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Abstract

We investigate families of quadrics all of which have the same intersection with two given
hyperplanes. The cases when the two hyperplanes are parallel and when they are nonparallel are
discussed. We show that these families can be described with only one parameter and describe
how the quadrics are transformed as the parameter changes. This research was motivated by an
application in mixed integer conic optimization. In that application, we aimed to characterize
the convex hull of the union of the intersections of an ellipsoid with two half-spaces arising from
the imposition of a linear disjunction.

1 Introduction

This paper is motivated by efforts to extend the disjunctive procedure of Mixed Integer Linear
Optimization (MILO) [1] to Mixed Integer Second Order Conic Optimization (MISOCO). We first
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introduce the following MISOCO problem

minimize: c>w

subject to: Aw = b (MISOCO)

w ∈ K
w ∈ Zd × R`−d,

where A ∈ Rm×`, c ∈ R`, b ∈ Rm, and the rows of A are linearly independent. Additionally,
we have that K = L`11 × · · · × L`kk , where L`i = {wi|wi1 ≥ ‖wi2:`i‖} i = 1, . . . , k and

∑k
i=1 `i = `.

Here, the notation w2:` refers to the vector formed by the components 2 to ` of vector w. This
problem can be solved using a branch-and-cut algorithm. In particular, this algorithm uses the
continuous relaxation of (MISOCO) to bound its objective function. This relaxation is a second
order cone optimization problem [2, 3]. The bounding process may be improved if the formulation
of (MISOCO) is strengthened. This can be achieved with the addition of valid inequalities to
(MISOCO). Some of these inequalities can be derived if we relax the constraint x ∈ K in the
continuous relaxation (MISOCO) to consider only one Lorentz cones in K [4]. For this reason, in
this paper we focus primarily on the feasible set of the continuous relaxation of (MISOCO) when
k = 1. The projection of this feasible set into the affine space defined by the linear constraints of
(MISOCO) is a quadric of the form

Q̂ = {w ∈ R` | w>Pw + 2p>w + ρ ≤ 0},

where P ∈ R`×` is a given symmetric matrix, p ∈ R` is a given vector, and ρ ∈ R is some scalar.
Such quadrics are the central objects of study in this paper.

During the past decade, the study of MISOCO has gained significant attention in the mathemat-
ical optimization community. A common approach used in the literature for tackling this problem
is to extend some of the techniques developed for MILO to MISOCO, see, e.g., [4, 5, 6, 7, 8, 9].
One particularly successful technique used in MILO is the disjunctive procedure of Balas [1].
The generalization of the disjunctive procedure to MISOCO is the motivation for our interest
in quadrics having fixed intersection with two given hyperplanes. Let A = {w ∈ R` | a>1 w ≤ α1},
B = {w ∈ R` | a>2 w ≥ α2} for a1, a2 ∈ R`, α1, α2 ∈ R, be given half spaces where (a1, α1) and
(a2, α2) are not scalar multiples of each other. Additionally, assume that Q̂∩A∩B = ∅, Q̂∩A 6= ∅,
and Q̂ ∩ B 6= ∅. We are interested in analyzing the set Q̂ ∩ (A∪ B), which results from adding the
constraint w ∈ A ∪ B (a disjunction) to (MISOCO). Observe that the set Q̂ ∩ (A ∪ B) is not a
convex set, but its convex hull is a convex set containing the feasible set of (MISOCO).

Consider the hyperplanes A= = {w ∈ R`|a>1 w = α1} and B= = {w ∈ R`|a>2 w = α2}. In [4] it is
shown that the convex hull of Q̂ ∩ (A∪ B) can be obtained by intersecting Q̂ with either a convex
cone or a convex cylinder that has the same intersection with the hyperplanes A= and B= as Q̂.
The existence of such a cone or cylinder was conjectured at an early stage of this research. This
paper contributes to answering these questions by explicitly parameterizing the family of quadrics
that passes through the two intersections, in both the parallel and nonparallel cases. We provide
a detailed analysis of the quadrics in this family, and show that they always contain a cone or
cylinder that has the same intersection with the hyperplanes A= and B= as Q̂. Additionally, this
analysis presents explicit and efficiently computable formulas for these quadratic cones or cylinders,
enabling their efficient use in solving MISOCO problems.
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The motivation for this study differs from what has been the common focus in the previous
literature about quadrics. In particular, among solid body modelers, some of the common moti-
vations for these studies are performing boundary evaluations, generating images, and calculating
mechanical properties [10]. Thus, the focus has been on the study of the intersection of two or
more quadrics in dimension three, see e.g., [10, 11, 12, 13, 14, 15]. Our goal is to show the exis-
tence of n−dimensional quadratic cones or cylinders used to derive conic constraints to tighten the
description of the feasible set of (MISOCO).

Throughout the paper, a quadric {w ∈ R` | w>Pw + 2p>w + ρ ≤ 0}, is represented by the
triplet (P, p, ρ), for a matrix P ∈ R`×`, a vector p ∈ R`, and a scalar ρ ∈ R. A hyperplane
{w ∈ R` | a>w = α} is represented by the pair (a, α), for a given a ∈ R` and α ∈ R, and we
assume w.l.o.g. that ‖a‖ = 1. For the sake of clarity, these objects will be defined in the context of
each section of the paper. Additionally, for a matrix P ∈ R`×`, P � 0 denotes that P is positive
definite and P � 0 denotes that P is positive semi-definite. We have that P = P 1/2P 1/2 and
P−1 = P−1/2P−1/2, where P 1/2 is the unique symmetric square root of a positive definite matrix
P . To simplify notation, we define the vector ua = P−1/2a for a given vector a. On the other hand,
when we have the indexed vectors ai, i = 1, 2, we will use the notation ui = P−1/2ai.

The rest of the paper is structured as follows. In §2, some background material is presented on
the geometry of quadrics. The two main sections of the paper are §3 and §4, which deal with the
intersections of a quadric with parallel and nonparallel hyperplanes, respectively. In §5 we discuss
the scope of the results considering general quadrics. Finally, we present some conclusions and
discuss directions of ongoing research in §6.

