
Decomposition in Integer Linear Programming

M.V. Galati

Advanced Analytics - Operations R & D, SAS Institute, Chesterbrook, PA 19087

Ted K. Ralphs

Department of Industrial and System Engineering, Lehigh University, Bethlehem, PA 18015

COR@L Technical Report 04T-019-R1

Decomposition in Integer Linear Programming

M.V. Galati∗1 and Ted K. Ralphs†2

1Advanced Analytics - Operations R & D, SAS Institute, Chesterbrook, PA 19087
2Department of Industrial and System Engineering, Lehigh University, Bethlehem, PA

18015

Original Publication: September 27, 2004

Last Revised: August 16, 2005

Abstract

Both cutting plane methods and traditional decomposition methods are procedures that
compute a bound on the optimal value of an integer linear program (ILP) by constructing
an approximation to the convex hull of feasible solutions. This approximation is obtained by
intersecting the polyhedron associated with the continuous relaxation, which has an explicit
representation, with an implicitly defined polyhedron having a description of exponential size.
In this paper, we first review these classical procedures and then introduce a new class of bound-
ing methods called integrated decomposition methods, in which the bound yielded by traditional
approaches is potentially improved by introducing a second implicitly defined polyhedron. We
also discuss the concept of structured separation, which is related to the well-known template
paradigm for dynamically generating valid inequalities and is central to our algorithmic frame-
work. Finally, we briefly introduce a software framework for implementing the methods discussed
in the paper and illustrate the concepts through the presentation of applications.

1 Introduction

In this paper, we discuss the principle of decomposition as it applies to the computation of bounds
on the value of an optimal solution to an integer linear program (ILP). Most bounding procedures
for ILP are based on the generation of a polyhedron that approximates P, the convex hull of feasible
solutions. Solving an optimization problem over such a polyhedral approximation, provided it fully
contains P, produces a bound that can be used to drive a branch and bound algorithm. The
effectiveness of the bounding procedure depends largely on how well P can be approximated. The
most straightforward approximation is the continuous approximation, consisting simply of the linear
constraints present in the original ILP formulation. The bound resulting from this approximation
is frequently too weak to be effective, however. In such cases, it can be improved by dynamically
generating additional polyhedral information that can be used to augment the approximation.

∗matthew.galati@sas.com
†ted@lehigh.edu

2

Traditional dynamic procedures for augmenting the continuous approximation can be grouped
roughly into two categories. Cutting plane methods improve the approximation by dynamically
generating half-spaces containing P, i.e., valid inequalities, to form a second polyhedron, and then
intersect this second polyhedron with the continuous approximation to yield a final approximating
polyhedron. With this approach, the valid inequalities are generated by solution of an associated
separation problem. Generally, the addition of each valid inequality reduces the hypervolume of the
approximating polyhedron, resulting in a potentially improved bound. Because they dynamically
generate part of the description of the final approximating polyhedron as the intersection of half-
spaces (an outer representation), we refer to cutting plane methods as outer approximation methods.

Traditional decomposition methods, on the other hand, improve the approximation by dy-
namically generating the extreme points of a polyhedron containing P, which is again intersected
with the continuous approximation, as in the cutting plane method, to yield a final approximating
polyhedron. In this case, each successive extreme point is generated by solution of an associated op-
timization problem and at each step, the hypervolume of the approximating polyhedron is increased.
Because decomposition methods dynamically generate part of the description of the approximating
polyhedron as the convex hull of a finite set (an inner representation), we refer to these methods
as inner approximation methods.

Both inner and outer methods work roughly by alternating between a procedure for computing
solution and bound information (the master problem) and a procedure for augmenting the current
approximation (the subproblem). The two approaches, however, differ in important ways. Outer
methods require that the master problem produce “primal” solution information, which then be-
comes the input to the subproblem, a separation problem. Inner methods require “dual” solution
information, which is then used as the input to the subproblem, an optimization problem. In this
sense, the two approaches can be seen as “dual” to one another. A more important difference,
however, is that the valid inequalities generated by an inner method can be valid with respect to
any polyhedron containing P (see Section 5), whereas the extreme points generated by an inner
method must ostensibly be from a single polyhedron. Procedures for generating new valid inequal-
ities can also take advantage of knowledge of previously generated valid inequalities to further
improve the approximation, whereas with inner methods, such “backward-looking” procedures do
not appear to be possible. Finally, the separation procedures used in the cutting plane method can
be heuristic in nature as long as it can be proven that the resulting half-spaces do actually contain
P. Although heuristic methods can be employed in solving the optimization problem required of
an inner method, valid bounds are only obtained when using exact optimization. On the whole,
outer methods have proven to be more flexible and powerful and this is reflected in their position
as the approach of choice for solving most ILPs.

As we will show, however, inner methods do still have an important role to play. Although
inner and outer methods have traditionally been considered separate and distinct, it is possible,
in principle, to integrate them in a straightforward way. By doing so, we obtain bounds at least
as good as those yielded by either approach alone. In such an integrated method, one alternates
between a master problem that produces both primal and dual information, and either one of two
subproblems, one an optimization problem and the other a separation problem. This may result in
significant synergy between the subproblems, as information generated by solving the optimization
subproblem can be used to generate cutting planes and vice versa.

The remainder of the paper is organized as follows. In Section 2, we introduce definitions and
notation. In Section 3, we describe the principle of decomposition and its application to integer

3

linear programming in a traditional setting. In Section 4, we extend the traditional framework to
show how the cutting plane method can be integrated with either the Dantzig-Wolfe method or the
Lagrangian method to yield improved bounds. In Section 5, we discuss solution of the separation
subproblem and introduce an extension of the well-known template paradigm, called structured
separation, inspired by the fact that separation of structured solutions is frequently easier than
separation of arbitrary real vectors. We also introduce a decomposition-based separation algorithm
called decompose and cut that exploits structured separation. In Section 6, we discuss some of
the algorithms that can be used to solve the master problem. In Section 7, we describe a software
framework for implementing the algorithms presented in the paper. Finally, in Section 8, we present
applications that illustrate the principles discussed herein.

2 Definitions and Notation

For ease of exposition, we consider only pure integer linear programs with bounded, nonempty
feasible regions, although the methods presented herein can be extended to more general settings.
For the remainder of the paper, we consider an ILP whose feasible set is the integer vectors contained
in the polyhedron Q = {x ∈ Rn | Ax ≥ b}, where A ∈ Qm×n is the constraint matrix and b ∈ Qm

is the vector of requirements. Let F = Q ∩ Zn be the feasible set and let P be the convex hull of
F . The canonical optimization problem for P is that of determining

zIP = min
x∈Zn
{c>x | Ax ≥ b} = min

x∈F
{c>x} = min

x∈P
{c>x} (1)

for a given cost vector c ∈ Qn, where zIP = ∞ if F is empty. We refer to such an ILP by
the notation ILP (P, c). In what follows, we also consider the equivalent decision version of this
problem, which is to determine, for a given upper bound U , whether there is a member of P with
objective function value strictly better than U . We denote by OPT (P, c, U) a subroutine for solving
this decision problem. The subroutine is assumed to return either the empty set, or a set of one or
more (depending on the situation) members of P with objective value better than U .

A related problem is the separation problem for P, which is typically already stated as a decision
problem. Given x ∈ Rn, the problem of separating x from P is that of deciding whether x ∈ P
and if not, determining a ∈ Rn and β ∈ R such that a>y ≥ β ∀y ∈ P but a>x < β. A pair
(a, β) ∈ Rn+1 such that a>y ≥ β ∀y ∈ P is a valid inequality for P and is said to be violated by
x ∈ Rn if a>x < β. We denote by SEP (P, x) a subroutine that separates an arbitrary vector
x ∈ Rn from polyhedron P, returning either the empty set or a set of one or more violated valid
inequalities. Note that the optimization form of the separation problem is that of finding the most
violated inequality and is equivalent to the decision form stated here.

A closely related problem is the facet identification problem, which restricts the generated in-
equalities to only those that are facet-defining for P. In [30], it was shown that the facet identifica-
tion problem for P is polynomially equivalent to the optimization problem for P (in the worst case
sense). However, a theme that arises in what follows is that the complexity of optimization and
separation can vary significantly if either the input or the output must have known structure. If the
solution to an optimization problem is required to be integer, the problem generally becomes much
harder to solve. On the other hand, if the input vector to a separation problem is an integral vector,
then the separation problem frequently becomes much easier to solve in the worst case. From the
dual point of view, if the input cost vector of an optimization problem has known structure, such as
being integral, this may make the problem easier. Requiring the output of the separation problem

4

to have known structure is known as the template paradigm and may also make the separation
problem easier, but such a requirement is essentially equivalent to enlarging P. These concepts are
discussed in more detail in Section 5.

3 The Principle of Decomposition

We now formalize some of the notions described in the introduction. Implementing a branch and
bound algorithm for solving an ILP requires a procedure that will generate a lower bound as close
as possible to the optimal value zIP . The most commonly used method of bounding is to solve
the linear programming (LP) relaxation obtained by removing the integrality requirement from the
ILP formulation. The LP Bound is given by

zLP = min
x∈Rn
{c>x | Ax ≥ b} = min

x∈Q
{c>x}, (2)

and is obtained by solving a linear program with the original objective function c over the poly-
hedron Q. It is clear that zLP ≤ zIP since P ⊆ Q. This LP relaxation is usually much easier to
solve than the original ILP, but zLP may be arbitrarily far away from zIP in general, so we need
to consider more effective procedures.

In most cases, the description of Q is small enough that it can be represented explicitly and
the bound computed using a standard linear programming algorithm. To improve the LP bound,
decomposition methods construct a second approximating polyhedron that can be intersected with
Q to form a better approximation. Unlike Q, this second polyhedron usually has a description of
exponential size, and we must generate portions of its description dynamically. Such a dynamic
procedure is the basis for both cutting plane methods, which generate an outer approximation, and
for traditional decomposition methods, such as the Dantzig-Wolfe method [19] and the Lagrangian
method [22, 14], which generate inner approximations.

For the remainder of this section, we consider the relaxation of (1) defined by

min
x∈Zn
{c>x | A′x ≥ b′} = min

x∈F ′
{c>x} = min

x∈P ′
{c>x}, (3)

where F ⊂ F ′ = {x ∈ Zn | A′x ≥ b′} for some A′ ∈ Qm′×n, b′ ∈ Qm′ and P ′ is the convex
hull of F ′. Along with P ′ is associated a set of side constraints [A′′, b′′] ∈ Qm′′×(n+1) such that
Q = {x ∈ Rn | A′x ≥ b′, A′′x ≥ b′′}. We denote by Q′ the polyhedron described by the inequalities
[A′, b′] and by Q′′ the polyhedron described by the inequalities [A′′, b′′]. Thus, Q = Q′ ∩ Q′′ and
F = {x ∈ Zn | x ∈ P ′∩Q′′}. For the decomposition to be effective, we must have that P ′∩Q′′ ⊂ Q,
so that the bound obtained by optimizing over P ′ ∩ Q′′ is at least as good as the LP bound and
strictly better for some objective functions. The description of Q′′ must also be “small” so that we
can construct it explicitly. Finally, we assume that there exists an effective algorithm for optimizing
over P ′ and thereby, for separating arbitrary real vectors from P ′. We are deliberately using the
term effective here to denote an algorithm that has an acceptable average-case running time, since
this is more relevant than worst-case behavior in our computational framework.

Traditional decomposition methods can all be viewed as techniques for iteratively computing
the bound

zD = min
x∈P ′
{c>x | A′′x ≥ b′′} = min

x∈F ′∩Q′′
{c>x} = min

x∈P ′∩Q′′
{c>x}. (4)

5

In Sections 3.1–3.3 below, we review the cutting plane method, the Dantzig-Wolfe method, and
the Lagrangian method, all classical approaches that can be used to compute this bound. The
common perspective motivates Section 4, where we consider a new class of decomposition methods
called integrated decomposition methods, in which both inner and outer approximation techniques
are used in tandem. In both this section and the next, we describe the methods at a high level and
leave until later sections the discussion of how the master problem and subproblems are solved. To
illustrate the effect of applying the decomposition principle, we now introduce two examples that
we build on throughout the paper. The first is a simple generic ILP.

Example 1 Let the following be the formulation of a given ILP:

min x1,

7x1 − x2 ≥ 13, (5)

x2 ≥ 1, (6)

−x1 + x2 ≥ −3, (7)

−4x1 − x2 ≥ −27, (8)

−x2 ≥ −5, (9)

0.2x1 − x2 ≥ −4, (10)

−x1 − x2 ≥ −8, (11)

−0.4x1 + x2 ≥ 0.3, (12)

x1 + x2 ≥ 4.5, (13)

3x1 + x2 ≥ 9.5, (14)

0.25x1 − x2 ≥ −3, (15)

x ∈ Z2. (16)

In this example, we let

P = conv{x ∈ R2 | x satisfies (5)− (16)},
Q′ = {x ∈ R2 | x satisfies (5)− (10)},
Q′′ = {x ∈ R2 | x satisfies (11)− (15)}, and

P ′ = conv(Q′ ∩ Z2).

In Figure 1(a), we show the associated polyhedra, where the set of feasible solutions F = Q′ ∩
Q′′ ∩ Z2 = P ′ ∩ Q′′ ∩ Z2 and P = conv(F). Figure 1(b) depicts the continuous approximation
Q′ ∩Q′′, while Figure 1(c) shows the improved approximation P ′ ∩Q′′. For the objective function
in this example, optimization over P ′ ∩ Q′′ leads to an improvement over the LP bound obtained
by optimization over Q.

6

(a) (b) (c)

(2,1)
P

P′

Q′′

Q′

P

Q′ ∩ Q′′

P

P′ ∩ Q′′

(2,1) (2,1)

Figure 1: Polyhedra (Example 1)

In our second example, we consider the classical Traveling Salesman Problem (TSP), a well-known
combinatorial optimization problem. The TSP is in the complexity class NP-hard, but lends itself
well to the application of the principle of decomposition, as the standard formulation contains an
exponential number of constraints and has a number of well-solved combinatorial relaxations.

Example 2 The Traveling Salesman Problem is that of finding a minimum cost tour in an
undirected graph G with vertex set V = {0, 1, ..., |V | − 1} and edge set E. We assume without
loss of generality that G is complete. A tour is a connected subgraph for which each node has
degree 2. The TSP is then to find such a subgraph of minimum cost, where the cost is the sum
of the costs of the edges comprising the subgraph. With each edge e ∈ E, we therefore associate
a binary variable xe, indicating whether edge e is part of the subgraph, and a cost ce ∈ R. Let
δ(S) = {{i, j} ∈ E | i ∈ S, j /∈ S}, E(S : T) = {{i, j} | i ∈ S, j ∈ T}, E(S) = E(S : S) and
x(F) =

∑
e∈F xe. Then an ILP formulation of the TSP is as follows:

min
∑
e∈E

cexe,

x(δ({i})) = 2 ∀i ∈ V, (17)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 1, (18)

0 ≤ xe ≤ 1 ∀e ∈ E, (19)

xe ∈ Z ∀e ∈ E. (20)

The continuous approximation, referred to as the TSP polyhedron, is then

P = conv{x ∈ RE | x satisfies (17)− (20)}.

