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Abstract

We study the convex hull of the intersection of a disjunctive set defined by parallel hy-
perplanes and the feasible set of a mixed integer second order cone optimization (MISOCO)
problem. We extend our prior work on disjunctive conic cuts (DCCs), which has thus far
been restricted to the case in which the intersection of the hyperplanes and the feasible set is
bounded. Using a similar technique, we show that one can extend our previous results to the
case in which that intersection is unbounded. We provide a complete characterization in closed
form of the conic inequalities required to describe the convex hull when the hyperplanes defining
the disjunction are parallel.

1 Introduction

The use of valid inequalities in mixed integer linear optimization (MILO) was essential for the
development of successful optimization solvers [Cornuéjols, 2008]. Particularly, the disjunctive
inequalities proposed originally by Balas have proven to be especially powerful [Balas, 1979]. Here,
we present an extension of the disjunctive approach of Balas to mixed integer second order cone
optimization (MISOCO). The contribution of this paper lies in the consolidation and completion of
the characterizations of disjunctive conic cuts (DCCs) for MISOCO problems proposed in Belotti
et al. [2013, 2015].

A MISOCO problem is that of minimizing a linear function over the intersection of an affine
subspace with the Cartesian product of k Lorentz cones. A Lorentz cone is defined as Lp = {xi ∈
Rp|xi1 ≥ ‖xi2:p‖}, where the notation x2:p is used to denote a vector formed by the components 2 to
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p of a vector x ∈ Rp. Formally, the standard form of a MISOCO problem is then as follows:

minimize: c>x

subject to: Ax = b (MISOCO)

x ∈ K
x ∈ Zd × Rn−d,

where A ∈ Qm×n, c ∈ Qn, b ∈ Qm, K = Ln1
1 × . . . × Lnkk , and

∑k
i=1 ni = n. We assume the rows

of A are linearly independent. It is well-known that the formulation of a MISOCO problem is
similar to the formulation of a MILO problem, except for the requirement that the feasible region
be contained in the cone K. Given the similarities between MISOCO and MILO problems, it stands
to reason that the application of disjunctive techniques to MISOCO problems may also become a
powerful tool to improve the performance of MISOCO solvers.

For simplicity of presentation, we focus in what follows on the case in which K = Ln (k = 1).
Our main objective is then to obtain a description of the convex hull of the set

FD = F ∩ (U ∪ V), (1)

where F = {x ∈ Rn | Ax = b, x ∈ Ln}, U = {x ∈ Rn | u>x ≥ ϕ}, V = {x ∈ Rn | u>x ≤ $},
and $ ≤ ϕ. Throughout the paper we use the superscript = to denote the hyperplanes forming
the boundary of a half-space, as for example U= = {x ∈ Rn | u>x = ϕ}. To achieve our goal we
use the result in Belotti et al. [2013], which shows that the set F may be described in terms of a
quadric

Q = {w ∈ R` | w>Pw + 2p>w + ρ ≤ 0},

where P ∈ R`×`, p ∈ R`, and ρ is a scalar. Our characterization of conv(FD) is obtained analyzing
the geometry of the intersections of Q with the sets U= and V=.

Several generalizations of Balas’ disjunctive approach have been investigated in the literature.
Namely, Stubbs and Mehrotra generalized Balas’ approach for 0 − 1 mixed integer convex opti-
mization problems [Stubbs and Mehrotra, 1999]. Later, Çezik and Iyengar proposed an extension
of lift-and-project techniques for 0-1 mixed integer conic optimization (MICO) [Çezik and Iyengar,
2005]. In particular, they showed how to generate linear and convex quadratic valid inequalities
using the relaxation obtained by a projection procedure. That work also extended the Chvátal-
Gomory procedure [Gomory, 1958] for generating linear cuts to MICO problems. Further, Drewes
narrowed the analysis in Drewes [2009], applying the extension studied in Çezik and Iyengar [2005]
and Stubbs and Mehrotra [1999] to MISOCO problems. More recently, close forms for disjunctive
cuts derived by extending Balas’ approach to MISOCO problems were also derived in Andersen
and Jensen [2013], Belotti et al. [2013, 2015], Dadush et al. [2011], Kılınç-Karzan and Yıldız [2014],
Modaresi et al. [2016, 2015].