2 Background

This section discusses some results needed for the analysis developed in §3 and §4. We start by
defining the shapes of the quadrics that are considered in this paper. Then, we give some results
about the intersection of quadrics and hyperplanes that are used later for proving the main theorems
presented in §3 and §4. Readers interested in more general results about the intersection of quadrics
in Rn can consult Cox et al. [16, Chapter 8], and Harris [17, lecture 22]. Finally, for the fundamental
results about eigenvalues and quadratic forms used in this section, the interested reader is referred
to [18].

2.1 Shapes of a Quadric with at Most One Non-positive Eigenvalue

Here we identify the shapes of the quadrics containing the set

G = {w ∈ R` | Aw = b, w ∈ L`},

which is the intersection of an affine space and a Lorentz cone. G is the feasible set of a relaxation
of (MISOCO), where the integrality constraint is relaxed and k = 1. Let w0 ∈ G, and H`×n be a
matrix with orthogonal columns that form a basis for the null space of A, where n = ` −m. We
assume w.l.o.g. that ‖Hi‖ = 1, i = 1, . . . , n, where Hi is the i-th column of H. Thus, we obtain the
identity {w ∈ Rn | Aw = b} = {w ∈ Rn | w = w0 +Hx, ∃x ∈ Rn}. Now, let

J =

[
−1 0
0 I

]
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and let us relax the constraint w ∈ L` to w>Jw ≤ 0. Substituting w = w0 +Hx, we obtain

(w0 +Hx)>J(w0 +Hx) ≤ 0 (2.1)

x>H>JHx+ 2(w0)>JHx+ (w0)>Jw0 ≤ 0. (2.2)

Define P = H>JH, p = H>Jw0, and ρ = (w0)>Jw0, then from (2.2) we obtain the constraint

x>Px+ 2p>x+ ρ ≤ 0. (2.3)

Hence, from (2.1)–(2.3) we have that for every member of G there is a corresponding element of
the quadric

Q = {x ∈ Rn | x>Px+ 2p>x+ ρ ≤ 0}. (2.4)

Additionally, for every x̄ ∈ Q such that (w0 + Hx̄)1 ≥ 0 there exists a corresponding element in
G. Finally, observe that if P � 0, the set Q is an ellipsoid, which is a convex set. In this case, we
obtain from (2.3), the inequality w0

1(w0 +Hx)1 ≥ 0, and the convexity of Q, that for every x̄ ∈ Q
there exists a corresponding element in G

In order to limit the set of shapes to be considered in this paper, we now present a characteristic
of the quadric Q.

Lemma 2.1. The matrix P defining the quadric Q that contains the projection of G into the affine
space {w ∈ R` | Aw = b} has at most one negative eigenvalue.

Proof. Recall that the columns Hi, i = 1, . . . , n of H are unit length and orthogonal. Thus, the
matrix P has the form P = I−2h1:h

>
1:, where h>1: is the first row of H. The rank one matrix 2h1:h

>
1:

has at most one nonzero eigenvalue. Hence, P has at most one negative eigenvalue.

We can now define the shapes needed for the analysis of a MISOCO problem. If P is assumed
invertible, we can rewrite the defining inequality (2.4) as(

x+ P−1p
)>
P
(
x+ P−1p

)
≤ p>P−1p− ρ. (2.5)

Thus, either P � 0 or P is indefinite with exactly one negative eigenvalue (ID1). One can see
that the shape of the quadric Q is determined by two quantifiers: the inertia of matrix P and the
quantity p>P−1p− ρ. The possible shapes of the quadric are summarized in the following table:

p>P−1p− ρ
> 0 = 0 < 0

P is PD ellipsoid point empty set

P is ID1
hyperboloid

cone
hyperboloid

of one sheet of two sheets

Table 2.1: Shapes of the quadric Q when the matrix P is non-singular.

In all of these cases, either the center of the ellipsoid or the intersection of the asymptotes of the
hyperboloids is at −P−1p.

Now, let P be positive semi-definite but not positive definite, i.e., the smallest eigenvalue of P
is 0. Then, there are two cases:
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Case 1: If there is a vector xc such that Pxc = −p, then Q is:

• empty, if x>c Pxc − ρ < 0;

• a line through xc in the direction of the eigenvector of the zero eigenvalue of P , if
x>c Pxc − ρ = 0;

• a cylinder with its center line through xc in the direction of the eigenvector of the zero
eigenvalue of P , if x>c Pxc − ρ > 0.

Case 2: If there is no vector xc such that Pxc = −p, then Q is a paraboloid.

Finally, if P � 0 and the quadric Q is not single point, Q can be transformed to a unit
hypersphere {y ∈ Rn | ‖y‖2 ≤ 1} using the affine transformation

y =
P 1/2(x+ P−1p)√
‖up‖2 − ρ

. (2.6)

Observe that this transformation preserves the inertia of P , hence the classification of the quadric
is not changed. Additionally, observe that if we apply the same transformation to two parallel
hyperplanes, the resulting hyperplanes are still parallel. Hence, throughout the paper, if P � 0, we
assume w.l.o.g. that the quadric Q is a unit hypersphere centered at the origin.

2.2 Intersections of Quadrics and Hyperplanes

The following lemma enables us to characterize when the intersection of an ellipsoid and a hyper-
plane is nonempty.

Lemma 2.2. The intersection of an ellipsoid {x ∈ Rn | x>Px + 2p>x + ρ ≤ 0}, for a given
matrix P ∈ Rn×n such that P � 0, a vector p ∈ Rn and a scalar ρ ∈ R, with a hyperplane
{x ∈ Rn|a>x = α}, for some a ∈ Rn and α ∈ R, is nonempty if and only if(

α+ u>a up

)2
≤ ‖ua‖2

(
‖up‖2 − ρ

)
.

Proof. Let g : Rn → R be defined by g(x) = x>Px + 2p>x + ρ, ∀x ∈ Rn. We are interested in
characterizing x ∈ Rn for which g(x) = 0 and ∇g(x) = λa for some λ ∈ R, i.e., the points at which
the hyperplane touches the ellipsoid. The gradient of g is defined by ∇g(x) = 2Px+ 2p,∀x ∈ Rn.
Then, solving the system 2Px+ 2p = λa for x, we obtain the solution

x̂ =
P−1(λa− 2p)

2
.

