 11.60% 31.72
2048 972658946 7.08% 3.63% 18.86% 16.81

input150 20 64 269752458 1.56% 2.59% 1.14% 111.28
128 269885124 3.01% 3.53% 3.38% 57.75
256 270695598 3.16% 6.35% 18.18% 36.35
512 272287026 8.60% 4.90% 21.31% 19.99

1024 270788793 17.75% 4.19% 20.96% 11.21
2048 279991651 20.49% 3.00% 15.19% 5.66

input150 4 64 1414324008 0.25% 17.04% 2.46% 766.87
128 1447906947 0.53% 11.50% 2.79% 363.96
256 898884789 1.31% 5.14% 1.04% 97.47
512 1264535885 4.62% 0.48% 8.01% 77.29

1024 1231439139 11.17% 1.00% 7.65% 42.07
2048 1325447920 12.79% 2.45% 12.79% 24.08

input150 5 64 334366142 1.34% 1.07% 0.50% 144.43
128 380811420 2.36% 1.27% 1.49% 82.58
256 546098309 2.09% 1.58% 3.80% 61.36
512 346443319 8.82% 3.02% 6.63% 21.87

1024 430128080 15.31% 1.24% 8.58% 14.57
2048 277659553 2.81% 3.75% 36.25% 6.4

input150 7 64 243837878 1.82% 1.46% 1.47% 106.38
128 238604790 3.62% 2.22% 3.47% 53.62
256 274353503 3.79% 3.76% 9.54% 33.76
512 237310725 11.20% 3.27% 14.47% 17.14

1024 356962624 16.97% 1.61% 12.54% 13.08
Continued on next page

181



Table A.2 – continued from previous page
Instance P Node Ramp-up Idle Ramp-down Wallclock

2048 249173559 27.09% 1.11% 11.32% 5.39
input150 8 64 946658511 0.37% 3.41% 10.89% 456.24

128 946982344 0.78% 6.39% 4.42% 216.58
256 948089177 0.77% 21.42% 9.37% 145.36
512 948725768 4.95% 4.66% 16.17% 63.58

1024 949136593 14.46% 2.00% 6.90% 28.57
2048 955634637 10.29% 2.99% 14.10% 15.74

input150 9 64 688020337 0.57% 4.40% 2.30% 298.13
128 688060032 1.13% 2.83% 5.78% 150.75
256 688714214 2.72% 5.41% 10.86% 82.42
512 689599891 6.71% 4.53% 16.27% 46.97

1024 693724499 8.13% 5.13% 17.84% 23.99
2048 697294621 13.10% 4.12% 15.20% 12.37
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Table B.1: The Results of Differencing

Without Differencing With Differencing
Instance Nodes Time Memory(KB) Node Time Memory(KB)
10teams 989 232.27 39579 989 234.26 2606
align1 11 7.47 1872 11 7.40 1764
align2 1357 20.74 15076 1357 20.76 3216
air03 1 0.43 10748 1 0.43 10748
bell3a 35363 97.09 88423 35363 72.00 12147
cap6000 4475 82.14 429385 4475 81.59 13401
dano3imp 47 337.85 25313 47 336.63 10684
Camelot 1133 4.20 17450 1133 4.19 1439
submit 737 33.28 34150 737 33.16 2428
egout 21 0.18 347 21 0.18 228
enigma 7525 6.41 13146 7525 6.16 2377
fiber 583 6.60 17667 583 6.56 2078
flugpl 111 0.39 207 111 0.40 157
gen 1 0.08 789 1 0.09 789
gesa2 357 7.35 14161 357 7.29 1766
gesa3 o 1821 138.33 59303 1821 139.22 4580
gesa3 1117 143.42 35906 1117 144.18 2817
khb05250 281 1.37 11648 281 1.33 1217
l152lav 783 14.15 37336 783 14.07 3466
lseu 187 1.53 980 187 1.52 437
misc03 895 3.61 3678 895 3.61 830
misc06 41 1.56 3147 41 1.54 1400
mitre 75 67.19 35735 75 68.19 11237
mod008 2697 4.71 19442 2697 4.38 1449
mod010 113 2.95 8418 113 2.89 2221
gamsmod 19 226.57 228935 19 227.47 141483
p0033 1 0.02 109 1 0.03 109
p0201 167 4.89 2132 167 4.91 1122
p0282 23 3.31 900 23 3.29 706
p0548 43 9.31 2082 43 9.23 1125
p2756 181 12.09 19946 181 12.13 3245
qnet1 o 349 8.90 14628 349 8.88 1809
qnet1 111 7.48 5202 111 7.43 1537
rentacar 439 128.11 105040 439 128.08 9342
rgn 2273 4.96 13266 2273 4.75 1477

Continued on next page
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Table B.1 – continued from previous page
Without Differencing With Differencing