The equations (17) are the degree constraints, which ensure that each vertex has degree two in the
subgraph, while the inequalities (18) are known as the subtour elimination constraints (SECs) and
enforce connectivity. Since there are an exponential number of SECs, it is impossible to explicitly

7

construct the LP relaxation of TSP for large graphs. Following the pioneering work of Held and
Karp [35], however, we can apply the principle of decomposition by employing the well-known
Minimum 1-Tree Problem, a combinatorial relaxation of TSP.

A 1-tree is a tree spanning V \ {0} plus two edges incident to vertex 0. A 1-tree is hence a
subgraph containing exactly one cycle through vertex 0. The Minimum 1-Tree Problem is to find
a 1-tree of minimum cost and can thus be formulated as follows:

min
∑
e∈E

cexe,

x(δ({0})) = 2, (21)

x(E(V \ {0})) = |V | − 2, (22)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V \ {0}, 3 ≤ |S| ≤ |V | − 1, (23)

xe ∈ {0, 1} ∀e ∈ E. (24)

A minimum cost 1-tree can be obtained easily as the union of a minimum cost spanning tree
of V \ {0} plus two cheapest edges incident to vertex 0. For this example, we thus let P ′ =
conv({x ∈ RE | x satisfies (21) − (24)}) be the 1-Tree Polyhedron, while the degree and bound
constraints comprise the polyhedron Q′′ = {x ∈ RE | x satisfies (17) and (19)} and Q′ = {x ∈
RE | x satisfies (18)}. Note that the bound constraints appear in the descriptions of both polyhedra
for computational convenience. The set of feasible solutions to TSP is then F = P ′ ∩Q′′ ∩ ZE .

3.1 Cutting Plane Method

Using the cutting plane method, the bound zD can be obtained by dynamically generating portions
of an outer description of P ′. Let [D, d] denote the set of facet-defining inequalities of P ′, so that

P ′ = {x ∈ Rn | Dx ≥ d}. (25)

Then the cutting plane formulation for the problem of calculating zD can be written as

zCP = min
x∈Q′′

{c>x | Dx ≥ d}. (26)

This is a linear program, but since the set of valid inequalities [D, d] is potentially of exponential
size, we dynamically generate them by solving a separation problem. An outline of the method is
presented in Figure 2.

In Step 2, the master problem is a linear program whose feasible region is the current outer
approximation PtO, defined by a set of initial valid inequalities plus those generated dynamically in
Step 3. Solving the master problem in iteration t, we generate the relaxed (primal) solution xtCP
and a valid lower bound. In the figure, the initial set of inequalities is taken to be those of Q′′,
since it is assumed that the facet-defining inequalities for P ′, which dominate those of Q′, can be
generated dynamically. In practice, however, this initial set may be chosen to include those of Q′
or some other polyhedron, on an empirical basis.

In Step 3, we solve the subproblem, which is to generate a set of improving valid inequalities,
i.e., valid inequalities that improve the bound when added to the current approximation. This step
is usually accomplished by applying one of the many known techniques for separating xtCP from

8

Cutting Plane Method

Input: An instance ILP (P, c).
Output: A lower bound zCP on the optimal solution value for the instance, and
x̂CP ∈ Rn such that zCP = c>x̂CP .

1. Initialize: Construct an initial outer approximation

P0
O = {x ∈ Rn | D0x ≥ d0} ⊇ P, (27)

where D0 = A′′ and d0 = b′′, and set t← 0.

2. Master Problem: Solve the linear program

ztCP = min
x∈Rn
{c>x | Dtx ≥ dt} (28)

to obtain the optimal value ztCP = minx∈PtO{c
>x} ≤ zIP and optimal primal

solution xtCP .

3. Subproblem: Call the subroutine SEP (P, xtCP) to generate a set of poten-
tially improving valid inequalities [D̃, d̃] for P, violated by xtCP .

4. Update: If violated inequalities were found in Step 3, set [Dt+1, dt+1] ←[
Dt dt

D̃ d̃

]
to form a new outer approximation

Pt+1
O = {x ∈ Rn | Dt+1x ≤ dt+1} ⊇ P, (29)

and set t← t+ 1. Go to Step 2.

5. If no violated inequalities were found, output zCP = ztCP ≤ zIP and x̂CP =
xtCP .

Figure 2: Outline of the cutting plane method

9

P. The algorithmic details of the generation of valid inequalities are covered more thoroughly in
Section 5, so the unfamiliar reader may wish to refer to this section for background or to [1] for a
complete survey of techniques. It is well known that violation of xtCP is a necessary condition for
an inequality to be improving, and hence, we generally use this condition to judge the potential
effectiveness of generated valid inequalities. However, this condition is not sufficient and unless the
inequality separates the entire optimal face of PtO, it will not actually be improving. Because we
want to refer to these results later in the paper, we state them formally as theorem and corollary
without proof. See [59] for a thorough treatment of the theory of linear programming that leads to
this result.

Theorem 1 Let F be the face of optimal solutions to an LP over a nonempty, bounded polyhedron
X with objective function vector f . Then (a, β) is an improving inequality for X with respect to f ,
i.e.,

min{f>x | x ∈ X, a>x ≥ β} > min{f>x | x ∈ X}, (30)

if and only if a>y < β for all y ∈ F .

Corollary 1 If (a, β) is an improving inequality for X with respect to f , then a>x̂ < β, where x̂
is any optimal solution to the linear program over X with objective function vector f .

Even in the case when the optimal face cannot be separated in its entirety, the augmented cutting
plane LP must have a different optimal solution, which in turn may be used to generate more
potential improving inequalities. Since the condition of Theorem 1 is difficult to verify, one typically
terminates the bounding procedure when increases resulting from additional inequalities become
“too small.”

If we start with the continuous approximation P0
O = Q′′ and generate only facet-defining in-

equalities of P ′ in Step 3, then the procedure described here terminates in a finite number of steps
with the bound zCP = zD (see [52]). Since PtO ⊇ P ′ ∩ Q′′ ⊇ P, each step yields an approximation
for P, along with a valid bound. In Step 3, we are permitted to generate any valid inequality for
P, however, not just those that are facet-defining for P ′. In theory, this means that the cutting
plane method can be used to compute the bound zIP exactly. However, this is rarely practical.

To illustrate the cutting plane method, we show how it could be applied to generate the bound
zD for the ILPs of Examples 1 and 2. Since we are discussing the computation of the bound zD,
we only generate facet-defining inequalities for P ′ in these examples. We discuss more general
scenarios later in the paper.

Example 1 (Continued) We define the initial outer approximation to be P0
O = Q′ ∩Q′′ = {x ∈

R2 | x satisfies (5)− (15)}, the continuous approximation.

Iteration 0: Solving the master problem over P0
O, we find an optimal primal solution x0

CP =
(2.25, 2.75) with bound z0

CP = 2.25, as shown in Figure 3(a). We then call the subroutine
SEP (P, x0

CP), generating facet-defining inequalities of P ′ that are violated by x0
CP . One such

facet-defining inequality, 3x1 − x2 ≥ 5, is pictured in Figure 3(a). We add this inequality to form
a new outer approximation P1

O.

Iteration 1: We again solve the master problem, this time over P1
O, to find an optimal primal

solution x1
CP = (2.42, 2.25) and bound z1

CP = 2.42, as shown in Figure 3(b). We then call the

10

(a) (b)

x0CP = (2.25, 2.75)

(2, 1) (2, 1)

P

P′

P0
O = Q′ ∩ Q′′

P

P′

P1
O = P0

O ∩ {x ∈ Rn | 3x1 − x2 ≥ 5}

x1CP = (2.42, 2.25)

Figure 3: Cutting plane method (Example 1)

subroutine SEP (P, x1
CP). However, as illustrated in Figure 3(b), there are no more facet-defining

inequalities violated by x1
CP . In fact, further improvement in the bound would necessitate the

addition of valid inequalities violated by points in P ′. Since we are only generating facets of P ′ in
this example, the method terminates with bound zCP = 2.42 = zD.

We now consider the use of the cutting plane method for generating the bound zD for the TSP of
Example 2. Once again, we only generate facet-defining inequalities for P ′, the 1-tree polyhedron.

Example 2 (Continued) We define the initial outer approximation to be comprised of the
degree constraints and the bound constraints, so that

P0
O = Q′′ = {x ∈ RE | x satisfies (17) and (19)}.

The bound zD is then obtained by optimizing over the intersection of the 1-tree polyhedron with
the polyhedron Q′′ defined by constraints (17) and (19). Note that because the 1-tree polyhedron
has integer extreme points, we have that zD = zLP in this case. To calculate zD, however, we must
dynamically generate violated facet-defining inequalities (the SECs (23)) of the 1-tree polyhedron
P ′ defined earlier. Given a vector x̂ ∈ RE satisfying (17) and (19), the problem of finding an
inequality of the form (23) violated by x̂ is equivalent to the well-known minimum cut problem,
which can be nominally solved in O(|V |4) [53]. We can use this approach to implement Step 3 of
the cutting plane method and hence compute the bound zD effectively. As an example, consider
the vector x̂ pictured graphically in Figure 4, obtained in Step 2 of the cutting plane method. In
the figure, only edges e for which x̂e > 0 are shown. Each edge e is labeled with the value x̂e,
except for edges e with x̂e = 1. The circled set of vertices S = {0, 1, 2, 3, 7} define a SEC violated
by x̂, since x̂(E(S)) = 4.6 > 4.0 = |S| − 1.

11

0

1

2

0.6

3

0.2

0.8

0.2

4

5

6

0.8

7

0.8

8

9

0.6

10

11

0.4

0.2

12

0.2

0.2

0.2

13

0.4

0.6
0.8

14

0.6

0.2

0.2

15

0.2

0.2

0.2

0.8

0.6

Figure 4: Finding violated inequalities in the cutting plane method (Example 2)

3.2 Dantzig-Wolfe Method

In the Dantzig-Wolfe method, the bound zD can be obtained by dynamically generating portions
of an inner description of P ′ and intersecting it with Q′′. Consider Minkowski’s Theorem, which
states that every bounded polyhedron is finitely generated by its extreme points [52]. Let E ⊆ F ′
be the set of extreme points of P ′, so that

P ′ = {x ∈ Rn | x =
∑
s∈E

sλs,
∑
s∈E

λs = 1, λs ≥ 0 ∀s ∈ E}. (31)

Then the Dantzig-Wolfe formulation for computing the bound zD is

zDW = min
x∈Rn
{c>x | A′′x ≥ b′′, x =

∑
s∈E

sλs,
∑
s∈E

λs = 1, λs ≥ 0 ∀s ∈ E}. (32)

By substituting out the original variables, this formulation can be rewritten in the more familiar
form

zDW = min
λ∈RE+

{c>(
∑
s∈E

sλs) | A′′(
∑
s∈E

sλs) ≥ b′′,
∑
s∈E

λs = 1}. (33)

This is a linear program, but since the set of extreme points E is potentially of exponential size,
we dynamically generate those that are relevant by solving an optimization problem over P ′. An
outline of the method is presented in Figure 5.

In Step 2, we solve the master problem, which is a restricted linear program obtained by
substituting E t for E in (33). In Section 6, we discuss several alternatives for solving this LP.
In any case, solving it results in a primal solution λtDW , and a dual solution consisting of the
dual multipliers utDW on the constraints corresponding to [A′′, b′′] and the multiplier αtDW on the
convexity constraint. The dual solution is needed to generate the improving columns in Step 3. In
each iteration, we are generating an inner approximation, PtI ⊆ P ′, the convex hull of E t. Thus
PtI ∩ Q′′ may or may not contain P and the bound returned from the master problem in Step 2,
z̄tDW , provides an upper bound on zDW . Nonetheless, it is easy to show (see Section 3.3) that an

12

Dantzig-Wolfe Method

Input: An instance ILP (P, c).
Output: A lower bound zDW on the optimal solution value for the instance, a primal
solution λ̂DW ∈ RE , and a dual solution (ûDW , α̂DW) ∈ Rm′′+1.

1. Initialize: Construct an initial inner approximation

P0
I = {

∑
s∈E0

sλs |
∑
s∈E0

λs = 1, λs ≥ 0 ∀s ∈ E0, λs = 0 ∀s ∈ E \ E0} ⊆ P ′ (34)

from an initial set E0 of extreme points of P ′ and set t← 0.

2. Master Problem: Solve the Dantzig-Wolfe reformulation

z̄tDW = min
λ∈RE+

{c>(
∑
s∈E

sλs) | A′′(
∑
s∈E

sλs) ≥ b′′,
∑
s∈E

λs = 1, λs = 0 ∀s ∈ E \ E t}

(35)
to obtain the optimal value z̄tDW = minPtI∩Q′′ c

>x ≥ zDW , an optimal primal

solution λtDW ∈ RE+, and an optimal dual solution (utDW , α
t
DW) ∈ Rm′′+1.

3. Subproblem: Call the subroutine OPT (P ′, c>− (utDW)>A′′, αtDW), generat-
ing a set of Ẽ of improving members of E with negative reduced cost, where
the reduced cost of s ∈ E is

rc(s) = (c> − (utDW)>A′′)s− αtDW . (36)

If s̃ ∈ Ẽ is the member of E with smallest reduced cost, then ztDW = rc(s̃) +
αtDW + (utDW)>b′′ ≤ zDW provides a valid lower bound.

4. Update: If Ẽ 6= ∅, set E t+1 ← E t ∪ Ẽ to form the new inner approximation

Pt+1
I = {

∑
s∈Et+1

sλs |
∑

s∈Et+1

λs = 1, λs ≥ 0 ∀s ∈ E t+1, λs = 0 ∀s ∈ E\E t+1} ⊆ P ′,

(37)
and set t← t+ 1. Go to Step 2.

5. If Ẽ = ∅, output the bound zDW = z̄tDW = ztDW , λ̂DW = λtDW , and
(ûDW , α̂DW) = (utDW , α

t
DW).

Figure 5: Outline of the Dantzig-Wolfe method

13

optimal solution to the subproblem solved in Step 3 yields a valid lower bound. In particular, if s̃
is a member of E with the smallest reduced cost in Step 3, then

ztDW = c>s̃+ (utDW)>(b′′ −A′′s̃) (38)

is a valid lower bound. This means that, in contrast to the cutting plane method, where a valid
lower bound is always available, the Dantzig-Wolfe method only yields a valid lower bound when
the subproblem is solved to optimality, i.e., the optimization version is solved, as opposed to the
decision version. This need not be done in every iteration, as described below.

In Step 3, we search for improving members of E , where, as in the previous section, this means
members that when added to E t yield an improved bound. It is less clear here, however, which
bound we would like to improve, z̄tDW or ztDW . A necessary condition for improving z̄tDW is the
generation of a column with negative reduced cost. In fact, if one considers (38), it is clear that
this condition is also necessary for improvement of ztDW . However, we point out again that the
subproblem must be solved to optimality in order to update the bound ztDW . In either case,
however, we are looking for members of E with negative reduced cost. If one or more such members
exist, we add them to E t and iterate.