From the condition g(x̂) = 0, we obtain λ2 ‖ua‖2 /4−‖up‖2 + ρ = 0, which is a quadratic equation
in λ. The roots of this equation are

λ+ = 2

√
‖up‖2 − ρ
‖ua‖2

and λ− = −2

√
‖up‖2 − ρ
‖ua‖2

.
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Thus, the solutions are

x̂ = −P−1p± P−1a

√
‖up‖2 − ρ
‖ua‖2

.

Hence, we can compute the two extreme values of α for which a hyperplane (a, α) is tangent to an
ellipsoid (P, p, ρ). The values are

α = −u>a up ±
√
‖ua‖2 (‖up‖2 − ρ).

Observe that the set {x ∈ Rn | g(x) ≤ 0} is feasible only if λ+ ≤ λ ≤ λ−, which gives the bounds
in the lemma.

3 Intersections with Parallel Hyperplanes

In this section we investigate the intersection of an ellipsoid with two parallel hyperplanes. Consider
a quadric Q represented by (P, p, ρ) for some matrix P ∈ Rn×n, a vector p ∈ Rn, and ρ ∈ R. Let
A= and B= two hyperplanes represented by (a, α1) and (a, α2) respectively, for some a ∈ Rn and
α1, α2 ∈ R, where ‖a‖ = 1, and α1 6= α2. Additionally, assume that the intersections Q ∩A= and
Q ∩ B= are nonempty. We first present a theorem that characterizes a family of quadrics having
the same intersection with the hyperplanes A= and B= as the quadric Q. Then, we analyze this
family when P � 0, to show that there is always a quadric that satisfies the definition of either a
cone or a cylinder given in §2.1.

3.1 The Family of Quadrics with Fixed Parallel Planar Sections

First, we recall the definition of a pencil of quadrics given in [15].

Definition 3.1. Consider two given quadrics represented by (P1, p1, ρ1) and (P2, p2, ρ2), for P1, P2 ∈
Rn×n, p1, p2 ∈ Rn and ρ1, ρ2 ∈ R. The family of quadrics {F(τ) | τ ∈ R} is called a pencil of
quadrics, where F(τ) is represented by P̂ (τ) = P1 + τP2, p̂(τ) = p1 + τ p̃2, and ρ̂(τ) = ρ1 + τ ρ̃2.

Now we characterize a family of quadrics having the same intersection with two hyperplanes
A= and B= as the quadric Q.

Theorem 3.2. Consider a quadric Q represented by (P, p, ρ) and two parallel hyperplanes A=

and B=, represented by (a, α1) and (a, α2) respectively. The uni-parametric family of quadrics
having the same intersection with A= and B= as the quadric Q is defined by the pencil of quadrics
{F(τ) | τ ∈ R}, where F(τ) is represented by P (τ) = P + τP̃ , p(τ) = p + τ p̃, and ρ(τ) = ρ + τ ρ̃,
with

P̃ = aa>, p̃ = −(α1 + α2)

2
a, ρ̃ = α1α2.

Proof. Consider the set A= ∪ B=, which can be described as

{x ∈ Rl | (a>x− α1)(a
>x− α2) = 0},

and observe that

(a>x− α1)(a
>x− α2) = x>aa>x− (α1 + α2)a

>x+ α1α2 = 0. (3.1)
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Now, let

P̃ = aa>, p̃ = −(α1 + α2)

2
a, ρ̃ = α1α2.

Then, the set of solutions of equation (3.1) can be written as a quadric surface Q̃ represented by
(P̃ , p̃, ρ̃). Now, consider the pencil {F(τ) | τ ∈ R}, where F(τ) is represented by P̂ (τ) = P + τP̃ ,
p̂(τ) = p+ τ p̃, and ρ̂(τ) = ρ+ τ ρ̃. Let x̄ be a given vector satisfying x̄>P̃ x̄+ 2p̃>x̄+ ρ̃ = 0. Then,
for τ ∈ R we have x̄ ∈ F(τ) if and only if

x̄>(P + τP̃ )x̄+ 2(p+ τ p̃)>x̄+ (ρ+ τ ρ̃) = x̄>Px̄+ 2p>x̄+ ρ ≤ 0.

Hence, we have x̄ ∈ F(τ) ∩ (A= ∪ B=) if and only if x̄ ∈ Q ∩ (A= ∪ B=) for τ ∈ R.

3.2 Classification of the Family {F(τ) | τ ∈ R}

In what follows we assume that the quadric Q is an ellipsoid, i.e., P � 0. We can assume w.l.o.g.
that the quadric Q is not a single point, i.e., ‖up‖2−ρ > 0, since otherwise α1 = α2. Now, recall the
assumption from the affine transformation (2.6) that Q is a unit hypersphere centered at the origin.
Also, recall that two parallel hyperplanes will remain parallel under the affine transformation (2.6).
Then, in this case we have a representation of F(τ) defined by

P (τ) = I + τaa>, p(τ) = −τ α1 + α2

2
a, ρ(τ) = −1 + τα1α2. (3.2)

It is possible to characterize the behavior of the family {F(τ)|τ ∈ R} in (3.2) as a function of
parameter τ . First, we need a result on the inertia of P (τ).

Lemma 3.3. The matrix P (τ) can be classify as a function of parameter τ as follows:

• P (τ) � 0 if τ > −1,

• P (τ) � 0 but not P (τ) � 0 if τ = −1,

• P (τ) is ID1 if τ < −1.

Proof. The eigenvalues of

P (τ) =
(
I + τaa>

)
,

are known [19, 20] to be 1 with multiplicity n− 1, and 1 + τ ‖a‖2. This proves the lemma.

We can identify two cases to analyze: P (τ) is non-singular; P (τ) singular. In the following
sections, we analyze these two cases separately.