In this paper we build on the theory of DCCs previously developed in Belotti et al. [2013,
2015], in which boundedness of the intersection of F with the sets U= and V= was assumed
and a closed form description of the DCCs was provided. Here, we consider the case where the
boundedness of these intersections is no longer assumed. This requires an additional analysis of
the behaviour of the family of quadrics described in Belotti et al. [2013]. In particular, with
unboundedness it is not possible to have a unified result such as Theorem 3.4 in Belotti et al.
[2013]. These results were originally described in Goez’s dissertation Góez [2013], which provided
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a complete characterization of conv(FD). A different approach for the derivation of these cuts
was independently proposed in Modaresi et al. [2016], with two major differences. First, the
construction presented here uses an algebraic analysis of quadrics for the derivation of the cuts,
while the approach in Modaresi et al. [2016] uses an interpolation technique. Second, the derivation
proposed here generalizes to all quadrics that are needed to describe the geometry of the continuous
relaxation of (MISOCO) problems. This is not the case in Modaresi et al. [2016], since with that
approach the characterization of hyperboloids was not possible due to the involved formulas required
in the analysis.

We organize our presentation in this paper as follows. We begin in Section 2 by characterizing
the shapes of the feasible set of a MISOCO problem with a single cone. That characterization
provides the basis for obtaining the closed form for the DCCs to be introduced. In Section 3,
we describe a detailed general procedure to derive DCCs for MISOCO problems. That description
recalls the results previously provided in Belotti et al. [2013, 2015] and discusses the new extensions
to the unbounded case supported by the results of Góez’s Ph.D. thesis [Góez, 2013]. Finally, we
close the paper with some conclusions and directions for future research in Section 4.

2 Quadrics and the feasible set of a MISOCO problem

Before discussing the derivation of the DCCs, we need to establish the relationship between quadrics
and the feasible set of (MISOCO). To simplify the analysis, we restrict ourselves to the set F
introduced in (1). The goal of this section is twofold. First, we show that the set F can be
described in terms of a quadric Q. Second, we show how that quadric Q may be used to obtain a
conic inequality valid for FD. Finally, we provide a characterization of the shapes of the quadrics
that can be used to represent F . That characterization is the basis for the analysis in Section 3.

We first consider the set {x ∈ Rn | Ax = b} and a vector x0 ∈ F . Let Hn×` be a matrix whose
columns form an orthonormal basis for the null space of A, where ` = n−m. Then, we have that

{x ∈ Rn | Ax = b} = {x ∈ Rn | ∃w ∈ R`, x = x0 +Hw}. (2)

We may use (2) to rewrite the set F in terms of a quadric as follows. First, let J ∈ Rn×n be a
diagonal matrix defined as

J =

[
−1 0
0 I

]
.

Then, we have that
Ln = {x ∈ Rn | x>Jx ≤ 0, x1 ≥ 0}.

Substituting x = x0 +Hw in the constraint involving J , it becomes

(x0 +Hw)>J(x0 +Hw) = w>H>JHw + 2(x0)>JHw + (x0)>Jx0 ≤ 0. (3)

Defining P = H>JH, p = H>Jx0, and ρ = (x0)>Jx0, we can re-write (3) as the quadric

Q = {w ∈ R` | w>Pw + 2p>w + ρ ≤ 0}. (4)

In what follows, it will be convenient to define the set

FQ = {w ∈ R` | w ∈ Q, x0
1 +H>1:w ≥ 0}, (5)
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where H1: is the first row of H. Using FQ, we can express F can in terms of Q as follows:

F = {x ∈ Rn | ∃w ∈ FQ, x = x0 +Hw}. (6)

The condition x1 = x0
1 + H>1:w ≥ 0 in (5) is necessary because there are cases in which Q is non-

convex (see Figure 1). In such a case, substituting Q for FQ in (6) would admit solutions for which
x1 < 0 that do not correspond to solutions to the original problem.

Recall the set FD defined in (1) that we wish to convexify and the sets U and V defined earlier.
Notice that the sets U and V can be reformulated as

U = {x ∈ Rn | ∃w ∈ R`, x = x0 +Hw, u>Hw ≥ ϕ− u>x0},

and
V = {x ∈ Rn | ∃w ∈ R`, x = x0 +Hw, u>Hw ≤ $ − u>x0}.

To express U and V in a form that can be used with the reformulation we have obtained, define
a = u>H, α = ϕ− u>x0 and β = $− u>x0. Now, let A = {w ∈ R` | a>w ≥ α} and B = {w ∈ R` |
a>w ≤ β}. One can then equivalently define FD from (1) in terms of Q and the set A ∪ B as

FD = {x ∈ Rn | ∃w ∈ FQ ∩ (A ∪ B), x = x0 +Hw}. (7)

We now derive a Lemma that shows that separating a point x̂ ∈ F from FD is equivalent to
separating a certain related point ŵ ∈ FQ from FQ ∩ (A ∪ B).