Instance Nodes Time Memory(KB) Node Time Memory(KB)
test3 1823 2.99 7838 1823 2.79 1154
stein27 4625 7.35 5084 4625 6.94 1954
stein45 56433 384.31 82962 56433 301.78 25532
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Table B.2: Static Load Balancing Comparison

Instance Scheme Node Ramp-up Idle Ramp-down Wallclock
aflow30a Root 1450327 1.61% 12.09% 16.78% 251.18

Spiral 914829 0.34% 12.79% 11.68% 144.35
bell5 Root 566539 4.29% 6.95% 4.58% 12.26

Spiral 397265 1.49% 12.30% 3.39% 8.22
bienst1 Root 43077 13.72% 5.44% 6.85% 57.45

Spiral 44527 1.66% 5.87% 11.09% 55.37
bienst2 Root 330563 3.28% 4.71% 1.39% 275.95

Spiral 318789 0.39% 4.32% 2.61% 259.86
blend2 Root 452563 2.58% 10.32% 5.28% 29.35

Spiral 507943 0.19% 9.33% 6.19% 30.62
cls Root 382121 7.10% 12.33% 11.67% 38.59

Spiral 494207 1.90% 12.48% 10.96% 44.79
fiber Root 27115 16.65% 8.78% 16.36% 13.06

Spiral 9627 7.94% 12.42% 23.32% 5.85
gesa3 Root 56553 11.91% 9.97% 29.90% 20.91

Spiral 139283 1.61% 18.52% 18.17% 47.57
markshare 4 1 Root 3473213 99.98% 0.00% 0.01% 779.05

Spiral 2335049 99.99% 0.00% 0.01% 1136.54
markshare 4 1 Root 3436579 0.16% 12.58% 10.13% 16.30

Spiral 2789645 0.19% 13.33% 7.62% 12.90
mas76 Root 2112409 1.74% 6.26% 9.42% 27.16

Spiral 2298361 0.08% 16.09% 16.76% 37.18
misc07 Root 14337 10.10% 11.99% 27.05% 11.22

Spiral 10343 0.30% 22.23% 53.44% 23.34
mitre Root 391 90.07% 0.00% 9.49% 25.28

Spiral 2221 42.48% 5.19% 47.42% 26.32
nw04 Root 3063 12.39% 2.56% 74.62% 415.57

Spiral 629 4.22% 1.80% 88.87% 166.27
pk1 Root 1778037 2.20% 6.10% 8.13% 22.87

Spiral 1559947 0.72% 8.79% 9.30% 21.28
rout Root 2087679 0.77% 13.04% 3.99% 247.47

Spiral 2075145 0.08% 11.55% 4.18% 238.21
stein45 Root 112715 9.86% 20.52% 6.12% 6.23

Spiral 101161 1.90% 25.22% 9.18% 5.37
swath1 Root 57343 6.07% 17.82% 13.63% 104.96

Continued on next page
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Table B.2 – continued from previous page
Instance Scheme Node Ramp-up Idle Ramp-down Wallclock

Spiral 59849 0.44% 21.17% 8.66% 94.22
swath2 Root 154446 3.45% 16.39% 5.17% 190.30

Spiral 131145 0.28% 18.07% 4.79% 151.76
vpm2 Root 439289 6.65% 9.41% 7.73% 24.92

Spiral 558269 1.18% 10.99% 7.32% 29.58
Total Root 15876829 55.24% 4.31% 11.42% 3690.30

Spiral 15849764 1.74% 10.75% 18.21% 1419.37
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Table B.3: The Effect of Dynamic Load Balancing

Instance Balance Node Ramp-up Idle Ramp-down Wallclock
aflow30a No 1783235 0.28% 0.00% 76.41% 899.22

Yes 1447135 1.15% 10.30% 8.20% 221.04
bell5 No 371095 0.46% 0.00% 93.02% 94.74

Yes 245991 7.35% 8.01% 11.76% 5.95
bienst1 No 51589 2.44% 0.00% 66.48% 168.58

Yes 46293 6.28% 8.48% 14.25% 65.67
bienst2 No 330713 0.43% 0.00% 69.09% 888.72

Yes 297963 1.46% 5.72% 6.15% 263.60
blend2 No 345909 0.30% 0.00% 79.93% 84.42

Yes 452563 2.58% 10.32% 5.28% 29.35
cls No 538665 1.42% 0.00% 67.85% 130.39

Yes 388511 4.23% 8.81% 24.14% 44.41
fiber No 16817 23.24% 0.00% 42.90% 11.70

Yes 9627 7.94% 12.42% 23.32% 5.85
gesa3 No 190489 0.36% 0.00% 92.62% 471.12

Yes 56849 7.29% 9.89% 19.86% 23.36
markshare 4 1 No 3463729 80.61% 0.00% 19.36% 433.14