An area that deserves some deeper investigation is the relationship between the solution obtained
by solving the reformulation (35) and the solution that would be obtained by solving an LP directly
over PtI ∩ Q′′ with the objective function c. Consider the primal optimal solution λtDW , which we
refer to as an optimal decomposition. If we combine the members of E t using λtDW to obtain an
optimal fractional solution

xtDW =
∑
s∈Et

s(λtDW)s, (39)

then we see that z̄tDW = c>xtDW . In fact, xtDW ∈ PtI ∩ Q′′ is an optimal solution to the linear
program solved directly over PtI ∩Q′′ with objective function c.

The optimal fractional solution plays an important role in the integrated methods to be intro-
duced later. To illustrate the Dantzig-Wolfe method and the role of the optimal fractional solution
in the method, we show how to apply it to generate the bound zD for the ILP of Example 1.

Example 1 (Continued) For the purposes of illustration, we begin with a randomly generated
initial set of points E0 = {(4, 1), (5, 5)}. Taking their convex hull, we form the initial inner approx-
imation P0

I = conv(E0), as illustrated in Figure 6(a).

Iteration 0. Solving the master problem with inner polyhedron P0
I , we obtain an optimal pri-

mal solution (λ0
DW)(4,1) = 0.75, (λ0

DW)(5,5) = 0.25, x0
DW = (4.25, 2), and bound z̄0

DW = 4.25. Since
constraint (12) is binding at x0

DW , the only nonzero component of u0
DW is (u0

DW)(12) = 0.28, while
the dual variable associated with the convexity constraint has value α0

DW = 4.17. All other dual
variables have value zero. Next, we search for an extreme point of P ′ with negative reduced cost, by
solving the subproblem OPT (P ′, c>− (utDW)>A′′, α0

DW). From Figure 6(a), we see that s̃ = (2, 1).
This gives a valid lower bound z0

DW = 2.03. We add the corresponding column to the restricted
master and set E1 = E0 ∪ {(2, 1)}.

Iteration 1. The next iteration is depicted in Figure 6(b). First, we solve the master problem
with inner polyhedron P1

I = conv(E1) to obtain (λ1
DW)(5,5) = 0.21, (λ1

DW)(2,1) = 0.79, x1
DW =

14

(b) (c)
(a)

x2DW = (2.42, 2.25)

P

P′ P′

c> − û>A”c>

c> − û>A”

c> − û>A”

(2, 1) (2, 1) (2, 1)

Q′′ Q′′

P

Q′′

P

P′

P1
I = conv(E1) ⊂ P′ P2

I = conv(E2) ⊂ P′P0
I = conv(E0) ⊂ P′

s̃ = (3, 4)

E1

s̃ = (2, 1)

E0

E2

x0DW = (4.25, 2) x1DW = (2.64, 1.86)

Figure 6: Dantzig-Wolfe method (Example 1)

(2.64, 1.86), and bound and z̄1
DW = 2.64. This also provides the dual solution (u1

DW)(13) = 0.43

and α1
DW = 0.71 (all other dual values are zero). Solving OPT (P ′, c> − u1

DWA
′′, α1

DW), we obtain
s̃ = (3, 4), and z1

DW = 1.93. We add the corresponding column to the restricted master and set
E2 = E1 ∪ {(3, 4)}.

Iteration 2 The final iteration is depicted in Figure 6(c). Solving the master problem once
more with inner polyhedron P2

I = conv(E2), we obtain (λ2
DW)(2,1) = 0.58 and (λ2

DW)(3,4) = 0.42,
x2
DW = (2.42, 2.25), and bound z̄2

DW = 2.42. This also provides the dual solution (u2
DW)(14) = 0.17

and α2
DW = 0.83. Solving OPT (P ′.c> − u2

DWA
′′, α2

DW), we conclude that Ẽ = ∅. We therefore
terminate with the bound zDW = 2.42 = zD.

As a further brief illustration, we return to the TSP example introduced earlier.

Example 2 (Continued) As we noted earlier, the Minimum 1-Tree Problem can be solved by
computing a minimum cost spanning tree on vertices V \ {0}, and then adding two cheapest edges
incident to vertex 0. This can be done in O(|E| log |V |) using standard algorithms. In applying the
Dantzig-Wolfe method to compute zD using the decomposition described earlier, the subproblem
to be solved in Step 3 is a Minimum 1-Tree Problem. Because we can solve this problem effectively,
we can apply the Dantzig-Wolfe method in this case. As an example of the result of solving the
Dantzig-Wolfe master problem (35), Figure 7 depicts an optimal fractional solution (a) to a Dantzig-
Wolfe master LP and the six extreme points 7(b-g) of the 1-tree polyhedron P ′, with nonzero weight
comprising an optimal decomposition. We return to this figure later in Section 4.

Now consider the set S(u, α), defined as

S(u, α) = {s ∈ E | (c> − u>A′′)s = α}, (40)

where u ∈ Rm′′ and α ∈ R. The set S(utDW , α
t
DW) is the set of members of E with reduced cost

15

0

0

0 0

0

11

15

14

13 12

0

0

1

1

1

1

1 1

1

2

2
2

2

2

2

2

3

3

33

3
3

3

4

4

4

4

4

4

4

5

5

5 5

5

5

5

6

6

6

6
6

6

6

7 7
7

7

7

77

8

8

8

8

8

10

88

9

9 9

9 9

9

9

1
1

1

1

1

1 0

00 0

0

0

1
11

1
1

1 1

1
11

1

1

1 1

1
1

12

1

2

2
22

2
1

11

1
11

33

3

3

33

1 1
1

1 1

44 4

4
1

4

4

11

1
11

1

5 5

5

5

5 5

0.2

0.5

0.5

0.5

0.3

0.2

0.5

0.5

0.5

0.7
0.3

0.3

(d) λ̂2 = 0.2

(e) λ̂3 = 0.1 (f) λ̂4 = 0.1 (g) λ̂5 = 0.1

(a) x̂

(b) λ̂0 = 0.3 (c) λ̂1 = 0.2

Figure 7: Dantzig-Wolfe method (Example 2)

zero at optimality for (35) in iteration t. It follows that conv(S(utDW , α
t
DW)) is in fact the face of

optimal solutions to the linear program solved over PtI with objective function c> − u>A′′. This
line of reasoning culminates in the following theorem tying together the set S(utDW , α

t
DW) defined

above, the vector xtDW , and the optimal face of solutions to the LP over the polyhedron PtI ∩Q′′.

Theorem 2 conv(S(utDW , α
t
DW)) is a face of PtI and contains xtDW .

Proof. We first show that conv(S(utDW , α
t
DW)) is a face of PtI . Observe that

(c> − (utDW)>A′′, αtDW)

defines a valid inequality for PtI since αtDW is the optimal value for the problem of minimizing over
PtI with objective function c> − (utDW)>A′′. Thus, the set

G = {x ∈ PtI | (c> − (utDW)>A′′)x = αtDW }, (41)

is a face of PtI that contains S(utDW , α
t
DW). We will show that conv(S(utDW , α

t
DW)) = G. Since

G is convex and contains S(utDW , α
t
DW), it also contains conv(S(utDW , α

t
DW)), so we just need to

show that conv(S(utDW , α
t
DW)) contains G. We do so by observing that the extreme points of G

are elements of S(utDW , α
t
DW). By construction, all extreme points of PtI are members of E and

the extreme points of G are also extreme points of PtI . Therefore, the extreme points of G must

16

be members of E and contained in S(utDW , α
t
DW). The claim follows and conv(S(utDW , α

t
DW)) is a

face of PtI .

The fact that xtDW ∈ conv(S(utDW , α
t
DW)) follows from the fact that xtDW is a convex combination

of members of S(utDW , α
t
DW).

An important consequence of Theorem 2 is that the face of optimal solutions to the LP over the
polyhedron PtI ∩ Q′′ is actually contained in conv(S(utDW , α

t
DW)) ∩ Q′′, as stated in the following

corollary.

Corollary 2 If F is the face of optimal solutions to the linear program solved directly over PtI ∩Q′′
with objective function vector c, then F ⊆ conv(S(utDW , α

t
DW)) ∩Q′′.

Proof. Let x̂ ∈ F be given. Then we have that x̂ ∈ PtI ∩Q′′ by definition, and

c>x̂ = αtDW + (utDW)>b′′ = αtDW + (utDW)>A′′x̂, (42)

where the first equality in this chain is a consequence of strong duality and the last is a consequence
of complementary slackness. Hence, it follows that (c> − (utDW)>A′′)x̂ = αtDW and the result is
proven.

Hence, each iteration of the method not only produces the primal solution xtDW ∈ PtI ∩ Q′′, but
also a dual solution (utDW , α

t
DW) that defines a face conv(S(utDW , α

t
DW)) of PtI that contains the

entire optimal face of solutions to the LP solved directly over PtI ∩ Q′′ with the original objective
function vector c.

When no column with negative reduced cost exists, the two bounds must be equal to zD and
we stop, outputting both the primal solution λ̂DW , and the dual solution (ûDW , α̂DW). It follows
from the results proven above that in the final iteration, any column of (35) with reduced cost
zero must in fact have a cost of α̂DW = zD − û>DW b′′ when evaluated with respect to the modified
objective function c> − û>DWA′′. In the final iteration, we can therefore strengthen the statement
of Theorem 2, as follows.

Theorem 3 conv(S(ûDW , α̂DW)) is a face of P ′ and contains x̂DW .

The proof follows along the same lines as Theorem 2. As before, we can also state the following
important corollary.

Corollary 3 If F is the face of optimal solutions to the linear program solved directly over P ′∩Q′′
with objective function vector c, then F ⊆ conv(S(ûDW , α̂DW)) ∩Q′′.

Thus, conv(S(ûDW , α̂DW)) is actually a face of P ′ that contains x̂DW and the entire face of optimal
solutions to the LP solved over P ′∩Q′′ with objective function c. This fact provides strong intuition
regarding the connection between the Dantzig-Wolfe method and the cutting plane method and
allows us to regard Dantzig-Wolfe decomposition as either a procedure for producing the bound
zD = c>x̂DW from primal solution information or the bound zD = c>ŝ + û>DW (b′′ − A′′ŝ), where
ŝ is any member of S(ûDW , α̂DW), from dual solution information. This fact is important in the
next section, as well as later when we discuss integrated methods.

The exact relationship between S(ûDW , α̂DW), the polyhedron P ′ ∩ Q′′, and the face F of
optimal solutions to an LP solved over P ′ ∩ Q′′ can vary for different polyhedra and even for

17

(a) (b) (c)

P′ ∩ Q′′ ⊃ conv(S(ûDW, α̂DW)) ∩ Q′′ ⊃ F

Q′′

c>

c> c>

Q′′Q′′

P′ P′ P′

F

conv(S(ûDW, α̂DW))

x̂DW

{s ∈ E | (λ̂DW)s > 0}

F = {x̂DW}

P′ ∩ Q′′ = conv(S(ûDW, α̂DW)) ∩ Q′′ ⊃ F

conv(S(ûDW, α̂DW))

x̂DW

{s ∈ E | (λ̂DW)s > 0}

P′ ∩ Q′′ ⊃ conv(S(ûDW, α̂DW)) ∩ Q′′ = F

conv(S(ûDW, α̂DW))

x̂DW

{s ∈ E | (λ̂DW)s > 0}

F = {x̂DW}

Figure 8: The relationship of P ′ ∩Q′′, conv(S(ûDW , α̂DW)) ∩Q′′, and the face F .

different objective functions. Figure 8 shows the polyhedra of Example 1 with three different
objective functions indicated. The convex hull of S(ûDW , α̂DW) is typically a proper face of P ′,
but it is possible for x̂DW to be an inner point of P ′, in which case we have the following result.

Theorem 4 If x̂DW is an inner point of P ′, then conv(S(ûDW , α̂DW)) = P ′.

Proof. We prove the contrapositive. Suppose conv(S(ûDW , α̂DW)) is a proper face of P ′. Then
there exists a facet-defining valid inequality (a, β) ∈ Rn+1 such that conv(S(ûDW , α̂DW)) ⊆ {x ∈
Rn | ax = β}. By Theorem 3, x̂DW ∈ conv(S(ûDW , α̂DW)) and x̂DW therefore cannot satisfy the
definition of an inner point.

In this case, illustrated graphically in Figure 8(a) with the polyhedra from Example 1, zDW = zLP
and Dantzig-Wolfe decomposition does not improve the bound. All columns of the Dantzig-Wolfe
LP have reduced cost zero and any member of E can be given positive weight in an optimal
decomposition. A necessary condition for an optimal fractional solution to be an inner point of P ′
is that the dual value of the convexity constraint in an optimal solution to the Dantzig-Wolfe LP
be zero. This condition indicates that the chosen relaxation may be too weak.

A second case of potential interest is when F = conv(S(ûDW , α̂DW))∩Q′′, illustrated graphically
in Figure 8(b). In this case, all constraints of the Dantzig-Wolfe LP other than the convexity
constraint must have dual value zero, since removing them does not change the optimal solution
value. This condition can be detected by examining the objective function values of the members
of E with positive weight in the optimal decomposition. If they are all identical, any such member
that is contained in Q′′ (if one exists) must be optimal for the original ILP, since it is feasible and
has objective function value equal to zIP . The more typical case, in which F is a proper subset of
conv(S(ûDW , α̂DW)) ∩Q′′, is shown in Figure 8(c).

18

3.3 Lagrangian Method

The Lagrangian method [22, 14] is a general approach for computing zD that is closely related to
the Dantzig-Wolfe method, but is focused primarily on producing dual solution information. The
Lagrangian method can be viewed as a method for producing a particular face of P ′, as in the
Dantzig-Wolfe method, but no explicit approximation of P ′ is maintained. Although there are
implementations of the Lagrangian method that do produce approximate primal solution informa-
tion similar to the solution information that the Dantzig-Wolfe method produces (see Section 3.2),
our viewpoint is that the main difference between the Dantzig-Wolfe method and the Lagrangian
method is the type of solution information they produce. This distinction is important when we
discuss integrated methods in Section 4. When exact primal solution information is not required,
faster algorithms for determining the dual solution are possible. By employing a Lagrangian frame-
work instead of a Dantzig-Wolfe framework, we can take advantage of this fact.

For a given vector u ∈ Rm′′+ , the Lagrangian relaxation of (1) is given by

zLR(u) = min
s∈F ′
{c>s+ u>(b′′ −A′′s)}. (43)

It is easily shown that zLR(u) is a lower bound on zIP for any u ≥ 0. The elements of the vector
u are called Lagrange multipliers or dual multipliers with respect to the rows of [A′′, b′′]. Note that
(43) is the same subproblem solved in the Dantzig-Wolfe method to generate the most negative
reduced cost column. The problem

zLD = max
u∈Rm′′+

{zLR(u)} (44)

of maximizing this bound over all choices of dual multipliers is a dual to (1) called the Lagrangian
dual and also provides a lower bound zLD, which we call the LD bound. A vector of multipliers û
that yield the largest bound are called optimal (dual) multipliers.