Lemma 1. Consider a vector x̂ ∈ F and a vector ŵ ∈ FQ such that x̂ = x0 +Hŵ. Then x̂ 6∈ FD
if and only if ŵ 6∈ FQ ∩ (A ∪ B).

Proof. Recall the alternative representation of F given in (6). Note that any x ∈ F is a linear
combination of x0 and the columns of H. Additionally, recall that the columns of H are linearly
independent. Then, the vector ŵ defining x̂ is unique. The result follows.

Thus, from Lemma 1 we obtain that convexifying the set FQ∩(A∪B) one can derive disjunctive
cuts for the feasible set of (MISOCO).

Before moving forward with the derivation of the DCCs for MISOCO problems in Section 3, we
need to analyze the shapes of the quadric Q. The inertia of the matrix P in the representation of
Q is the key element defining its shape. Hence, we recall the following result about the inertia of
P .

Lemma 2 (Belotti et al. [2013]). The matrix P in the definition of the quadric Q has at most one
non-positive eigenvalue, and at least `− 1 positive eigenvalues.

Using Lemma 2 it may be shown that for the analysis of Section 3 we only need to account for
the following possible shapes of Q:

1. if P � 0, then Q is an ellipsoid, see Figure 1(a) for an illustration;

2. if P � 0 and it is singular, then Q is:

(a) a paraboloid if there is no vector wc ∈ R` such that Pwc = −p, see Figure 1(b) for an
illustration;
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(a) Ellipsoid. (b) Paraboloid.

(c) Hyperboloid. (d) Cone.

Figure 1: Illustration of the shapes of Q.

(b) a line if there is a vector wc ∈ R` such that Pwc = −p;

3. if P is indefinite with one negative eigenvalue (ID1), then Q is:

(a) a hyperboloid of two sheets if p>P−1p− ρ < 0, see Figure 1(c) for an illustration;

(b) a quadratic cone if p>P−1p− ρ = 0, see Figure 1(d) for an illustration.

The proof that we only need to consider the cases above is mainly technical and is presented
in A. Note that the cases 3a and 3b are the two cases metioned earlier in which the quadric Q is a
non-convex set. Finally, notice that by construction we have that the set FQ is either equal to Q
when it is a convex quadric or to one of the branches of Q when it is a non-convex quadric. Hence,
the boundedness or unboundedness of the intersections of FQ with A= and B= will be determined
by the intersections of those hyperplanes with Q.

6



Example 1. As an example illustrating the cases, consider the following MISOCO problem:

minimize: c1x1 + c1x2 + c1x3 + c1x4

subject to: − σx3 + x4 = 2 (8)

(x4, x1, x2, x3)> ∈ L4

x1, x2, x3 ∈ Z.

In this example we have that ` = 3 and we assume σ ≥ 0, obtaining the following cases: if σ < 1,
then Q would be an ellipsoid; if σ = 1, then Q would be a paraboloid; if σ > 1, then Q would be a
hyperboloid.

3 Derivation of DCCs for MISOCO problems

We now present the derivation of DCCs for MISOCO problems using the reformulation introduced
in Section 2. The quadric Q and sets FQ, A, and B are as defined earlier in Section 2.

To facilitate the algebra, we may assume w.l.o.g. that β < α and that the quadric Q has been
normalized. In this context, a normalized quadric Q implies three things: first, that the matrix P
is a diagonal matrix with all its entries taking values in {−1, 0, 1}; second, that the scalar ρ takes
a value in {−1, 0, 1}; and third, that p = 0 for the case of ellipsoids, hyperboloids, or cones. This
normalization may be achieved using one of the linear transformations L described in B.