3.2.1 P (τ) is Non-singular

If τ 6= −1, we obtain from Lemma 3.3 that P (τ) is non-singular, which relates to the cases in Table
2.1 in the background section. Hence, if there exists a τ for which p(τ)>P (τ)−1p(τ) − ρ̄(τ) = 0,
then F(τ) is a cone.
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We use the Sherman-Morrison-Woodbury formula [18] to compute the inverse of P (τ):

P (τ)−1 =
(
I + τaa>

)−1
= I − τ

1 + τ
aa>. (3.3)

As expected from Lemma 3.3, the inverse does not exist if τ = −1. This case is discussed in §3.2.2.
Now, let us evaluate p(τ)>P (τ)−1p(τ)− ρ(τ). Using (3.3) we have:

p(τ)>P (τ)−1p(τ)− ρ(τ) =
τ2 (α1 + α2)

2

4
a>
(
I − τ

1 + τ
aa>

)
a− (τα1α2 − 1)

=
4τ2

(
(α1+α2)2

4 − α1α2

)
+ 4τ(1− α1α2) + 4

4(1 + τ)

=
τ2 (α1−α2)2

4 + τ(1− α1α2) + 1

(1 + τ)
. (3.4)

Since τ 6= −1, then the denominator in (3.4) is non-zero. Hence, we need to focus only on the roots
of the numerator in (3.4). Let f : R 7→ R be a function whose value is

f(τ) = τ2
(α1 − α2)

2

4
+ τ(1− α1α2) + 1, ∀τ ∈ R,

which is a quadratic function of τ . Let τ̄1 and τ̄2 be the roots of f .
The discriminant of f is:

(1− α1α2)
2 − 4

(
(α1 − α2)

2

4

)
= (1− α2

1)(1− α2
2). (3.5)

Therefore, if (1− α2
1) ≥ 0 and (1− α2

1) ≥ 0, then f has real roots. Thus, from Lemma 2.2 we can
conclude that f has real roots when Q∩A= 6= ∅ and Q∩ B= 6= ∅.

Now, since the two hyperplanes are distinct, the coefficient of τ2 in f is positive. For the
coefficient of τ in f(τ) we have 1 − α1α2 ≥ 0, where the inequality is implied by the assumption
that Q ∩A= 6= ∅ and Q ∩ B= 6= ∅. This shows that all three coefficients in f(τ) are non-negative.
Hence, we have τ̄1 < 0 and τ̄2 < 0.

Let us see how the two roots of f compare to −1, at which value P (τ) becomes singular. We
have

f (−1) =
(α1 − α2)

2

4
− (1− α1α2) + 1 =

(α1 + α2)
2

4
≥ 0 (3.6)

and −1 is not between the two roots of f . Next, we check the derivative of f to decide on which
branch of f the value −1 lies. We have

f ′ (−1) = −(α1 − α2)
2

2
+ 1− α1α2 = 1− α2

1 + α2
2

2
≥ 0,

where the inequality follows from the assumption that Q ∩ A= 6= ∅ and Q ∩ B= 6= ∅. This shows
that τ̄1 < −1 and τ̄2 < −1. As a result, F(τ̄1) and F(τ̄1) are both cones.
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(a) τ = τ̄2 (b) τ = τ̄2 (c) τ = τ̂

Figure 1: f(τ) has two distinct roots which do not coincide with τ̂ .

Summary of Shapes According to the values of the discriminant (3.5) we can classify the shapes
of F(τ) at the roots of f . Recall that τ 6= −1, and τ̄1 6= −1, τ̄2 6= −1. We may further assume
w.l.o.g. that τ̄1 ≤ τ̄2. We have the following cases:

• If the discriminant (3.5) is not equal to zero, then −1 > τ̄2 > τ̄1, and there are two different
cones at τ = τ̄1 and τ = τ̄2 in the family F(τ). For illustrations see Figure 1.

• If the discriminant(3.5) is equal to zero, then −1 > τ̄2 = τ̄1, and there is a unique cone in the
family F(τ) at τ = τ̄1 = τ̄2. Observe that in this case, it follows by Lemma 2.2 that one of
the hyperplanes is tangent to the ellipsoid. See Figure 2.

(a) One hyperplane is tangent to
the ellipsoid.

(b) τ = τ̄1 = τ̄2 (c) τ = −1

Figure 2: The two roots of f(τ) coincide, but are different from τ̂ .

3.2.2 P (τ) is Singular

It follows from Lemma 3.3 that P (τ) is singular when τ = −1. In this case we have that P (−1) � 0
but not P (−1) � 0. Thus, from §2.1 we have that F(−1) is either a line, a cylinder, or a paraboloid.
The shape of F(−1) can be decided by verifying if p(−1) is in the range of P (−1). This is equivalent
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(a) τ = τ̄1 (b) τ = τ̂

Figure 3: f(τ) has two distinct roots, but the larger root coincides with τ̂ .

to deciding if p(−1) is orthogonal to the eigenvector corresponding to the zero eigenvalue of P (−1).
One can verify easily that a is such an eigenvector of P (−1), thus we need to check if p(−1)>a = 0.
We have

p(−1)>a =

(
α1 + α2

2
a

)>
a =

α1 + α2

2
. (3.7)

Hence, p(−1)>a is zero if and only if α1 = −α2, i.e., the two hyperplanes A= and B= are symmetric
about the center of the hypersphere Q. Therefore, if α1 = −α2 any vector xc = ηa, η ∈ R, satisfies
the condition P (−1)xc = p(−1) of Case 1 in §2.1. To the contrary, if α1 6= −α2, then p(−1) is not
orthogonal to a, and there is no xc such that P (−1)xc = −p(−1). Recall that this is true because
a is an eigenvector corresponding to the zero eigenvalue of P (−1). Then, from Case 2 in §2.1 we
conclude that F(−1) is a paraboloid. These are the cases discussed in §3.2.1. For illustrations, see
Figures 1(c) and 2(c).

Summary of Shapes Based on equation (3.7) and the values of the discriminant (3.5) we can
classify the shapes of F(τ) at −1, τ̄1, τ̄2 when p(−1)>a = 0. We may assume w.l.o.g. that τ̄1 ≤ τ̄2.
We have the following cases:

• If the discriminant (3.5) is not equal to zero and −1 = τ̄2 > τ̄1, then for the vector xc = 0 we
obtain from (3.7) that x>c P (−1)xc− ρ(−1) = (1−α2

1) > 0, and from Case 1 in §2.1 we have
that F(−1) is a cylinder. Additionally, F(τ̄1) is a cone. For illustrations see Figure 3.

• If the discriminant (3.5) is zero and −1 = τ̄2 = τ̄1, then for the vector xc = 0 from (3.7) we
obtain that x>c P (−1)xc−ρ(−1) = (1−α2

1) = 0, and from Case 1 in §2.1 we have that F(−1)
is a line. For illustrations see Figure 4.
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(a) The two hyperplanes are tangent to the ellip-
soid.