It is easy to see that zLR(u) is a piecewise linear concave function and can be maximized by any
number of methods for non-differentiable optimization. In Section 6, we discuss some alternative
solution methods (for a complete treatment, see [34]). In Figure 9 we give an outline of the steps
involved in the Lagrangian method. As in Dantzig-Wolfe, the main loop involves updating the
dual solution and then generating an improving member of E by solving a subproblem. Unlike the
Dantzig-Wolfe method, there is no approximation and hence no update step, but the method can
nonetheless be viewed in the same frame of reference.

To more clearly see the connection to the Dantzig-Wolfe method, consider the dual of the
Dantzig-Wolfe LP (33),

zDW = max
α∈R,u∈Rm′′+

{α+ b′′>u | α ≤ (c> − u>A′′)s ∀s ∈ E}. (46)

Letting η = α+ b′′>u and rewriting, we see that

zDW = max
η∈R,u∈Rm′′+

{η | η ≤ (c> − u>A′′)s+ b′′>u ∀s ∈ E} (47)

= max
η∈R,u∈Rm′′+

{min
s∈E
{(c> − u>A′′)s+ b′′>u}} = zLD. (48)

19

Lagrangian Method

Input: An instance ILP (P, c).
Output: A lower bound zLD on the optimal solution value for the instance and a
dual solution ûLD ∈ Rm′′ .

1. Let s0
LD ∈ E define some initial extreme point of P ′, u0

LD some initial setting
for the dual multipliers and set t← 0.

2. Master Problem: Using the solution information gained from solving the
pricing subproblem, and the previous dual setting utLD, update the dual mul-
tipliers ut+1

LD .

3. Subproblem: Call the subroutine OPT (P ′, c> − (utLD)>A′′, (c −
(utLD)>A′′)stLD), to solve

ztLD = min
s∈F ′
{(c> − (utLD)>A′′)s+ b′′>utLD}. (45)

Let st+1
LD ∈ E be the optimal solution to this subproblem, if one is found.

4. If a prespecified stopping criterion is met, then output zLD = ztLD and ûLD =
utLD, otherwise, go to Step 2

Figure 9: Outline of the Lagrangian method

Thus, we have that zLD = zDW and that (44) is another formulation for the problem of calculating
zD. It is also interesting to observe that the set S(utLD, z

t
LD − b′′>utLD) is the set of alternative

optimal solutions to the subproblem solved at iteration t in Step 3. The following theorem is a
counterpart to Theorem 3 that follows from this observation.

Theorem 5 conv(S(ûLD, zLD−b′′>ûLD)) is a face of P ′. Also, if F is the face of optimal solutions
to the linear program solved directly over P ′ ∩ Q′′ with objective function vector c, then F ⊆
conv(S(ûLD, zLD − b′′>ûLD)) ∩Q′′.

Again, the proof is similar to that of Theorem 3. This shows that while the Lagrangian method
does not maintain an explicit approximation, it does produce a face of P ′ containing the optimal
face of solutions to the linear program solved over the approximation P ′ ∩Q′′.

4 Integrated Decomposition Methods

In Section 3, we demonstrated that traditional decomposition approaches can be viewed as utilizing
dynamically generated polyhedral information to improve the LP bound by either building an inner
or an outer approximation of an implicitly defined polyhedron that approximates P. The choice
between inner and outer methods is largely an empirical one, but recent computational research
has favored outer methods. In what follows, we discuss three methods for integrating inner and
outer methods. In principle, this is not difficult to do and can result in bounds that are improved
over those achieved by either approach alone.

20

While traditional decomposition approaches build either an inner or an outer approximation,
integrated decomposition methods build both an inner and an outer approximation. These methods
follow the same basic loop as traditional decomposition methods, except that the master problem is
required to generate both primal and dual solution information and the subproblem can be either
a separation problem or an optimization problem. The first two techniques we describe integrate
the cutting plane method with either the Dantzig-Wolfe method or the Lagrangian method. The
third technique, described in Section 5, is a cutting plane method that uses an inner approximation
to perform separation.

4.1 Price and Cut

The integration of the cutting plane method with the Dantzig-Wolfe method results in a procedure
that alternates between a subproblem that generates improving columns (the pricing subproblem)
and a subproblem that generates improving valid inequalities (the cutting subproblem). Hence, we
call the resulting method price and cut. When employed in a branch and bound framework, the
overall technique is called branch, price, and cut. This method has already been studied previously
by a number of authors [12, 61, 38, 11, 60] and more recently by Arãgao and Uchoa [21].

As in the Dantzig-Wolfe method, the bound produced by price and cut can be thought of
as resulting from the intersection of two approximating polyhedra. However, the Dantzig-Wolfe
method required one of these, Q′′, to have a short description. With integrated methods, both
polyhedra can have descriptions of exponential size. Hence, price and cut allows partial descriptions
of both an inner polyhedron PI and an outer polyhedron PO to be generated dynamically. To
optimize over the intersection of PI and PO, we use a Dantzig-Wolfe reformulation as in (33),
except that the [A′′, b′′] is replaced by a matrix that changes dynamically. The outline of this
method is shown in Figure 10.

In examining the steps of this generalized method, the most interesting question that arises is
how methods for generating improving columns and valid inequalities translate to this new dynamic
setting. Potentially troublesome is the fact that column generation results in a reduction of the
bound z̄tPC produced by (51), while generation of valid inequalities is aimed at increasing it. Recall
again, however, that while it is the bound z̄tPC that is directly produced by solving (51), it is the
bound ztPC obtained by solving the pricing subproblem that one might claim is more relevant to
our goal and this bound can be potentially improved by generation of either valid inequalities or
columns.

Improving columns can be generated in much the same way as they were in the Dantzig-Wolfe
method. To search for new columns, we simply look for those with negative reduced cost, where
reduced cost is defined to be the usual LP reduced cost with respect to the current reformulation.
Having a negative reduced cost is still a necessary condition for a column to be improving. How-
ever, it is less clear how to generate improving valid inequalities. Consider an optimal fractional
solution xtPC obtained by combining the members of E according to weights yielded by the optimal
decomposition λtPC in iteration t. Following a line of reasoning similar to that followed in analyzing
the results of the Dantzig-Wolfe method, we can conclude that xtPC is in fact an optimal solution
to an LP solved directly over PtI ∩PtO with objective function vector c and that therefore, it follows
from Theorem 1 that any improving inequality must be violated by xtPC . It thus seems sensible to
consider separating xtPC from P. This is the approach taken in the method of Figure 10.

To demonstrate how the price and cut method works, we return to Example 1.

21

Price and Cut Method

Input: An instance ILP (P, c).
Output: A lower bound zPC on the optimal solution value for the instance, a pri-
mal solution x̂PC ∈ Rn, an optimal decomposition λ̂PC ∈ RE , a dual solution
(ûPC , α̂PC) ∈ Rmt+1, and the inequalities [DPC , dPC] ∈ Rmt×(n+1).

1. Initialize: Construct an initial inner approximation

P0
I = {

∑
s∈E0

sλs |
∑
s∈E0

λs = 1, λs ≥ 0 ∀s ∈ E0, λs = 0 ∀s ∈ E \ E0} ⊆ P ′ (49)

from an initial set E0 of extreme points of P ′ and an initial outer approximation

P0
O = {x ∈ Rn | D0x ≥ d0} ⊇ P, (50)

where D0 = A′′ and d0 = b′′, and set t← 0, m0 = m′′.

2. Master Problem: Solve the Dantzig-Wolfe reformulation

z̄tPC = min
λ∈RE+

{c>(
∑
s∈E

sλs) | Dt(
∑
s∈E

sλs) ≥ dt,
∑
s∈E

λs = 1, λs = 0 ∀s ∈ E \ E t}

(51)
of the LP over the polyhedron PtI ∩ PtO to obtain the optimal value z̄tPC ,
an optimal primal solution λtPC ∈ RE , an optimal fractional solution xtPC =∑

s∈E s(λ
t
PC)s, and an optimal dual solution (utPC , α

t
PC) ∈ Rmt+1.

3. Do either (a) or (b).

(a) Pricing Subproblem and Update: Call the subroutine OPT (P ′, c>−
(utPC)>Dt, αtPC), generating a set Ẽ of improving members of E with
negative reduced cost (defined in Figure 5). If Ẽ 6= ∅, set E t+1 ← E t ∪ Ẽ
to form a new inner approximation Pt+1

I . If s̃ ∈ E is the member of E
with smallest reduced cost, then ztPC = rc(s̃) +αtPC + (dt)>utPC provides
a valid lower bound. Set [Dt+1, dt+1]← [Dt, dt], Pt+1

O ← PtO, mt+1 ← mt,
t← t+ 1. and go to Step 2.

(b) Cutting Subproblem and Update: Call the subroutine SEP (P, xtPC)
to generate a set of improving valid inequalities [D̃, d̃] ∈ Rm̃×n+1 for P,
violated by xtPC . If violated inequalities were found, set [Dt+1, dt+1] ←[
Dt dt

D̃ d̃

]
to form a new outer approximation Pt+1

O . Set mt+1 ← mt + m̃,

E t+1 ← E t, Pt+1
I ← PtI , t← t+ 1, and go to Step 2.

4. If Ẽ = ∅ and no valid inequalities were found, output the bound zPC = z̄tPC =

ztPC = c>xtPC , x̂PC = xtPC , λ̂PC = λtPC , (ûPC , α̂PC) = (utPC , α
t
PC), and

[DPC , dPC] = [Dt, dt].

Figure 10: Outline of the price and cut method

22

(a) (b) (c)

(2,1) (2,1) (2,1)

{s ∈ E | (λ2PC)s > 0}

c>

P

P0
O = Q′′

P

P1
O = P0

O ∩ {x ∈ Rn | x1 ≥ 3}

P

P2
O = P1

O ∩ {x ∈ Rn | x2 ≥ 2}

P0
I = conv(E0) ⊂ P′ P1

I = conv(E1) ⊂ P′ P1
I = conv(E2) ⊂ P′

x0PC = (2.42, 2.25)

{s ∈ E | (λ0PC)s > 0}

x1PC = (3, 1.5)

{s ∈ E | (λ1PC)s > 0}

x2PC = (3, 2)

Figure 11: Price and cut method (Example 1)

Example 1 (Continued) We pick up the example at the last iteration of the Dantzig-Wolfe
method and show how the bound can be further improved by dynamically generating valid inequal-
ities.

Iteration 0. Solving the master problem with E0 = {(4, 1), (5, 5), (2, 1), (3, 4)} and the initial inner
approximation P0

I = conv(E0) yields (λ0
PC)(2,1) = 0.58 and (λ0

PC)(3,4) = 0.42, x0
PC = (2.42, 2.25),

bound z0
PC = z̄0

PC = 2.42. Next, we solve the cutting subproblem SEP (P, x0
PC), generating facet-

defining inequalities of P that are violated by x0
PC . One such facet-defining inequality, x1 ≥ 3, is

illustrated in Figure 11(a). We add this inequality to the current set D0 = [A′′, b′′] to form a new
outer approximation P1

O, defined by the set D1.

Iteration 1. Solving the new master problem, we obtain an optimal primal solution (λ1
PC)(4,1) =

0.42, (λ1
PC)(2,1) = 0.42, (λ1

PC)(3,4) = 0.17, x1
PC = (3, 1.5), bound z̄1

PC = 3, as well as an optimal
dual solution (u1

PC , α
1
PC). Next, we consider the pricing subproblem. Since x1

PC is in the interior
of P ′, every extreme point of P ′ has reduced cost 0 by Theorem 4. Therefore, there are no negative
reduced cost columns and we switch again to the cutting subproblem SEP (P, x1

PC). As illustrated
in Figure 11(b), we find another facet-defining inequality of P violated by x1

PC , x2 ≥ 2. We then
add this inequality to form D2 and further tighten the outer approximation, now P2

O.

Iteration 2. In the final iteration, we solve the master problem again to obtain (λ2
PC)(4,1) = 0.33,

(λ2
PC)(2,1) = 0.33, (λ2

PC)(3,4) = 0.33, x2
PC = (3, 2), bound z̄2

PC = 3. Now, since the primal solution
is integral, and is contained in P ′ ∩Q′′, we know that zPC = z̄2

PC = zIP and we terminate.

Let us now return to the TSP example to further explore the use of the price and cut method.

Example 2 (Continued) As described earlier, application of the Dantzig-Wolfe method along
with the 1-tree relaxation for the TSP allows us to compute the bound zD obtained by optimizing

23

over the intersection of the 1-tree polyhedron (the inner polyhedron) with the polyhedron Q′′
(the outer polyhedron) defined by constraints (17) and (19). With price and cut, we can further
improve the bound by allowing both the inner and outer polyhedra to have large descriptions. For
this purpose, let us now introduce the well-known comb inequalities [31, 32], which we will generate
to improve our outer approximation. A comb is defined by a set H ⊂ V , called the handle and sets
T1, T2, ..., Tk ⊂ V , called the teeth, which satisfy

H ∩ Ti 6= ∅ for i = 1, ..., k,

Ti \H 6= ∅ for i = 1, ..., k,

Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ k,

for some odd k ≥ 3. Then, for |V | ≥ 6 the comb inequality,

x(E(H)) +
k∑
i=1

x(E(Ti)) ≤ |H|+
k∑
i=1

(|Ti| − 1)− dk/2e (52)

is valid and facet-defining for the TSP. Let the comb polyhedron be defined by constraints (17),
(19), and (52).

There are no known efficient algorithms for solving the general facet identification problem for
the comb polyhedron. To overcome this difficulty, one approach is to focus on comb inequalities
with special forms. One subset of the comb inequalities, known as the blossom inequalities, is
obtained by restricting the teeth to have exactly two members. The facet identification for the
polyhedron comprised of the blossom inequalities and constraints (17) and (19) can be solved in
polynomial time, a fact we return to shortly. Another approach is to use heuristic algorithms not
guaranteed to find a violated comb inequality when one exists (see [4] for a survey). These heuristic
algorithms could be applied in price and cut as part of the cutting subproblem in Step 3b to improve
the outer approximation.

In Figure 7 of Section 3.2, we showed an optimal fractional solution x̂ that resulted from
the solution of a Dantzig-Wolfe master problem and the corresponding optimal decomposition,
consisting of six 1-trees. In Figure 12, we show the sets H = {0, 1, 2, 3, 6, 7, 9, 11, 12, 15}, T1 =
{5, 6}, T2 = {8, 9}, and T3 = {12, 13} forming a comb that is violated by this fractional solution,
since

x̂(E(H)) +

k∑
i=1

x̂(E(Ti)) = 11.3 > 11 = |H|+
k∑
i=1

(|Ti| − 1)− dk/2e.

Such a violated comb inequality, if found, could be added to the description of the outer polyhedron
to improve on the bound zD. This shows the additional power of price and cut over the Dantzig-
Wolfe method. Of course, it should be noted that it is also possible to generate such inequalities
in the standard cutting plane method and to achieve the same bound improvement.