Yes 3463729 79.53% 0.00% 20.45% 433.31
markshare 4 3 No 2613747 74.87% 0.00% 25.12% 552.98

Yes 2613747 75.79% 0.00% 24.19% 551.38
mas76 No 2017019 0.35% 0.00% 72.09% 78.12

Yes 2050675 1.09% 3.44% 8.76% 25.47
misc07 No 13145 3.16% 0.00% 74.70% 17.95

Yes 12535 4.43% 12.90% 48.18% 12.84
mitre No 391 48.22% 0.00% 45.45% 33.36

Yes 391 48.34% 0.00% 45.45% 33.20
nw04 No 1821 10.91% 0.00% 81.38% 341.18

Yes 1721 19.13% 3.26% 65.73% 194.28
pk1 No 2469351 0.25% 0.00% 74.04% 109.03

Yes 2671467 0.68% 10.54% 15.10% 39.84
rout No 2430157 0.13% 0.00% 82.43% 1090.06

Yes 1501183 0.52% 21.58% 20.83% 261.28
stein45 No 103995 4.14% 0.00% 61.08% 9.57

Yes 103953 6.90% 9.92% 26.24% 5.75
swath1 No 83719 0.22% 0.00% 95.42% 1361.25

Continued on next page
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Table B.3 – continued from previous page
Instance Balance Node Ramp-up Idle Ramp-down Wallclock

Yes 58473 2.27% 16.75% 34.26% 134.70
swath2 No 182801 0.12% 0.00% 95.08% 2654.43

Yes 148243 1.48% 13.17% 14.73% 211.41
vpm2 No 892119 0.38% 0.00% 86.87% 288.70

Yes 486571 4.06% 7.57% 10.26% 26.72
Total No 17900506 8.69% 0.00% 79.67% 9718.67

Yes 16057620 32.50% 6.81% 22.32% 2589.43
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Table B.4: The Effect of Sharing Pseudocost

Instance Share Node Ramp-up Idle Ramp-down Wallclock
aflow30a No 1196395 0.25% 13.71% 15.27% 193.69

Yes 914829 0.34% 12.79% 11.68% 144.35
bell5 No 339245 1.44% 12.85% 8.06% 8.32

Yes 397265 1.49% 12.30% 3.39% 8.22
bienst1 No 47109 1.67% 5.56% 5.59% 55.29

Yes 44527 1.66% 5.87% 11.09% 55.37
bienst2 No 309189 0.40% 4.52% 2.48% 249.36

Yes 318789 0.39% 4.32% 2.61% 259.86
blend2 No 525193 0.18% 10.62% 4.32% 31.46

Yes 525855 0.18% 9.95% 5.28% 31.41
cls No 489855 1.66% 11.71% 19.17% 50.95

Yes 494207 1.90% 12.48% 10.96% 44.79
fiber No 10535 5.89% 9.38% 40.05% 7.90

Yes 9695 6.85% 12.01% 33.96% 6.77
gesa3 No 116577 1.98% 18.81% 25.63% 38.54

Yes 139283 1.61% 18.52% 18.17% 47.57
markshare 4 1 No 3435775 0.71% 13.75% 8.95% 16.49

Yes 3436579 0.16% 12.58% 10.13% 16.30
markshare 4 3 No 2790777 0.19% 12.14% 8.48% 13.02

Yes 2789645 0.19% 13.33% 7.62% 12.90
mas76 No 2666601 0.07% 18.30% 13.85% 42.69

Yes 2298361 0.08% 16.09% 16.76% 37.18
misc07 No 10629 0.29% 25.09% 54.95% 24.98

Yes 10343 0.30% 22.23% 53.44% 23.34
nw04 No 645 4.15% 2.05% 88.51% 168.67

Yes 629 4.22% 1.80% 88.87% 166.27
pk1 No 2111119 0.28% 10.26% 6.99% 28.06

Yes 1559947 0.72% 8.79% 9.30% 21.28
rout No 1874903 0.09% 8.32% 1.81% 200.56

Yes 2075145 0.08% 11.55% 4.18% 238.21
stein45 No 97333 1.93% 27.62% 6.76% 5.20

Yes 101161 1.90% 25.22% 9.18% 5.37
swath1 No 52161 0.44% 20.38% 13.16% 94.32

Yes 59849 0.44% 21.17% 8.66% 94.22
swath2 No 139117 0.24% 20.94% 5.00% 168.17

Continued on next page
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Table B.4 – continued from previous page
Instance Share Node Ramp-up Idle Ramp-down Wallclock

Yes 131145 0.28% 18.07% 4.79% 151.76
vpm2 No 626215 1.05% 10.73% 6.90% 33.36

Yes 558269 1.18% 10.99% 7.32% 29.58
Total No 16839373 0.94% 11.16% 18.47% 1431.04

Yes 15865523 0.96% 10.87% 17.69% 1394.76
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