(b) τ = τ̂

Figure 4: The two roots of f(τ) coincide with τ̂ .

3.2.3 Summarizing the Shapes of F(τ)

We can summarize the shapes of the quadrics in the family {F(τ) | τ ∈ R} using τ̄1, and τ̄2 in the
following theorem. We assume w.l.o.g. that τ̄1 ≤ τ̄2.

Theorem 3.4. The following cases may occur for the shape of F(τ):

• τ̄1 < τ̄2 < −1: F(τ̂) is a paraboloid, and F(τ̄1), F(τ̄2) are two cones.

• τ̄1 = τ̄2 < −1: F(τ̂) is a paraboloid and F(τ̄1) is a cone.

• τ̄1 < τ̄1 = −1: F(τ̂) is a cylinder and F(τ̄1) is cone.

• τ̄1 = τ̄2 = −1: F(τ̂) is a line.

This completes the description of the family {F(τ) | τ ∈ R} of quadrics when P � 0 and A= and
B= are parallel.

4 Intersections with Nonparallel Hyperplanes

In this section, we investigate the intersection of an ellipsoid with two non-parallel hyperplanes.
Consider a quadricQ represented by (P, p, ρ) for some matrix P ∈ Rn×n, a vector p ∈ Rn, and ρ ∈ R.
Let A= and B= be two non-parallel hyperplanes represented by (a1, α1) and (a2, α2) respectively,
for some a1, a2 ∈ Rn and α1, α2 ∈ R, with ‖a1‖ = ‖a2‖ = 1, and a>1 a2 6= ±1. Additionally, assume
that the intersections Q ∩ A= and Q ∩ B= are nonempty. We first present a generalization of
Theorem 3.2 to the case of non-parallel hyperplanes. Then, we analyze the behavior of the new
family of quadrics when P � 0, to show that there is always a quadric that satisfies the definition
of either a cone or a cylinder given in §2.1.
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4.1 The Family of Quadrics with Fixed Planar Sections

Theorem 4.1. Consider a quadric Q represented by (P, p, ρ) and two non-parallel hyperplanes
A=, B= represented by (a1, α1) and (a2, α2) respectively. The uni-parametric family of quadrics
parametrized by τ ∈ R and having the same intersection with A= and B= as the quadric Q is
defined by the pencil of quadrics {F(τ) | τ ∈ R}, where F(τ) is represented by P (τ) = P + τP̃ ,
p(τ) = p+ τ p̃, and ρ(τ) = ρ+ τ ρ̃, with

P̃ =
a1a
>
2 + a2a

>
1

2
, p̃ = −α2a1 + α1a2

2
, ρ̃ = α1α2.

Proof. Consider the set A= ∪ B=, which can be described as

{x ∈ Rl | (a>1 x− α1)(a
>
2 x− α2) = 0},

and observe that

(a>1 x− α1)(a
>
2 x− α2) = x>a1a

>
2 x− (α1a

>
2 + α2a

>
1 )x+ α1α2

= x>
(
a1a
>
2 + a2a

>
1

2

)
x− (α1a

>
2 + α2a

>
1 )x+ α1α2 = 0.

Now, let

P̃ =
a1a
>
2 + a2a

>
1

2
, p̃ = −(α1a2 + α2a1)

2
, ρ̃ = α1α2.

Then, the set of solutions of the equation (3.1) can be described by the quadric surface Q̃ = (Q̃, q̃, ρ̃).
Now, consider the pencil {F(τ) | τ ∈ R}, where F(τ) is represented by (P, p, ρ) + τ(P̃ , p̃, ρ̃) = 0.
Let x̄ be a given vector satisfying x̄>P̃ x̄+ 2p̃>x̄+ ρ̃ = 0. Then, for τ ∈ R we have x̄ ∈ F(τ) if and
only if

x̄>(P + τP̃ )x̄+ 2(p− τ p̃)>x̄+ (ρ+ τ ρ̃) = x̄>Px̄+ 2p>x̄+ ρ ≤ 0.

Hence, we have x̄ ∈ F(τ) ∩ (A= ∪ B=) if and only if x̄ ∈ Q ∩ (A= ∪ B=) for τ ∈ R.

Remark 4.2. In particular, if a1 = a2 = a, this simplifies to the result of Theorem 3.2.

4.2 Classification of the Family {F(τ) | τ ∈ R}

In what follows, we assume that the quadric Q is an ellipsoid, i.e., P � 0. If not said otherwise,
we assume that the quadric Q = (P, p, ρ) is not a single point, i.e., (‖up‖2 − ρ) > 0. Recall the
assumption from the affine transformation (2.6) that Q is a unit hypersphere centered at the origin.
In this case we have the following simplified representation of F(τ), defined by

P (τ) = I + τ
a1a
>
2 + a2a

>
1

2
, p(τ) = −τ α2a1 + α1a2

2
, ρ(τ) = −1 + τα1α2. (4.1)

We characterize the behavior of the family {F(τ) | τ ∈ R} in (4.1) as a function of parameter
τ . First, we discuss the inertia of P (τ). Then, we analyze the cases: (1) when the matrix P (τ)
is non-singular and (2) when the matrix P (τ) is singular. Finally, we present a summary of the
shapes of the family {F(τ) | τ ∈ R} in Theorem 4.5.
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4.2.1 The Eigenvalues of P (τ)

The most important factor in deciding the shape of F(τ) is the number of negative or zero eigen-
values of P (τ). Since P is modified with a rank-2 matrix in (4.1), P (τ) may possibly have two
negative eigenvalues. The following lemma shows that this can not happen when P � 0.

Lemma 4.3. If P � 0, then P (τ) can have at most one non-positive eigenvalue.

Proof. The eigenvalues of

P (τ) =
(
I +

τ

2

(
a1a
>
2 + a2a

>
1

))
, (4.2)

are as follows:

• 1 is an eigenvalue with multiplicity n − 2, the corresponding eigenvectors are orthogonal to
a1 and a2;

• 1 + τ
2

(
a>1 a2 + 1

)
, with the eigenvector (a1 + a2);

• 1 + τ
2

(
a>1 a2 − 1

)
, with the eigenvector (a2 − a1);

Let

τ̂1 =
−2

a>1 a2 + 1
(4.3a)

τ̂2 =
−2

a>1 a2 − 1
, (4.3b)

then using the Cauchy-Schwartz inequality∣∣∣a>1 a2∣∣∣ ≤ ‖a1‖ ‖a2‖ , (4.4)

we can see that τ̂1 < 0 < τ̂2. This implies that P̂ (τ) is positive definite if τ ∈ (τ̂1, τ̂2). It has
a zero eigenvalue if τ = τ̂1 or τ = τ̂2, and it is indefinite with exactly one negative eigenvalue
otherwise.