The choice of relaxation has a great deal of effect on the empirical behavior of decomposition
algorithms. In Example 2, we employed an inner polyhedron with integer extreme points. With
such a polyhedron, the integrality constraints of the inner polyhedron have no effect and zD = zLP .
In Example 3, we consider a relaxation for which the bound zD may be strictly improved over zLP
by employing an inner polyhedron that is not integral.

24

11

0

1213

14

15

1

2

3

4 5

6

7

10

8

9

0.2

0.5

0.5

0.5

0.5

0.2

0.3
0.7

0.3

0.3
0.5

0.5

Figure 12: Price and cut method (Example 2)

Example 3 Let G be a graph as defined in Example 2 for the TSP. A 2-matching is a subgraph
in which every vertex has degree two. Every TSP tour is hence a 2-matching. The Minimum
2-Matching Problem is a relaxation of TSP whose feasible region is described by the degree (17),
bound (19), and integrality constraints (20) of the TSP. Interestingly, the 2-matching polyhedron,
which is implicitly defined to be the convex hull of the feasible region just described, can also be
described by replacing the integrality constraints (20) with the blossom inequalities. Just as the
SEC constraints provide a complete description of the 1-tree polyhedron, the blossom inequalities
(plus degree and bound) constraints provide a complete description of the 2-matching polyhedron.
Therefore, we could use this polyhedron as an outer approximation to the TSP polyhedron. In [50],
Müller-Hannemann and Schwartz present several polynomial algorithms for optimizing over the
2-matching polyhedron. We can therefore also use the 2-matching relaxation in the context of price
and cut to generate an inner approximation of the TSP polyhedron. Using integrated methods, it
would then be possible to simultaneously build up an outer approximation of the TSP polyhedron
consisting of the SECs (18). Note that this simply reverses the roles of the two polyhedra from
Example 2 and thus would yield the same bound.

Figure 13 shows an optimal fractional solution arising from the solution of the master problem
and the 2-matchings with positive weight in a corresponding optimal decomposition. Given this
fractional subgraph, we could employ the separation algorithm discussed in Example 2 of Section
3.1 to generate the violated subtour S = {0, 1, 2, 3, 7}.

Another approach to generating improving inequalities in price and cut is to try to take advan-
tage of the information contained in the optimal decomposition to aid in the separation procedure.
This information, though computed by solving (51) is typically ignored. Consider the fractional
solution xtPC generated in iteration t of the method in Figure 10. The optimal decomposition for
the master problem in iteration t, λtPC , provides a decomposition of xtPC into a convex combination
of members of E . We refer to elements of E that have a positive weight in this combination as
members of the decomposition. The following theorem shows how such a decomposition can be
used to derive an alternate necessary condition for an inequality to be improving. Because we
apply this theorem in a more general context later in the paper, we state it in a general form.

Theorem 6 If x̂ ∈ Rn violates the inequality (a, β) ∈ R(n+1) and λ̂ ∈ RE+ is such that
∑

s∈E λ̂s = 1

25

0

000

1 1 1

1

2
2 2

2

0.6

3 3 3

3

4
4

0.2

4

5
5

0.8

5

6
66

0.2

7
7

4

7

5

8 8

6

8

9 9

0.8

9

10

7

10 10

0.8

11 11

8

11

12

9

12
12

0.6

13 13
13

10

1414
14

11

1515

0.4

15

0.2

12

0.2

0.2

0.2

13

0.4

0.6
0.8

14

0.6

0.2

0.2

15

0.2

0.2

0.2

0.8

0.6

(d) λ̂2 = 0.6

(a) x̂

(b) λ̂0 = 0.2 (c) λ̂1 = 0.2

Figure 13: Finding violated inequalities in price and cut (Example 3)

and x̂ =
∑

s∈E sλ̂s, then there must exist an s ∈ E with λ̂s > 0 such that s also violates the inequality
(a, β) .

Proof. Let x̂ ∈ Rn and (a, β) ∈ R(n+1) be given such that a>x̂ < β. Also, let λ̂ ∈ RE+ be given

such that
∑

s∈E λ̂s = 1 and x̂ =
∑

s∈E sλ̂s. Suppose that a>s ≥ β for all s ∈ E with λ̂s > 0.

Since
∑

s∈E λ̂s = 1, we have a>(
∑

s∈E sλ̂s) ≥ β. Hence, a>x̂ = a>(
∑

s∈E sλ̂s) ≥ β, which is a
contradiction.

In other words, an inequality can be improving only if it is violated by at least one member of
the decomposition. If I is the set of all improving inequalities in iteration t, then the following
corollary is a direct consequence of Theorem 6.

Corollary 4 I ⊆ V = {(a, β) ∈ R(n+1) : a>s < β for some s ∈ E such that (λtPC)s > 0}.

The importance of these results is that in many cases, it is easier to separate members of F ′ from
P than to separate arbitrary real vectors. There are a number of well-known polyhedra for which
the problem of separating an arbitrary real vector is difficult, but the problem of separating a
solution to a given relaxation is easy. This concept is formalized in Section 5 and some examples
are discussed in Section 8. In Figure 14, we propose a new separation procedure that can be
embedded in price and cut that takes advantage of this fact. The procedure takes as input an
arbitrary real vector x̂ that has been previously decomposed into a convex combination of vectors
with known structure. In price and cut, the arbitrary real vector is xtPC and it is decomposed into
a convex combination of members of E by solving the master problem (51). Rather than separating

26

Separation using a Decomposition

Input: A decomposition λ ∈ RE of x̂ ∈ Rn.
Output: A set [D, d] of potentially improving inequalities.

1. Form the set D = {s ∈ E | λs > 0}.

2. For each s ∈ D, call the subroutine SEP (P, s) to obtain a set [D̃, d̃] of violated
inequalities.

3. Let [D, d] be composed of the inequalities found in Step 2 that are also violated
by x̂, so that Dx̂ < d.

4. Return [D, d] as the set of potentially improving inequalities.

Figure 14: Solving the cutting subproblem with the aid of a decomposition

xtPC directly, the procedure consists of separating each one of the members of the decomposition
in turn, then checking each inequality found for violation against xtPC .

The running time of this procedure depends in part on the cardinality of the decomposition.
Carathéodory’s Theorem assures us that there exists a decomposition with less than or equal to
dim(PtI) + 1 members. Unfortunately, even if we limit our search to a particular known class of
valid inequalities, the number of such inequalities violated by each member of D in Step 2 may be
extremely large and these inequalities may not be violated by xtPC (such an inequality cannot be
improving). Unless we enumerate every inequality in the set V from Corollary 4, either implicitly
or explicitly, the procedure does not guarantee that an improving inequality will be found, even
if one exists. In cases where it is possible to examine the set V in polynomial time, the worst-
case complexity of the entire procedure is polynomially equivalent to that of optimizing over P ′.
Obviously, it is unlikely that the set V can be examined in polynomial time in situations when
separating xtPC is itself an NP-complete problem. In such cases, the procedure to select inequalities
that are likely to be violated by xtPC in Step 2 is necessarily a problem-dependent heuristic. The
effectiveness of such heuristics can be improved in a number of ways, some of which are discussed
in [57].

Note that members of the decomposition in iteration t must belong to the set S(utPC , α
t
PC), as

defined by (40). It follows that the convex hull of the decomposition is a subset of conv(S(utPC , α
t
PC))

that contains xtPC and can be thought of as a surrogate for the face of optimal solutions to an LP
solved directly over PtI ∩PtO with objective function vector c. Combining this corollary with Theo-
rem 1, we conclude that separation of S(utPC , α

t
PC) from P is a sufficient condition for an inequality

to be improving. Although this sufficient condition is difficult to verify in practice, it does provide
additional motivation for the method described in Figure 14.

Example 1 (Continued) Returning to the cutting subproblem in iteration 0 of the price and cut
method, we have a decomposition x0

PC = (2.42, 2.25) = 0.58(2, 1)+0.42(3, 4), as depicted in Figure
11(a). Now, instead of trying to solve the subproblem SEP (P, x0

PC), we instead solve SEP (P, s),
for each s ∈ D = {(2, 1), (3, 4)}. In this case, when solving the separation problem for s = (2, 1),
we find the same facet-defining inequality of P as we did by separating x0

PC directly.

27

15

14

0

12

0

13

11

1 1

22

3 3

44 5 5

66

7 7

8

10

8

99

10

11

1213

14

15

0.2

0.2

0.3

0.3

0.70.5

0.5

0.5

0.5

0.5

0.5

0.3

(a) λ̂0(a) x̂

Figure 15: Using the optimal decomposition to find violated inequalities in price and cut (Example
2)

Similarly, in iteration 1, we have a decomposition of x2
PC = (3, 1.5) into a convex combination of

D = {(4, 1), (2, 1), (3, 4)}. Clearly, solving the separation problem for either (2, 1) or (4, 1) produces
the same facet-defining inequality as with the original method.

Example 2 (Continued) Returning again to Example 2, recall the optimal fractional solution
and the corresponding optimal decomposition arising during solution of the TSP by the Dantzig-
Wolfe method in Figure 7. Figure 12 shows a comb inequality violated by this fractional solution.
By Theorem 6, at least one of the members of the optimal decomposition shown in Figure 7 must
also violate this inequality. In fact, the member with index 0, also shown in Figure 15, is the only
such member. Note that the violation is easy to discern from the structure of this integral solution.
Let x̂ ∈ {0, 1}E be the incidence vector of a 1-tree. Consider a subset H of V whose induced
subgraph in the 1-tree is a path with edge set P . Consider also an odd set O of edges of the 1-tree
of cardinality at least 3 and disjoint from P , such that each edge has one endpoint in H and one
endpoint in V \ H. Taking the set H to be the handle and the endpoints of each member of O
to be the teeth, it is easy to verify that the corresponding comb inequality will be violated by the
1-tree, since

x̂(E(H)) +
k∑
i=1

x̂(E(Ti)) = |H| − 1 +
k∑
i=1

(|Ti| − 1) > |H|+
k∑
i=1

(|Ti| − 1)− dk/2e.

Hence, searching for such configurations in the members of the decomposition, as suggested in
the procedure of Figure 14, may lead to the discovery of comb inequalities violated by the optimal
fractional solution. In this case, such a configuration does in fact lead to discovery of the previously
indicated comb inequality. Note that we have restricted ourselves in the above discussion to the
generation of blossom inequalities. The teeth, as well as the handles can have more general forms
that may lead to the discovery of more general forms of violated combs.

Example 3 (Continued) Returning now to Example 3, recall the optimal fractional solution
and the corresponding optimal decomposition, consisting of the 2-matchings shown in Figure 13.

28

0
0

1
1

2
2

0.6

3
3

4

0.2

5

0.8

6

0.2

7

4

5

8

6

9

0.8

7

10

0.8

8

11

9

12

0.6

13

10

14
11

15

0.4

0.2

12

0.2

0.2

0.2

13

0.4

0.6
0.8

14

0.6

0.2

0.2

15

0.2

0.2

0.2

0.8

0.6

(a) x̂ (b) λ̂2

Figure 16: Using the optimal decomposition to find violated inequalities in price and cut (Example
3)

Previously, we produced a set of vertices defining a SEC violated by the fractional point by using a
minimum cut algorithm with the optimal fractional solution as input. Now, let us consider applying
the procedure of Figure 14 by examining the members of the decomposition in order to discovered
inequalities violated by the optimal fractional solution. Let x̂ ∈ {0, 1}E be the incidence vector of a
2-matching. If the corresponding subgraph does not form a tour, then it must be disconnected. The
vertices corresponding to any connected component thus define a violated SEC. By determining
the connected components of each member of the decomposition, it is easy to find violated SECs.
In fact, for any 2-matching, every component of the 2-matching forms a SEC that is violated by
exactly 1. For the 2-matching corresponding to ŝ, we have x̂(E(S)) = |S| > |S| − 1. Figure 16(b)
shows the third member of the decomposition along with a violated SEC defined by one of its
components. This same SEC is also violated by the optimal fractional solution.

There are many variants of the price and cut method shown in Figure 10. Most significant
is the choice of which subproblem to execute during Step 3. It is easy to envision a number of
heuristic rules for deciding this. For example, one obvious rule is to continue generating columns
until no more are available and then switch to valid inequalities for one iteration, then generate
columns again until none are available. This can be seen as performing a “complete” dual solution
update before generating valid inequalities. Further variants can be obtained by not insisting on
a “complete” dual update before solving the pricing problem [29, 17]. This rule could easily be
inverted to generate valid inequalities until no more are available and then generate columns. A
hybrid rule in which some sort of alternation occurs is a third option. The choice between these
options is primarily empirical.

4.2 Relax and Cut

Just as with the Dantzig-Wolfe method, the Lagrangian method of Figure 9 can be integrated with
the cutting plane method to yield a procedure several authors have termed relax and cut. This is
done in much the same fashion as in price and cut, with a choice in each iteration between solving

29

a pricing subproblem and a cutting subproblem. In each iteration that the cutting subproblem is
solved, the generated valid inequalities are added to the description of the outer polyhedron, which
is explicitly maintained as the algorithm proceeds. As with the traditional Lagrangian method, no
explicit inner polyhedron is maintained, but the algorithm can again be seen as one that computes
a face of the implicitly defined inner polyhedron that contains the optimal face of solutions to a
linear program solved over the intersection of the two polyhedra. When employed within a branch
and bound framework, we call the overall method branch, relax, and cut.

An outline of the relax and cut method is shown in Figure 17. The question again arises as to
how to ensure that the inequalities being generated in the cutting subproblem are improving. In
the case of the Lagrangian method, this is a much more difficult issue since we cannot assume the
availability of the same primal solution information available within price and cut. Furthermore,
we cannot verify the condition of Corollary 1, which is the best available necessary condition for an
inequality to be improving. Nevertheless, some primal solution information is always available in
the form of the solution stRC to the last pricing subproblem that was solved. Intuitively, separating
stRC makes sense since the infeasibilities present in stRC may possibly be removed through the
addition of valid inequalities violated by stRC .

As with both the cutting plane and price and cut methods, the difficulty is that the valid
inequalities generated by separating stRC from P may not be improving, as Guignard first observed
in [33]. To deepen understanding of the potential effectiveness of the valid inequalities generated, we
further examine the relationship between stRC and xtPC by recalling again the results from Section
3.2. Consider the set S(utRC , z

t
RC), where ztRC is obtained by solving the pricing subproblem

(54) from Figure 17 and the set S(·, ·) is as defined in (40). In each iteration where the pricing
subproblem is solved, st+1

RC is a member of S(utRC , z
t
RC). In fact, S(utRC , z

t
RC) is exactly the set of

alternative solutions to this pricing subproblem. In price and cut, a number of members of this
set are available, one of which must be violated in order for a given inequality to be improving.
This yields a verifiable necessary condition for a generated inequality to be improving. Relax and
cut, in its most straightforward incarnation, produces one member of this set. Even if improving
inequalities exist, it is possible that none of them are violated by the member of S(utRC , z

t
RC) so

produced, especially if it would have had a small weight in the optimal decomposition produced by
the corresponding iteration of price and cut.