From Lemma 4.3 we have that the possible shapes for F(τ) are still only those given in §2.1.
We distinguish two cases: P (τ) is non-singular, and P (τ) is singular. In the following sections, we
analyze these two cases separately.

4.2.2 P (τ) is Non-singular

If τ 6= τ̂1, τ̂2, then it follows from Lemma 4.3 that P (τ) is non-singular, which restricts the quadrics
to the shapes in Table 2.1. Hence, to verify the existence of a cone in the family F(τ), it is necessary
to identify a τ for which p(τ)>P (τ)−1p(τ)− ρ(τ) = 0.
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We use the Sherman-Morrison-Woodbury formula [18] to compute the inverse of P (τ):

P−1(τ) =

(
I + [a1, a2]

[
0 τ

2
τ
2 0

]
[a1, a2]

>
)−1

= I −
[a1, a2]

[
τ2 −2τ − τ2a>1 a2

−2τ − τ2a>1 a2 τ2

]
[a1, a2]

>

τ2
(

1−
(
a>1 a2

)2)− 4a>1 a2τ − 4

= I − (a1a
>
1 + a2a

>
2 )τ2 − (a>1 a2τ

2 + 2τ)(a2a
>
1 + a1a

>
2 )

τ2
(

1−
(
a>1 a2

)2)− 4a>1 a2τ − 4
. (4.5)

Note that the roots of denominator of the second term in (4.5) are τ̂1 and τ̂2. These are the values
for which P (τ) is not invertible, as was expected from Lemma 4.3.

Now, we evaluate p(τ)>P−1(τ)p(τ)− ρ(τ), and substituting p(τ), P−1(τ), and ρ(τ) from (4.1)
we obtain

p(τ)>P−1(τ)p(τ)− ρ(τ)

=

(
(1− α2

1)(1− α2
2)− (α1α2 − a>1 a2)2

)
τ2 + 4(α1α2 − a>1 a2)τ − 4

τ2
(

1−
(
a>1 a2

)2)− 4a>1 a2τ − 4
. (4.6)

Recall that the denominator of (4.6) is non-zero if τ 6= τ̂1, τ̂2, then we need to focus only on its
numerator. Let f : R 7→ R be a function whose value is

f(τ) =
(

(1− α2
1)(1− α2

2)− (α1α2 − a>1 a2)2
)
τ2 + 4(α1α2 − a>1 a2)τ − 4,∀τ ∈ R,

which is a quadratic function of τ . The discriminant of f is

16(1− α2
1)(1− α2

2). (4.7)

Thus, from Lemma 2.2 we know that f has real roots if Q∩A= 6= ∅ and Q∩B= 6= ∅. Let the roots
of f be denoted by τ̄1 and τ̄2. We assume w.l.o.g. that τ̄1 ≤ τ̄2.

Summary of Shapes We need to compare the roots of f to τ̂ and τ̂2 to characterize the shapes
of F(τ). Recall that τ 6= τ̂1, τ̂2. We first analyze the case τ̂1 < τ̄i < τ̂2, for some i = 1, 2. In such
case it follows from Lemma 4.3 that P (τ̄i) � 0. Now, since

p(τ̄i)
>P−1(τ̄i)p̄(τ̄i)− ρ(τ̄i) = 0,

from Table 2.1 in §2.1 we know that F(τ̄i) is a point. This is possible only ifQ is a point, becauseA=

and B= are non-parallel and Q∩ (A=∪B=) = F(τ)∩ (A=∪B=). This implies that p>P−1p−ρ = 0
and α1 = α2 = 0. Hence, p(τ) = 0 and ρ(τ) = 0 for any τ ∈ R, which simplifies the characterization
of all the shapes of F(τ) for τ ∈ R. First, for any τ̂1 < τ < τ̂2 the quadric F(τ) is a point. Second,
the identity −P (τ̂i)0 = p(τ̂i) holds for τ̂1 and τ̂2. Thus, it follows from Case 1 in §2.1 that the
quadrics F̄(τ̂i), i = 1, 2, are two lines. Finally, for τ < τ̂1 and τ > τ̂2, the quadrics F(τ̂) are cones.

Now, if τ̄i /∈ (τ̂1, τ̂2), i = 1, 2, the shapes of F(τ) depend on the value of the discriminant (4.7).
We have the following cases:
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(a) τ = τ̄1 (b) τ = τ̄2

Figure 5: f has two distinct roots τ̄1, τ̄1 which are not coinciding with τ̂1 and τ̂2.

• If the discriminant (4.7) of f is not equal to zero, then τ̂2 < τ̄1 < τ̄2, or τ̄1 < τ̄2 < τ̂1, or
τ̄1 < τ̂1 < τ̂2 < τ̄2. In these cases we have that F(τ̂1) and F(τ̂2) are two paraboloids, and
F̄(τ̄1) and F(τ̄2) are two different cones. For illustrations see Figure 5.

• If the discriminant (4.7) of f is zero, then τ̄1 = τ̄2 < τ̂1 or τ̂2 < τ̄1 = τ̄2. In these cases F(τ̂1)
and F(τ̂2) are two paraboloids, and there is a unique cone F(τ̄1) = F(τ̄2). Observe that in
these cases one of the hyperplanes must be tangent to the hypersphere Q. For illustrations
see Figure 6.
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(a) One hyperplane tangent to the el-
lipsoid

(b) τ = τ̄1 = τ̄2

Figure 6: The two roots of f coincide, but are different from τ̂1 and τ̂2.
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4.2.3 P (τ) is Singular

If τ = τ̂1 or τ = τ̂2, then it follows from Lemma 4.3 that p(τ̂i), i = 1, 2 is singular. In this case we
have p(τ̂i) � 0 but not p(τ̂i) � 0. Thus, from §2.1 we have that F(τ̂i) is either a line, a cylinder, or
a paraboloid. The shape of F(τi) can be decided by verifying if p(τ̂i) is in the range of p(τ̂i). This
happens exactly when p(τ̂i) is orthogonal to the eigenvector corresponding to the zero eigenvalue
of p(τ̂i). Lemma 4.4 provides the zero eigenvectors of F(τi), i = 1, 2.

Lemma 4.4. The eigenvector for the zero eigenvalue of p(τ̂1) is (a2 + a1), and for the zero eigen-
value of P (τ̂2) is (a2 − a1).

Proof. For p(τ̂1), direct computation yields

p(τ̂1) (a2 + a1) =

(
I − a1a

>
2 + a2a

>
1

a>1 a2 + 1

)
(a2 + a1)

= (a2 + a1)−
(a2 + a1)

(
a>1 a2 + 1

)
a>1 a2 + 1

= 0,

and similarly for p(τ̂2), we obtain

p(τ̂2) (a2 − a1) =

(
I − a1a

>
2 + a2a

>
1

a>1 a2 − 1

)
(a2 − a1)

= (a2 − a1)−
(a2 − a1)

(
a>1 a2 − 1

)
a>1 a2 − 1

= 0.

Recall that a1 and a2 are linearly independent, thus the two eigenvectors are different from the
zero vector. This completes the proof.

Now we can compute the inner product of these eigenvectors with p(τ̂1) and p(τ̂2). Consider
first p(τ̂1), then we obtain:

p(τ̂1)
> (a1 + a2) =

(α1a
>
2 + α2a

>
1 ) (a1 + a2)

a>1 a2 + 1
= α1 + α2. (4.8)

For the case p(τ̂2) we obtain:

p(τ̂2)
> (a2 − a1) =

(α1a
>
2 + α2a

>
1 ) (a2 − a1)

a>1 a2 − 1
= α2 − α1. (4.9)

Recall that if (4.8) or (4.9) is not zero, then we have that either −p(τ̂1) is not in the range of p(τ̂1)
or −p(τ̂2) is not in the range of p(τ̂2), or we have both cases. Hence, from Case 2 in §2.1 either
F(τ̂1) or F(τ̂2) is a paraboloid, or both are paraboloids.

Summary of Shapes We use the discriminant of f in (4.7) to classify the remaining cases of
F(τ) at τ̂1, τ̂2, τ̄1, and τ̄2. Recall that τ̄1 ≤ τ̄2 and τ̂1 ≤ τ̂2. Then, we have the following cases:

• If the discriminant (4.7) of f is not equal to zero, then we need to consider two possibilities:
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� τ̂1 = τ̄1 and τ̂2 = τ̄2, which is illustrated in Figure 7. If f(τ̂1) = f(τ̂2) = 0, then

(α1 + α2)
2 = 0 (4.10)

(α1 − α2)
2 = 0, (4.11)

which implies that α1 = α2 = 0, i.e., both hyperplanes intersect at the origin, which is the
center of Q. Hence, for the vector xc = 0 the identity −p(τ̂i)xc = p̄(τ̂i) holds for τ̂1 and
τ̂2. Furthermore, since p(τ̂i) = 0 and ρ̄(τ̂i) = −1, then p(τ̂i)

>p(τ̂i)p(τ̂i) − ρ(τ̂i) = 1 > 0
for i = 1, 2. Thus, it follows from Case 1 in §2.1 that the quadrics F(τ̂i), i = 1, 2, are
two cylinders.

(a) τ = τ̄1 = τ̂1 (b) τ = τ̄2 = τ̂2

Figure 7: τ̄1 6= τ̄2, and τ̄1 = τ̂1, τ̄2 = τ̂2.

� Exactly one of the roots τ̄1, τ̄2 is equal to either τ̂1 or τ̂2, which is illustrated in Figure
8. Recall that if the discriminant is not equal to zero, then |α1| < 1 and |α2| < 1, i.e.,
neither of the hyperplanes A= or B= are tangent to Q. Assume that one of the roots is
equal to τ̂1. It follows from equations (4.10) and (4.8) that α1 = −α2, and that (a1 + a2)
is orthogonal to p(τ̂1). Now, let

xc =
α2

2
(a2 − a1). (4.12)

Then, we have

p(τ̂1)xc =

(
I − (a1a

>
2 + a2a

>
1 )

(a>1 a2 + 1)

)(
α2(a2 − a1)

2

)
=− α2(a1 − a2)

(a>1 a2 + 1)
= −p(τ̂1). (4.13)

Additionally, for the choice of xc in (4.12) we have that

x>c p(τ̂1)xc − ρ(τ̂1) =
α2
2(a2 − a1)>(a2 − a1)

2(a>1 a2 + 1)
− ρ(τ̂1) = 1− α2

2 > 0, (4.14)
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where the strict inequality follows since B= is non tangent to Q. As a result, from Case
1 in §2.1 we obtain that the quadric F(τ̂1) is a cylinder.

Similarly, when one of the roots equals τ̂2, we can choose

xc =
α2

2
(a2 + a1) . (4.15)

In this case, it follows from equations (4.11) and (4.9) that α1 = α2, and that (a2 − a1)
is orthogonal to p(τ̂2). Additionally, we have that

p(τ̂2)xc =

(
I − (a1a

>
2 + a2a

>
1 )

(a>1 a2 − 1)

)(
α2(a2 + a1)

2

)
=− α2(a2 + a1)

(a>1 a2 − 1)
= −p(τ̂2), (4.16)

and for the choice of xc in (4.15) we have that

x>c p(τ̂2)xc − ρ(τ̂2) = −α
2
2(a2 + a1)

>(a2 + a1)

2(a>1 a2 − 1)
− ρ(τ̂2) = 1− α2

2 > 0. (4.17)

As a result, from Case 1 in §2.1 we obtain that the quadric F(τ̂2) is a cylinder as well.

(a) τ = τ̄1 (b) τ = τ̄2 = τ̂1

Figure 8: f(τ) has two distinct roots, but one of the roots coincides with either τ̂1 or τ̂2.