It is important to note that by keeping track of the solutions to the Lagrangian subproblem that
are produced while solving the Lagrangian dual, one can approximate the optimal decomposition
and the optimal fractional solution produced by solving (51). This is the approach taken by the
volume algorithm [9] and a number of other subgradient-based methods. As in price and cut, when
this fractional solution is an inner point of P ′, all members of F ′ are alternative optimal solutions
to the pricing subproblem and the bound is not improved over what the cutting plane method
alone would produce. In this case, solving the cutting subproblem to obtain additional inequalities
is unlikely to yield further improvement.

As with price and cut, there are again many variants of the algorithm shown in Figure 17,
depending on the choice of subproblem to execute at each step. One such variant is to alternate
between each of the subproblems, first solving one and then the other [45]. In this case, the
Lagrangian dual is not solved to optimality before solving the cutting subproblem. Alternatively,
another approach is to solve the Lagrangian dual all the way to optimality before generating valid
inequalities. Again, the choice is primarily empirical.

30

Relax and Cut Method

Input: An instance ILP (P, c).
Output: A lower bound zRC on the optimal solution value for the instance and a
dual solution ûRC ∈ Rmt .

1. Let s0
RC ∈ E define some initial extreme point of P ′ and construct an initial

outer approximation

P0
O = {x ∈ Rn | D0x ≥ d0} ⊇ P, (53)

where D0 = A′′ and d0 = b′′. Let u0
RC ∈ Rm′′ be some initial set of dual

multipliers associated with the constraints [D0, d0]. Set t← 0 and mt = m′′.

2. Master Problem: Using the solution information gained from solving the
pricing subproblem, and the previous dual solution utRC , update the dual
solution (if the pricing problem was just solved) or initialize the new dual
multipliers (if the cutting subproblem was just solved) to obtain ut+1

RC ∈ Rmt .

3. Do either (a) or (b).

(a) Pricing Subproblem: Call the subroutine OPT (P ′, c− (utRC)>Dt, (c−
(utRC)>Dt)stRC) to obtain

ztRC = min
s∈F ′
{(c> − (utRC)Dt)s+ dt(utRC)}. (54)

Let st+1
RC ∈ E be the optimal solution to this subproblem. Set

[Dt+1, dt+1] ← [Dt, dt], Pt+1
O ← PtO, mt+1 ← mt, t ← t + 1, and go

to Step 2.

(b) Cutting Subproblem: Call the subroutine SEP (P, stRC) to generate
a set of improving valid inequalities [D̃, d̃] ∈ Rm̃×n+1 for P, violated by
stRC . If violated inequalities were found, set [Dt+1, dt+1] ←

[
Dt dt

D̃ d̃

]
to

form a new outer approximation Pt+1
O . Set mt+1 ← mt+ m̃, st+1

RC ← stRC ,
t← t+ 1, and go to Step 2.

4. If a prespecified stopping criterion is met, then output zRC = ztRC and ûRC =
utRC .

5. Otherwise, go to Step 2.

Figure 17: Outline of the relax and cut method

31

5 Solving the Cutting Subproblem

In this section, we formalize some notions that have been introduced in our examples and provide
more details regarding how the cutting subproblem is solved in practice in the context of the
various methods we have outlined. We review the well-known template paradigm for separation and
introduce a new concept called structured separation. Finally, we describe a separation algorithm
called decompose and cut that is closely related to the integrated decomposition methods we have
already described and utilizes several of the concepts introduced earlier.

5.1 The Template Paradigm

The ability to generate valid inequalities for P violated by a given real vector is a crucial step in
many of the methods discussed in this paper. Ideally, we would be able to solve the general facet
identification problem for P, allowing us to generate a violated valid inequality whenever one exists.
This is clearly not practical in most cases, since the complexity of this problem is the same as that
of solving the original ILP. In practice, the subproblem SEP (P, xtCP) in Step 3 of the cutting plane
method pictured in Figure 2 is usually solved by dividing the valid inequalities for P into template
classes with known structure. Procedures are then designed and executed for identifying violated
members of each class individually.

A template class (or simply class) of valid inequalities for P is a set of related valid inequal-
ities that describes a polyhedron containing P, so we can identify each class with its associated
polyhedron. In Example 2, we described two well-known classes of valid inequalities for the TSP,
the subtour elimination constraints and the comb inequalities. Both classes have an identifiable
coefficient structure and describe polyhedra containing P. Consider a polyhedron C described by a
class of valid inequalities for P. The separation problem for the class C of valid inequalities for P is
defined to be the facet identification problem over the polyhedron C. In other words, the separation
problem for a class of valid inequalities depends on the form of the inequality and is independent of
the polyhedron P. It follows that the worst case running time for solving the separation problem
is also independent of P. In particular, the separation problem for a particular class of inequalities
may be much easier to solve than the general facet identification problem for P. Therefore, in
practice, the separation problem is usually attempted over “easy” classes first, and more difficult
classes are only attempted when needed. In the case of the TSP, the separation problem for the
SECs is solvable in polynomial time, whereas there is no known efficient algorithm for solving the
separation problem for comb inequalities. In general, the intersection of the polyhedra associated
with the classes of inequalities for which the separation problem can be reasonably solved is not
equal to P.

5.2 Separating Solutions with Known Structure

In many cases, the complexity of the separation problem is also affected by the structure of the real
vector being separated. In Section 4, we informally introduced the notion that a solution vector
with known structure may be easier to separate from a given polyhedron than an arbitrary one and
illustrated this phenomenon in Examples 2 and 3. This is a concept called structured separation that
arises quite frequently in the solution of combinatorial optimization problems where the original
formulation is of exponential size. When using the cutting plane method to solve the LP relaxation
of the TSP, for example, as described in Example 2, we must generate the SECs dynamically.

32

It is thus possible that the intermediate solutions are integer-valued, but nonetheless not feasible
because they violate some SEC that is not present in the current approximation. When the current
solution is optimal, however, it is easy to determine whether it violates a SEC by simply examining
the connected components of the underlying support graph, as described earlier. This process can
be done in O(|V | + |E|) time. For an arbitrary real vector, the separation problem for SECs is
more difficult, taking O(|V |4) time.

It is also frequently the case that when applying a sequence of separation routines for progres-
sively more difficult classes of inequalities, routines for the more difficult classes assume implicitly
that the solution to be separated satisfies all inequalities of the the easier classes. In the case of
the TSP, for instance, any solution passed to the subroutine for separating the comb inequalities is
generally assumed to satisfy the degree and subtour elimination constraints. This assumption can
allow the separation algorithms for subsequent classes to be implemented more efficiently.

For the purposes of the present work, our main concern is with separating solutions that are
known to be integral, in particular, members of F ′. In our framework, the concept of structured
separation is combined with the template paradigm in specifying template classes of inequalities
for which separation of integral solutions is much easier, in a complexity sense, than separation
of arbitrary real vectors over that same class. A number of examples of problems and classes of
valid inequalities for which this situation occurs are examined in Section 8. We now examine a
separation paradigm called decompose and cut that can take advantage of our ability to easily
separate solutions with structure.

5.3 Decompose and Cut

The use of a decomposition to aid in separation, as is described in the procedure of Figure 14, is
easy to extend to a traditional branch and cut framework using a technique we call decompose and
cut, originally proposed in [56] and further developed in [39] and [57]. Suppose now that we are
given an optimal fractional solution xtCP obtained during iteration t of the cutting plane method
and suppose that for a given s ∈ F ′, we can determine effectively whether s ∈ F and if not, generate
a valid inequality (a, β) violated by s. By first decomposing xtCP (i.e., expressing xtCP as a convex
combination of members of E ⊆ F ′) and then separating each member of this decomposition from
P in the fashion described in Figure 14, we may be able to find valid inequalities for P that are
violated by xtCP .

The difficult step is finding the decomposition of xtCP . This can be accomplished by solving a
linear program whose columns are the members of E , as described in Figure 18. This linear program
is reminiscent of (33) and in fact can be solved using an analogous column-generation scheme, as
described in Figure 19. This scheme can be seen as the “inverse” of the method described in
Section 4.1, since it begins with the fractional solution xtCP and tries to compute a decomposition,
instead of the other way around. By the equivalence of optimization and facet identification, we
can conclude that the problem of finding a decomposition of xtCP is polynomially equivalent to that
of optimizing over P ′.

Once the decomposition is found, it can be used as before to locate a violated valid inequality.
In contrast to price and cut, however, it is possible that xtCP 6∈ P ′. This could occur, for instance, if
exact separation methods for P ′ are too expensive to apply consistently. In this case, it is obviously
not possible to find a decomposition in Step 2 of Figure 18. The proof of infeasibility for the linear
program (55), however, provides an inequality separating xtCP from P ′ at no additional expense.
Hence, even if we fail to find a decomposition, we still find an inequality valid for P and violated

33

Separation in Decompose and Cut

Input: x̂ ∈ Rn
Output: A valid inequality for P violated by x̂, if one is found.

1. Apply standard separation techniques to separate x̂. If one of these returns a
violated inequality, then STOP and output the violated inequality.

2. Otherwise, solve the linear program

max
λ∈RE+

{0>λ |
∑
s∈E

sλs = x̂,
∑
s∈E

λs = 1}, (55)

as in Figure 19.

3. The result of Step 2 is either (1) a subset D of members of E participating in a
convex combination of x̂, or (2) a valid inequality (a, β) for P that is violated
by x̂. In the first case, go to Step 4. In the second case, STOP and output
the violated inequality.

4. Attempt to separate each member of D from P. For each inequality violated
by a member of D, check whether it is also violated by x̂. If an inequality
violated by x̂ is encountered, STOP and output it.

Figure 18: Separation in the decompose and cut method

Column Generation in Decompose and Cut

Input: x̂ ∈ Rn
Output: Either (1) a valid inequality for P violated by x̂; or (2) a subset D of E and
a vector λ̂ ∈ RE+ such that

∑
s∈D λss = x̂ and

∑
s∈D λs = 1.

2.0 Generate an initial subset E0 of E and set t← 0.

2.1 Solve (55), replacing E by E t. If this linear program is feasible, then the
elements of E t corresponding to the nonzero components of λ̂, the current
solution, comprise the set D, so STOP.

2.2 Otherwise, let (a, β) be a valid inequality for conv(E t) violated by x̂ (i.e., the
proof of infeasibility). Solve OPT (P ′, a, β) and let Ẽ be the resulting set of
solutions. If Ẽ 6= ∅, then set E t+1 ← E t∪Ẽ , t→ t+1, and go to 2.1. Otherwise,
(a, β) is an inequality valid for P ′ ⊇ P and violated by x̂, so STOP.

Figure 19: Column generation for the decompose and cut method

34

by xtCP . This idea was originally suggested in [56] and was further developed in [39]. A similar
concept was also discovered and developed independently by Applegate, et al. [3].

Applying decompose and cut in every iteration as the sole means of separation is theoretically
equivalent to price and cut. In practice, however, the decomposition is only computed when needed,
i.e., when less expensive separation heuristics fail to separate the optimal fractional solution. This
could give decompose and cut an advantage in terms of computational efficiency. In other respects,
the computations performed in each method are similar.

6 Solving the Master Problem

The choice of a proper algorithm for solving the master problem is important for these methods,
both because a significant portion of the computational effort is spent solving the master problem
and because the solver must be capable of returning the solution information required by the
method. In this section, we would like to briefly give the reader a taste for the issues involved and
summarize the existing methodology. The master problems we have discussed are linear programs,
or can be reformulated as linear programs. Hence, one option for solving them is to use either
simplex or interior point methods. In the case of solving a Lagrangian dual, subgradient methods
may also be employed.

Simplex methods have the advantage of providing accurate primal solution information. They
are therefore well-suited for algorithms that utilize primal solution information, such as price and
cut. The drawback of these methods is that updates to the dual solution at each iteration are
relatively expensive. In their most straightforward implementations, they also tend to converge
slowly when used with column generation. This is primarily due to the fact that they produce
basic (extremal) dual solutions, which tend to change substantially from one iteration to the next,
causing wide oscillations in the input to the column-generation subproblem. This problem can be
addressed by implementing one of a number of stabilization methods that prevent the dual solution
from changing “too much” from one iteration to the next (for a survey, see [42]).

Subgradient methods, on the other hand, do not produce primal solution information in their
most straightforward form, so they are generally most appropriate for Lagrangian methods such
as relax and cut. It is possible, however, to obtain approximate primal solutions from variants of
subgradient such as the volume algorithm [9]. Subgradient methods also have convergence issues
without some form of stabilization. A recent class of algorithms that has proven effective in this
regard is bundle methods [18].

Interior point methods may provide a middle ground by providing accurate primal solution
information and more stable dual solutions [58, 28]. In addition, hybrid methods that alternate
between simplex and subgradient methods for updating the dual solution have also shown promise
[10, 36].

7 Software

The theoretical and algorithmic framework proposed in Sections 3–5 lends itself nicely to a wide-
ranging and flexible generic software framework. All of the techniques discussed can be implemented
by combining a set of basic algorithmic building blocks. DECOMP is a C++ framework designed
with the goal of providing a user with the ability to easily utilize various traditional and integrated
decomposition methods while requiring only the provision of minimal problem-specific algorithmic

35

components [25]. With DECOMP, the majority of the algorithmic structure is provided as part of
the framework, making it easy to compare various algorithms directly and determine which option
is the best for a given problem setting. In addition, DECOMP is extensible—each algorithmic
component can be overridden by the user, if they so wish, in order to develop sophisticated variants
of the aforementioned methods.

The framework is divided into two separate user interfaces, an applications interface DecompApp,
in which the user must provide implementations of problem-specific methods (e.g., solvers for the
subproblems), and an algorithms interface DecompAlgo, in which the user can modify DECOMP’s
internal algorithms, if desired. A DecompAlgo object provides implementations of all of the methods
described in Sections 3 and 4, as well as options for solving the master problem, as discussed in
Section 6. One important feature of DECOMP is that the problem is always represented in the
original space, rather than in the space of a particular reformulation. The user has only to provide
subroutines for separation and column generation in the original space without considering the
underlying method. The framework performs all of the necessary bookkeeping tasks, including
including automatic reformulation in the Dantzig-Wolfe master, constraint dualization for relax
and cut, cut and variable pool management, as well as, row and column expansion.

In order to develop an application, the user must provide implementations of the following two
methods.

• DecompApp::createCore(). The user must define the initial set of constraints [A′′, b′′].

• DecompApp::solveRelaxedProblem(). The user must provide a solver for the relaxed prob-
lem OPT (P ′, c, U) that takes a cost vector c ∈ Rn as its input and returns a set of solutions
as DecompVar objects. Alternatively, the user has the option to provide the inequality set
[A′, b′] and solve the relaxed problem using the built-in ILP solver.

If the user wishes to invoke the traditional cutting plane method using problem-specific methods,
then the following method must also be implemented.

• DecompApp::generateCuts(x). A method for solving the separation problem SEP (P, x),
given an arbitrary real vector x ∈ Rn, which returns a set of DecompCut objects.

Alternatively, various generic separation algorithms are also provided. The user might also wish
to implement separation routines specifically for members of F ′ that can take advantage of the
structure of such solutions, as was described in Section 5.

• DecompApp::generateCuts(s). A method for solving the separation problem SEP (P, s),
given s ∈ F ′, which returns a set of DecompCut objects.

At a high level, the main loop of the base algorithm provided in DecompAlgo follows the paradigm
described earlier, alternating between solving a master problem to obtain solution information,
followed by a subproblem to generate new polyhedral information. Each of the methods described
in this paper have its own separate interface derived from DecompAlgo. For example, the base class
for the price and cut method is DecompAlgo::DecompAlgoPC. In this manner, the user can override
a specific subroutine common to all methods (in DecompAlgo) or restrict it to a particular method.

36

8 Applications

In this section, we further illustrate the concepts presented with three more examples. We focus here
on the application of integrated methods, a key component of which is the paradigm of structured
separation introduced in Section 5. For each example, we discuss three key polyhedra: (1) an
original ILP defined by a polyhedron P and associated feasible set F = P ∩ Zn; (2) a relaxation
of the original ILP with feasible set F ′ ⊇ F such that effective optimization over the polyhedron
PI = conv(F ′) is possible; and (3) a polyhedron PO, such that F = PI ∩PO ∩Zn. In each case, the
polyhedron PO is comprised of a known class or classes of valid inequalities that could be generated
during execution of the cutting subproblem of one of the integrated methods discussed in Section
4. As before, PI is a polyhedron with an inner description generated dynamically through the
solution of an optimization problem, while PO is a polyhedron with an outer description generated
dynamically through the solution of a separation problem. We do not discuss standard methods of
solving the separation problem for PO, i.e., unstructured separation, as these are well-covered in the
literature. Instead, we focus here on problems and classes of valid inequalities for which structured
separation, i.e., separation of a member of F ′, is much easier than unstructured separation. A
number of ILPs that have appeared in the literature have relaxations and associated classes of valid
inequalities that fit into this framework, such as the Generalized Assignment Problem [54], the Edge-
Weighted Clique Problem [37], the Knapsack Constrained Circuit Problem [41], the Rectangular
Partition Problem [16], the Linear Ordering Problem [15], and the Capacitated Minimum Spanning
Tree Problem [24].

8.1 Vehicle Routing Problem

We first consider the Vehicle Routing Problem (VRP) introduced by Dantzig and Ramser [20]. In
this NP-hard optimization problem, a fleet of k vehicles with uniform capacity C must service
known customer demands for a single commodity from a common depot at minimum cost. Let
V = {1, . . . , |V |} index the set of customers and let the depot have index 0. Associated with each
customer i ∈ V is a demand di. The cost of travel from customer i to j is denoted cij and we
assume that cij = cji > 0 if i 6= j and cii = 0.

By constructing an associated complete undirected graph G with vertex set N = V ∪ {0} and
edge set E, we can formulate the VRP as an integer program. A route is a set of vertices R =
{i1, i2, . . . , im} such that the members of R are distinct. The edge set of R is ER = {{ij , ij+1} | j ∈
0, . . . ,m}, where i0 = im+1 = 0. A feasible solution is then any subset of E that is the union of
the edge sets of k disjoint routes Ri, i ∈ [1..k], each of which satisfies the capacity restriction, i.e.,∑

j∈Ri dj ≤ C, ∀i ∈ [1..k]. Each route corresponds to a set of customers serviced by one of the k
vehicles. To simplify the presentation, let us define some additional notation.

By associating a variable with each edge in the graph, we obtain the following formulation of

37

this ILP [40]:

min
∑
e∈E

cexe,

x(δ({0})) = 2k, (56)

x(δ({v})) = 2 ∀v ∈ V, (57)

x(δ(S)) ≥ 2b(S) ∀S ⊆ V, |S| > 1, (58)

xe ∈ {0, 1} ∀e ∈ E(V), (59)

xe ∈ {0, 1, 2} ∀e ∈ δ(0). (60)

Here, b(S) represents a lower bound on the number of vehicles required to service the set of cus-
tomers S. Inequalities (56) ensure that there are exactly k vehicles, each departing from and
returning to the depot, while inequalities (57) require that each customer must be serviced by
exactly one vehicle. Inequalities (58), known as the generalized subtour elimination constraints
(GSECs) can be viewed as a generalization of the subtour elimination constraints from TSP, and
enforce connectivity of the solution, as well as ensuring that no route has total demand exceeding
capacity C. For ease of computation, we can define b(S) =

⌈(∑
i∈S di

)
/C
⌉
, a trivial lower bound

on the number of vehicles required to service the set of customers S.
The set of feasible solutions to the VRP is

F = {x ∈ RE | x satisfies (56)− (60)}

and we call P = conv(F) the VRP polyhedron. Many classes of valid inequalities for the VRP
polyhedron have been reported in the literature (see [51] for a survey). Significant effort has been
devoted to developing efficient algorithms for separating an arbitrary fractional point using these
classes of inequalities (see [46] for recent results).

We concentrate here on the separation of GSECs. The separation problem for GSECs was shown
to be NP-complete by Harche and Rinaldi (see [5]), even when b(S) is taken to be

⌈(∑
i∈S di

)
/C
⌉
.

In [46], Lysgaard, et al. review heuristic procedures for generating violated GSECs. Although
GSECs are part of the formulation presented above, there are exponentially many of them, so
we generate them dynamically. We discuss three relaxations of the VRP: the Multiple Traveling
Salesman Problem, the Perfect b-Matching Problem, and the Minimum Degree-constrained k-Tree
Problem. For each of these alternatives, violation of GSECs by solutions to the relaxation can be
easily discerned.

Perfect b-Matching Problem. With respect to the graph G, the Perfect b-Matching Problem
is to find a minimum weight subgraph of G such that x(δ(v)) = bv ∀v ∈ V . This problem can be
formulated by dropping the GSECs from the VRP formulation, resulting in the feasible set

F ′ = {x ∈ RE | x satisfies (56), (57), (59), (60)}.

In [50], Müller-Hannemann and Schwartz, present several fast polynomial algorithms for solving
b-Matching. The polyhedron PO consists of the GSECs (58) in this case.

38

In [49], Miller uses the b-Matching relaxation to solve the VRP by branch, relax, and cut. He
suggests generating GSECS violated by b-matchings as follows. Consider a member s of F ′ and its
support graph Gs (a b-Matching). If Gs is disconnected, then each component immediately induces
a violated GSEC. On the other hand, if Gs is connected, we first remove the edges incident to the
depot vertex and find the connected components, which comprise the routes described earlier. To
identify a violated GSEC, we compute the total demand of each route, checking whether it exceeds
capacity. If not, the solution is feasible for the original ILP and does not violate any GSECs. If
so, the set S of customers on any route whose total demand exceeds capacity induces a violated
GSEC. This separation routine runs in O(|V |+ |E|) time and can be used in any of the integrated
decomposition methods previously described. Figure 20(a) shows an example vector that could
arise during execution of either price and cut or decompose and cut, along with a decomposition
into a convex combination of two b-Matchings, shown in Figures 20(b) and 20(c). In this example,
the capacity C = 35 and by inspection we find a violated GSEC in the second b-Matching (c)
with S equal to the marked component. This inequality is also violated by the optimal fractional
solution, since x̂(δ(S)) = 3.0 < 4.0 = 2b(S).

Minimum Degree-constrained k-Tree Problem. A k-tree is defined as a spanning subgraph
of G that has |V |+k edges (recall that G has |V |+1 vertices). A degree-constrained k-tree (k-DCT),
as defined by Fisher in [23], is a k-tree with degree 2k at vertex 0. The Minimum k-DCT Problem
is that of finding a minimum cost k-DCT, where the cost of a k-DCT is the sum of the costs on
the edges present in the k-DCT. Fisher [23] introduced this relaxation as part of a Lagrangian
relaxation-based algorithm for solving the VRP.

The k-DCT polyhedron is obtained by first adding the redundant constraint

x(E) = |V |+ k, (61)

then deleting the degree constraints (57), and finally, relaxing the capacity to C =
∑

i∈S di. Relax-
ing the capacity constraints gives b(S) = 1 for all S ⊆ V , and replaces the set of constraints (58)
with ∑

e∈δ(S)

xe ≥ 2,∀S ⊆ V, |S| > 1. (62)

The feasible region of the Minimum k-DCT Problem is then

F ′ = {x ∈ RE | x satisfies (56), (58), (59), (61)}.

This time, the polyhedron PO is comprised of the constraints (57) and the GSECs (58). Since the
constraints (57) can be represented explicitly, we focus again on generation of violated GSECs. In
[62], Wei and Yu give a polynomial algorithm for solving the Minimum k-DCT Problem that runs
in O(|V |2 log |V |) time. In [48], Martinhon et al. study the use of the k-DCT relaxation for the
VRP in the context branch, relax, and cut. Again, consider separating a member s of F ′ from
the polyhedron defined by all GSECS. It is easy to see that for GSECs, an algorithm identical to
that described above can be applied. Figure 20(a) also shows a vector that could arise during the
execution of either the price and cut or decompose and cut algorithms, along with a decomposition
into a convex combination of four k-DCTs, shown in Figures 20(d) through 20(g). Removing the
depot edges and checking each component’s demand, we easily identify the violated GSEC shown
in Figure 20(g).

39

0
0

0

0
0

0

0

2

2

2
2

2

2

2

7

7

7

7

7

7

7

5

5

5

5

5

5

5

8

8

8

8

8

8

8

7

7

7

7
7

7

7

10

10

10

10

10

10

10

4

4

4

4

4

4

4

0.5

11

11

11

11

0.5

11

11

5

0.5

5

5

5

5

5

11

1

1

1

1

1

1

5

13

13

13

13

1

13

13

5

5

5

5
5

5

13

4

4

4

4

5

4

4

1

1

1

1

1

0.5

1

0.5

1

1

1

1

1

1

4

2

2

2

2

0.5

2

2

1

1
2

0.5

0.5

(g) k-DCT λ̂4 = 1
4

(a) x̂

(b) b-Matching λ̂1 = 1
2

(c) b-Matching λ̂2 = 1
2

(f) k-DCT λ̂3 = 1
4

(e) k-DCT λ̂2 = 1
4

(d) k-DCT λ̂1 = 1
4

Figure 20: Example of a decomposition into b-Matchings and k-DCTs

40

Multiple Traveling Salesman Problem. The Multiple Traveling Salesman Problem (k-TSP)
is an uncapacitated version of the VRP obtained by adding the degree constraints to the k-DCT
polyhedron. The feasible region of the k-TSP is

F ′ = {x ∈ RE | x satisfies (56), (57), (59), (60), (62)}.

Although the k-TSP is an NP-hard optimization problem, small instances can be solved effectively
by transformation into an equivalent TSP obtained by adjoining to the graph k − 1 additional
copies of vertex 0 and its incident edges. In this case, the polyhedron PO is again comprised solely
of the GSECs (58). In [57], Ralphs et al. report on an implementation of branch, decompose and
cut using the k-TSP as a relaxation.

8.2 Three-Index Assignment Problem

The Three-Index Assignment Problem (3AP) is that of finding a minimum-weight clique cover of
the complete tri-partite graph Kn,n,n. Let I, J and K be three disjoint sets with |I| = |J | = |K| = n
and set H = I × J ×K. 3AP can be formulated as the following binary integer program:

min
∑

(i,j,k)∈H

cijkxijk,

∑
(j,k)∈J×K

xijk = 1 ∀i ∈ I, (63)

∑
(i,k)∈I×K

xijk = 1 ∀j ∈ J, (64)

∑
(i,j)∈I×J

xijk = 1 ∀k ∈ K, (65)

xijk ∈ {0, 1} ∀(i, j, k) ∈ H. (66)

A number of applications of 3AP can be found in the literature (see Piersjalla [18,19]). 3AP is
known to be NP-hard [26]. As before, the set of feasible solutions to 3AP is noted as

F = {x ∈ RH | x satisfies (63)− (66)}

and we set P = conv(F).
In [7], Balas and Saltzman study the polyhedral structure of P and introduce several classes

of facet-inducing inequalities. Let u, v ∈ H and define |u ∩ v| to be the numbers of coordinates
for which the vectors u and v have the same value. Let C(u) = {w ∈ H | |u ∩ w| = 2} and
C(u, v) = {w ∈ H | |u∩w| = 1, |w ∩ v| = 2}. We consider two classes of facet-inducing inequalities
Q1(u) and P1(u, v) for P,

xu +
∑

w∈C(u)

xw ≤ 1 ∀u ∈ H, (67)

xu +
∑

w∈C(u,v)

xw ≤ 1 ∀u, v ∈ H, |u ∩ v| = 0. (68)

41

0

0

3

2

1

0

1 2 3

1

2

3

(f) P1((0, 0, 3), (1, 3, 1))

(3, 0, 0)
(0, 3, 1)
(1, 1, 2)
(3, 2, 3)

(2, 2, 0)
(0, 3, 1)
(1, 1, 2)
(0, 0, 3)

(2, 1, 0)
(1, 0, 1)
(2, 3, 2)
(3, 2, 3)

(0, 0, 3) 1/3 (0, 3, 1) 2/3
(1, 0, 1) 1/3 (1, 1, 2) 2/3
(2, 1, 0) 1/3 (2, 2, 0) 1/3
(2, 3, 2) 1/3 (3, 0, 0) 1/3
(3, 2, 3) 2/3

∑
w∈C(0,0,1) x̂w = 1 1/3 > 1

∑
w∈C((0,0,3),(1,3,1)) x̂w = 1 1/3 > 1

(a) x̂ (b) λ̂1 = 1
3

(c) λ̂2 = 1
3

(d) λ̂3 = 1
3

(e) Q1(0, 0, 1)

Figure 21: Example of a decomposition into assignments.

Note that these include all the clique facets of the intersection graph of Kn,n,n [7]. In [6], Balas
and Qi describe algorithms that solve the separation problem for the polyhedra defined by the
inequalities Q1(u) and P1(u, v) in O(n3) time.

Balas and Saltzman consider the use of the classical Assignment Problem (AP) as a relaxation
of 3AP in an early implementation of branch, relax, and cut [8]. The feasible region of the AP is

F ′ = {x ∈ RH | x satisfies (64)− (66)}.

The AP can be solved in O(n5/2 log(nC)) time where C = maxw∈H cw, by the cost-scaling algorithm
[2]. The polyhedron PO is here described by constraints (63), the constraints Q1(u) for all u ∈ H,
and the constrains P1(u, v) for all u, v ∈ H. Consider generation of a constraint of the form Q1(u)
for some u ∈ H violated by a given s ∈ F ′. Let L(s) be the set of n triplets corresponding to
the nonzero components of s (the assignment from J to K). It is easy to see that if there exist
u, v ∈ L(s) such that u = (i0, j0, k0) and v = (i0, j1, k1), i.e., the assignment overcovers the set I,
then both Q(i0, j0, k1) and Q(i0, j1, k0) are violated by s. Figure 21 shows the decomposition of
a vector x̂ (a) the could arise during the execution of either the price and cut or decompose and
algorithms, along with a decomposition of x̂ into a convex combination of assignments (b-d). The
pair of triplets (0, 3, 1) and (0, 0, 3) satisfies the condition just discussed and identifies two valid
inequalities, Q1(0, 3, 3) and Q1(0, 0, 1), that are violated by the second assignment, shown in (c).
The latter also violates x̂ and is illustrated in (e). This separation routine runs in O(n) time.