• If the discriminant (4.7) of f in (4.7) is zero, then the two roots of f are equal, i.e., τ̄ = τ̄1 = τ̄2.
Let τ̄ = τ̂1, then from equation (4.10) we obtain the identity α1 = −α2. Now, since the
discriminant of f is zero, we have

α2
1 = α2

2 = 1, (4.18)

and it follows from Lemma 2.2 that the hyperplanes A= and B= are tangent to the ellipsoid Q.
Recall that for xc in (4.12) we have from Equation (4.13) that p(τ̂1)xc = −p(τ̂1). Furthermore,
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(b) τ = τ̄1 = τ̄2 = τ̂1

Figure 9: The two roots of f(τ) coincide with either τ̂1 or τ̂2.

from (4.14) and (4.18) we have that x>c p(τ̂1)xc − ρ(τ̂1) = 0. Hence, the quadric F(τ̂1) is a
line.

Similarly, if τ̄ = τ̂2, then from equation (4.11) we obtain α2 = α1, and the identity (4.18)
still holds. Then, for xc in (4.15) we have from (4.16) that P̄ (τ̂2)xc = −p(τ̂2) and from (4.17)
we have that x>c p(τ̂2)xc − ρ(τ̂2) = 0. Then, the quadric F(τ̂1) is a line in this case as well.
For illustrations of these cases see Figure 9.

4.2.4 Summarizing the Shapes of F(τ)

We can now summarize the possible shapes of the quadrics in the family {F(τ) | τ ∈ R} at τ̂1, τ̂2,
and at τ̄1, and τ̄2, where τ̂1 < τ̂2 and τ̄1 < τ̄2.

Theorem 4.5. The following cases may occur for the shape of F(τ):

• τ̂2 < τ̄1 < τ̄2, or τ̄1 < τ̄2 < τ̂1, or τ̄1 < τ̂1 < τ̂2 < τ̄2: F(τ̂1), F(τ̂2) are two paraboloids, and
F(τ̄1), F(τ̄2) are two cones.

• τ̄1 = τ̄2 < τ̂1 or τ̂2 < τ̄1 = τ̄2: F(τ̂1), F(τ̂2) are two paraboloids, and F(τ̄1) = F(τ̄2) is a cone.

• τ̄1 = τ̂1 and τ̂2 = τ̄2: F̂(τ̂1) = F(τ̄1), F(τ̂2) = F̂(τ̄2) are two cylinders.

• τ̄1 6= τ̂2 and exactly one of τ̄1 or τ̄2, is equal to either τ̂1 or τ̂2: either F(τ̂1) is a cylinder and
F(τ̂2) is a paraboloid, or F(τ̂2) is a cylinder and F̂(τ̂1) is a paraboloid. In both cases exactly
one of F̂(τ̄1) or F(τ̄2) is a cone.

• τ̄1 = τ̄2 = τ̂1 or τ̂2 = τ̄1 = τ̄2: either F(τ̂1) is a line and F̂(τ̂2) is a paraboloid or F(τ̂2) is a
line and F(τ̂1) is a paraboloid, correspondingly.

This completes the description of the family {F(τ) | τ ∈ R} of quadratic when P � 0 and A= and
B= are non-parallel.
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5 Generalization

It is important to highlight that the results presented in Theorems 3.2 and 4.1 apply for general
quadrics. No assumption is needed about the matrix P . On the other hand, in §3.2 and §4.2 we
assume that the initial quadric is an ellipsoid. This assumption indeed facilitates the analysis of
the family. However, the results obtained in §3.2 and §4.2 cover the cases where Q has an ID1
matrix P and the intersection with the hyperplanes are bounded. These cases are important because
they may occur as the feasible set of problem (MISOCO). We formalize this result, which follows
directly from Theorem 4.1 and Lemma 4.3, as the following corollary.

Corollary 5.1. If there exists a τ̃ ∈ R such that P (τ̃) � 0, then P (τ) can have at most one
non-positive eigenvalue.

Observe that in this case the analysis reduces to taking the base case at the value τ̃ , where
F(τ̃) is an ellipsoid.

Figure 10: A generalization of our problem: the intersection of a quadric with one negative eigen-
value.

Recall that the original motivation of this work is the analysis of a conic convex optimization
problem. However, the results presented here also cover cases as the one illustrated in Figure 10.
One can notice that in such cases there is a disjunction over a non-convex set.

6 Conclusions and Future Work

In this paper, we gave a complete characterization of the quadric surfaces that maintain a fixed
intersection with two hyperplanes. Such surfaces can be parametrized with only one parameter.
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We also analyzed the properties of these families and showed that they consist of quadrics with
at most one non-positive eigenvalue if P is PD. The interested reader can find a video illustration
of this family of quadrics showing its evolution for different values of τ at https://coral.ie.

lehigh.edu/projects/ciclops.
For our motivating application, the most important members of these families are the cones,

which can be used to obtain the convex hull of a disjunction in mixed integer second order conic
optimization (MISOCO). We showed that such cones always exist. The properties of the cones in
the context of MISOCO are being investigated now. One limitation of the theory presented in §3.2
and §4.2 is the assumption that P is positive definite. Geometrically, this assumption assures that
Q is an ellipsoid, or that there is a member of the family {F(τ) | τ ∈ R} of quadrics that is an
ellipsoid. Thus the intersections with the two hyperplanes are also (lower dimensional) ellipsoids.
This was also a crucial assumption in proving that P (τ) has at most one non-positive eigenvalue,
which simplified the description of the family {F(τ) | τ ∈ R}.

If P was indefinite, then the intersection of Q with one hyperplane may be an ellipsoid, while
the intersection with the other hyperplane can be a hyperboloid. This situation complicates the
description of the quadratic families. Nevertheless, if P has at most one non-positive eigenvalue,
the intersections of Q with the two hyperplanes do not need to be bounded. In this case, the
analysis in §3.2 and §4.2 can be extended. In such cases one can repeat the same analysis based on
the inertia of the matrix P . The details of this extension are the subject of further research, which
is needed for MISOCO problems, our targeted application.

References

[1] E. Balas, Disjunctive programming, in: P. L. Hammer, E. L. Johnson, B. H. Korte (Eds.),
Annals of Discrete Mathematics 5: Discrete Optimization, North Holland, 1979, pp. 3–51.

[2] F. Alizadeh, D. Goldfarb, Second-order cone programming, Mathematical Programming 95 (1)
(2003) 3–51.

[3] M. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second-order cone program-
ming, Linear Algebra and its Applications 284 (3) (1998) 193 – 228.
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