Now consider generation of a constraint of the form P1(u, v) for some u, v ∈ H violated by
s ∈ F ′. As above, for any pair of assignments that correspond to nonzero components of s
and have the form (i0, j0, k0), (i0, j1, k1), we know s violates P1((i0, j0, k0), (i, j1, k1)), ∀i 6= i0 and

42

P1((i0, j1, k1), (i, j0, k0)),∀i 6= i0. The inequality P1((0, 0, 3), (1, 3, 1)) is violated by the second as-
signment, shown in Figure 21(c). This inequality is also violated by x̂ and is illustrated in (f).
Once again, this separation routine runs in O(n) time.

8.3 Steiner Tree Problem

Let G = (V,E) be a complete undirected graph with vertex set V = {1, ..., |V |}, edge set E and
a positive weight ce associated with each edge e ∈ E. Let T ⊂ V define the set of terminals.
The Steiner Tree Problem (STP), which is NP-hard, is that of finding a subgraph that spans T
(called a Steiner tree) and has minimum edge cost. In [13], Beasley formulated the STP as a side
constrained Minimum Spanning Tree Problem (MSTP) as follows. Let r ∈ T be some terminal and
define an artificial vertex 0. Now, construct the augmented graph Ḡ = (V̄ , Ē) where V̄ = V ∪ {0}
and Ē = E ∪ {{i, 0} | i ∈ (V \ T) ∪ {r}}. Let ci0 = 0 for all i ∈ (V \ T) ∪ {r}. Then, the STP
is equivalent to finding a minimum spanning tree (MST) in Ḡ subject to the additional restriction
that any vertex i ∈ (V \ T) connected by edge {i, 0} ∈ Ē must have degree one.

By associating a binary variable xe with each edge e ∈ Ē, indicating whether or not the edge is
selected, we can then formulate the STP as the following integer program:

min
∑
e∈E

cexe,

x(Ē) = |V̄ | − 1, (69)

x(E(S)) ≤ |S| − 1 ∀S ⊆ V̄ , (70)

xi0 + xe ≤ 1 ∀e ∈ δ(i), i ∈ (V \ T), (71)

xe ∈ {0, 1} ∀e ∈ Ē. (72)

Inequalities (69) and (70) ensure that the solution forms a spanning tree on Ḡ. Inequalities (70)
are subtour elimination constraints (similar to those used in the TSP). Inequalities (71) are the
side constraints that ensure the solution can be converted to a Steiner tree by dropping the edges
in Ē \ E.

The set of feasible solutions to the STP is

F = {x ∈ RĒ | x satisfies (69)− (72)}.

We set P = conv(F) as before. We consider two classes of valid inequalities for P that are lifted
versions of the subtour elimination constraints (SEC).

x(E(S)) + x(E(S \ T | {0})) ≤ |S| − 1 ∀S ⊆ V, S ∩ T 6= ∅, (73)

x(E(S)) + x(E(S \ {v} | {0})) ≤ |S| − 1 ∀S ⊆ V, S ∩ T = ∅, v ∈ S. (74)

The class of valid inequalities (73) were independently introduced by Goemans [27], Lucena [43]
and Margot, Prodon, and Liebling [47], for another extended formulation of STP. The inequalities
(74) were introduced in [27, 47]. The separation problem for inequalities (73) and (74) can be
solved in O(|V |4) time through a series of max-flow computations.

43

11 1

22 2

33 3

0.5

444 5

0.5

55

66

6

6

6

0.5

6

0.5

(a) x̂ (b) λ̂ = 1
2 (c) λ̂ = 1

2

Figure 22: Example of a decomposition into minimum spanning trees.

In [44], Lucena considers the use of MSTP as a relaxation of STP in the context of a branch,
relax, and cut algorithm. The feasible region of the MSTP is

F ′ = {x ∈ RĒ | x satisfies (69), (70), (72)}.

The MSTP can be solved in O(|E| log |V |) time using Prim’s algorithm [55]. The polyhedron PO is
described by the constraints (71), (73), and (74). Constraints (71) can be represented explicitly, but
we must dynamically generate constraints (73) and (74). In order to identify an inequality of the
form (73) or (74) violated by a given s ∈ F ′, we remove the artificial vertex 0 and find the connected
components on the resulting subgraph. Any component of size greater than 1 that does not contain
r and does contain a terminal, defines a violated SEC (73). In addition, if the component does not
contain any terminals, then each vertex in the component that was not connected to the artificial
vertex defines a violated SEC (74).

Figure 22 gives an example of a vector (a) that might have arisen during execution of either
the price and cut or decompose and cut algorithms, along with a decomposition into a convex
combination of two MSTs (b,c). In this figure, the artificial vertex is black, the terminals are gray
and r = 3. By removing the artificial vertex, we easily find a violated SEC in the second spanning
tree (c) with S equal to the marked component. This inequality is also violated by the optimal
fractional solution, since x̂(E(S)) + x̂(E(S \ T | {0})) = 3.5 > 3 = |S| − 1. It should also be noted
that the first spanning tree (b), in this case, is in fact feasible for the original problem.

9 Conclusions and Future Work

In this paper, we presented a framework for integrating dynamic cut generation (outer methods)
and traditional decomposition methods (inner methods) to yield new integrated methods that may
produce bounds that are improved over those yielded by either technique alone. We showed the
relationships between the various methods and how they can be viewed in terms of polyhedral
intersection. We have also introduced the concept of structured separation and a related paradigm
for the generation of improving inequalities based on decomposition and the separation of solutions

44

to a relaxation. The next step in this research is to complete a computational study using the
software framework introduced in Section 7 that will allow practitioners to make intelligent choices
between the many possible variants we have discussed.

References

[1] K. Aardal and S. van Hoesel. Polyhedral techniques in combinatorial optimization. Statistica
Neerlandica, 50:3–26, 1996.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, Englewood Cliffs, NJ, 1993.

[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. TSP cuts which do not conform to the
template paradigm. In Computational Combinatorial Optimization, pages 261–303. Springer,
2001.

[4] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Implementing the Dantzig-Fulkerson-
Johnson algorithm for large traveling salesman problems. Mathematical Programming, 97:91–
153, 2003.

[5] P. Augerat, J. M. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Rinaldi. Compu-
tational Results with a Branch and Cut Code for the Capacitated Vehicle Routing Problem.
Technical Report 949-M, Université Joseph Fourier, Grenoble, France, 1995.

[6] E. Balas and L. Qi. Linear-time separation algorithms for the three-index assignment polytope.
Discrete Applied Mathematics, 43:1–12, 1993.

[7] E. Balas and M.J. Saltzman. Facets of the three-index assignment polytope. Discrete Applied
Mathematics, 23:201–229, 1989.

[8] E. Balas and M.J. Saltzman. An algorithm for the three-index assignment problem. Operations
Research, 39:150–161, 1991.

[9] F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with a subgra-
dient method. Mathematical Programming, 87:385–399, 2000.

[10] F. Barahona and D. Jensen. Plant location with minimum inventory. Mathematical Program-
ming, 83:101–111, 1998.

[11] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to solve origin-
destination integer multi-commodity flow problems. Operations Research, 48:318–326, 2000.

[12] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance. Branch
and price: Column generation for solving huge integer programs. Operations Research, 46:316–
329, 1998.

[13] J.E. Beasley. A SST-based algorithm for the steiner problem in graphs. Networks, 19:1–16,
1989.

45

[14] J.E. Beasley. Lagrangean relaxation. In C.R. Reeves, editor, Modern Heuristic Techniques for
Combinatorial Optimization. John Wiley & Sons, New York, 1993.

[15] A. Belloni and A. Lucena. A Lagrangian heuristic for the linear ordering problem. In M.G.C.
Resende and J. Pinho de Sousa, editors, Metaheuristics: Computer Decision-Making, pages
123–151. Kluwer Academic, 2003.

[16] F. C. Calheiros, A. Lucena, and C. de Souza. Optimal rectangular partitions. Networks,
41:51–67, 2003.

[17] A. Caprara, M. Fischetti, and P. Toth. Algorithms for the set covering problem. Annals of
Operations Research, 98:353–371, 2000.

[18] P. Carraresi, A. Frangioni, and M. Nonato. Applying bundle methods to optimization of poly-
hedral functions: An applications-oriented development. Technical Report TR-96-17, Univer-
sitá di Pisa, 1996.

[19] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Research,
8(1):101–111, 1960.

[20] G.B. Dantzig and R.H. Ramser. The truck dispatching problem. Management Science, 6:80–91,
1959.

[21] M. Poggi de Aragão and E. Uchoa. Integer program reformulation for robust branch-and-cut-
and-price. Working paper, Pontif́ıca Universidade Católica do Rio de Janeiro, 2004. Available
from http://www.inf.puc-rio.br/˜uchoa/doc/rbcp-a.pdf.

[22] M.L. Fisher. The Lagrangian relaxation method for solving integer programming problems.
Management Science, 27:1–18, 1981.

[23] M.L. Fisher. Optimal solution of vehicle routing problems using minimum k-trees. Operations
Research, 42:626–642, 1994.

[24] R. Fukasawa, M. Poggi de Aragão, M. Reis, and E. Uchoa. Robust branch-and-cut-and-price for
the capacitated minimum spanning tree problem. In Proceedings of the International Network
Optimization Conference, pages 231–236, Evry, France, 2003.

[25] M. Galati. DECOMP user’s manual. Technical report, Lehigh University Industrial and
Systems Engineering, 2005.

[26] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, 1979.

[27] M.X. Goemans. The steiner tree polytope and related polyhedra. Mathematical Programming,
63:157–182, 1994.

[28] J. L. Goffin and J. P. Vial. Convex nondifferentiable optimization: A survey focused on the
analytic center cutting plane method. Technical Report 99.02, Logilab, Geneva, Switzerland,
1999.

46

[29] J. Gondzio and R. Sarkissian. Column generation with a primal-dual method. Technical
report, University of Geneva, Logilab, HEC Geneva, 1996.

[30] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1:169–197, 1981.

[31] M. Grötschel and M. Padberg. On the symmetric travelling salesman problem I: Inequalities.
Mathematical Programming, 16:265–280, 1979.

[32] M. Grötschel and M. Padberg. On the symmetric travelling salesman problem II: Lifting
theorems and facets. Mathematical Programming, 16:281–302, 1979.

[33] M. Guignard. Efficient cuts in Lagrangean “relax-and-cut” schemes. European Journal of
Operational Research, 105:216–223, 1998.

[34] M. Guignard. Lagrangean relaxation. Top, 11:151–228, 2003.

[35] M. Held and R. M. Karp. The traveling salesman problem and minimum spanning trees.
Operations Research, 18:1138–1162, 1970.

[36] D. Huisman, R. Jans, M. Peeters, and A. Wagelmans. Combining column generation and
Lagrangian relaxation. Technical report, Erasmus Research Institute of Management, Rotter-
damn, The Netherlands, 2003.

[37] M. Hunting, U. Faigle, and W. Kern. A Lagrangian relaxation approach to the edge-weighted
clique problem. European Journal of Operational Research, 131:119–131, 2001.

[38] N. Kohl, J. Desrosiers, O.B.G. Madsen, M.M. Solomon, and F. Soumis. 2-path cuts for the
vehicle routing problem with time windows. Transportation Science, 33:101–116, 1999.

[39] L. Kopman. A New Generic Separation Routine and Its Application In a Branch and Cut
Algorithm for the Capacitated Vehicle Routing Problem. PhD thesis, Cornell University, May
1999.

[40] G. Laporte, Y. Nobert, and M. Desrouchers. Optimal routing with capacity and distance
restrictions. Operations Research, 33:1050–1073, 1985.

[41] J. Linderoth and M. Galati. Knapsack constrained circuit problem. Unpublished working
paper, 2004.

[42] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Technical Report
008-2004, Technische Universität Berlin, 2004.

[43] A. Lucena. Tight bounds for the steiner problem in graphs. Talk given at TIMS-XXX-
SOBRAPO XXIII Joint International Meeting, Rio de Janeiro, July 1991.

[44] A. Lucena. Steiner problem in graphs: Lagrangean relaxation and cutting planes. COAL
Bulletin, 28:2–8, 1992.

[45] A. Lucena. Non delayed relax-and-cut algorithms. Annals of Operations Research, 140(1):375–
410, 2005.

47

[46] J. Lysgaard, A.N. Letchford, and R.W. Eglese. A new branch-and-cut algorithm for the
capacitated vehicle routing problem. Mathematical Programming, 100:423–445, 2004.

[47] F. Margot, A. Prodon, and T.M. Liebling. Tree polyhedron on 2-tree. Mathematical Program-
ming, 63:183–192, 1994.

[48] C. Martinhon, A. Lucena, and N. Maculan. Stronger k-tree relaxations for the vehicle routing
problem. European Journal of Operational Research, 158:56–71, 2004.

[49] D. Miller. A matching based exact algorithm for capacitated vehicle routing problems. ORSA
Journal on Computing, 7:1–9, 1995.

[50] M. Müller-Hannemann and A. Schwartz. Implementing weighted b-matching algorithms: To-
wards a flexible software design. In Proceedings of the Workshop on Algorithm Engineering
and Experimentation (ALENEX99), volume 1619 of Lecture notes in computer science, pages
18–36, Baltimore, MD, 1999. Springer-Verlag.

[51] D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated VRP. In P. Toth
and D. Vigo, editors, The Vehicle Routing Problem, pages 53–84. SIAM, 2002.

[52] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, New York,
1988.

[53] M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut problem.
Mathematical Programming, 47:19–36, 1990.

[54] A. Pigatti. Modelos e algoritmos para o problema de aloção generalizada e aplicações. PhD
thesis, Pontif́ıcia Universidade Católica do Rio de Janeiro, 2003.

[55] R. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36:1389–1401, 1957.

[56] T K Ralphs. Parallel Branch and Cut for Vehicle Routing. PhD thesis, Cornell University,
may 1995.

[57] T K Ralphs, L Kopman, W R Pulleyblank, and L E Trotter Jr. On the capacitated vehicle
routing problem. Mathematical Programming, 94:343–359, 2003.

[58] L. M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization for column generation.
Working paper, Cahier du Gerad, 2003. Available from http://www.lia.univ-avignon.fr/

fich_art/380-IPS.pdf.

[59] V. Chvátal. Linear Programming. W.H. Freeman and Company, 1983.

[60] J.M. van den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh. Time-indexed formulations
for machine scheduling problems: Column generation. INFORMS Journal on Computing,
12:111–124, 2000.

[61] F. Vanderbeck. Lot-sizing with start-up times. Management Science, 44:1409–1425, 1998.

48

[62] G. Wei and G. Yu. An improved O(n2 log n) algorithm for the degree-constrained minimum
k-tree problem. Technical report, The University of Texas at Austin, Center for Management
of Operations and Logistics, 1995.

49