We provide in this section a full list of the DCCs that can be derived by an explicit charac-
terization of the set conv(FQ ∩ (A ∪ B)). From Section 2, using the setup described above, we
know that the scope of our derivation can be limited to the following cases for Q: an ellipsoid, a
paraboloid, a branch of a hyperboloid of two sheets, and a Lorentz cone. Note that if A∩FQ = ∅,
then conv(FQ ∩ (A∪B)) = FQ ∩B. Similarly, if B ∩FQ = ∅, then conv(FQ ∩ (A∪B)) = FQ ∩A.
Therefore, for the rest of this section we assume that A ∩ FQ 6= ∅ and B ∩ FQ 6= ∅. Additionally,
given that α 6= β, we have that A∩B = ∅. In order to keep the paper self-contained, we divide our
derivation as follows. In Section 3.1, we recall the definitions of DCCs and disjunctive cylindrical
cuts (DCyCs) introduced in Belotti et al. [2015]. In Section 3.2, we revisit some results from Belotti
et al. [2013] about quadrics. Section 3.3 reviews the derivation when A= ∩ FQ and B= ∩ FQ are
bounded [Belotti et al., 2015]. Finally, in Section 3.4 we complete the derivation of possible DCCs
considering the case when A= ∩ FQ and B= ∩ FQ are unbounded.

3.1 Disjunctive conic cuts

We recall in this section the main definitions and results of Belotti et al. [2015]. We begin with the
formal definition of a DCC.

Definition 1 (Belotti et al. [2015]). A full-dimensional closed convex cone K ⊂ R` is called a
disjunctive conic cut (DCC) for the set FQ and the disjunctive set A ∪ B if

conv
(
FQ ∩ (A ∪ B)

)
= FQ ∩ K.

In what follows, we may need to consider translated cones, i.e., a cone whose vertex is not at
the origin. Since it is always possible to use a translation to reposition the vertex of a given cone at
the origin, we may assume in our proofs that the vertex of a cone is at the origin unless a translated
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cone is strictly required, in which case we explicitly specify it. The following proposition provides
a sufficient condition for a convex cone K to be a disjunctive conic cut for the set FQ and the
disjunctive set A ∪ B when the sets FQ ∩ A= and FQ ∩ B= are bounded.

Proposition 1 (Belotti et al. [2015]). Let FQ and the disjunctive set A∪B be such that (A ∩ B)∩FQ
is empty, and both FQ ∩ A= and FQ ∩ B= are nonempty and bounded. A full-dimensional convex
cone K ⊂ R` is the unique DCC for FQ and the disjunctive set A ∪ B if

K ∩A= = FQ ∩ A= and K ∩ B= = FQ ∩ B=. (9)

We must also recall the formal definition of a DCyC. For this definition we need to introduce
first the definition of a cylinder that is used here.

Definition 2 (Belotti et al. [2015]). Let D ⊆ Rn be a convex set and d0 ∈ Rn a vector. Then, the
set C = {x ∈ Rn|x = d+ σd0, d ∈ D, σ ∈ R} is called a convex cylinder in Rn.

Notice that using this definition a line is a one-dimensional cylinder. We may define a DCyC
as follows.

Definition 3 (Belotti et al. [2015]). A closed convex cylinder C ⊂ R` is a disjunctive cylindrical
cut (DCyC) for the set FQ and the disjunctive set A ∪ B if

conv(FQ ∩ (A ∪ B)) = C ∩ FQ.

The following proposition provides a sufficient condition for a convex cylinder C to be a dis-
junctive cylindrical cut for the set FQ.

Proposition 2. Let FQ and the disjunctive set A∪B be such that (A ∩ B)∩FQ is empty, and both
FQ ∩ A= and FQ ∩ B= are nonempty. A convex cylinder C ∈ R` with a unique direction d0 ∈ R`,
such that a>d0 6= 0, is the unique DCyC for FQ and the disjunctive set A ∪ B if

C ∩ A= = FQ ∩ A= and C ∩ B= = FQ ∩ B=. (10)

Notice that this version of Proposition 2 requires that the sets FQ ∩ A= and FQ ∩ B= be
nonempty, but not bounded, in contrast to the corresponding result in Belotti et al. [2015]. Since
the proof of this version of Proposition 2 does not differ significantly from the proof in Belotti et al.
[2015], we omit the proof here. For the interested reader, it can be found in Góez [2013].

3.2 Family of quadrics

We now recall the key elements from Belotti et al. [2013] with regard to the derivation of the DCCs
and DCyCs. We start with the following result about quadrics.

Theorem 1 (Belotti et al. [2013]). The uni-parametric family {Q(τ) | τ ∈ R} of quadrics having
the same intersection with A= and B= as the quadric Q is defined as Q(τ) = {w ∈ R` | w>P (τ)w+
2p(τ)>w + ρ(τ) ≤ 0}, where

P (τ) = P + τaa>, p(τ) = p− τ (α+ β)

2
a, ρ(τ) = ρ+ ταβ.
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We may now use Theorem 1 to ensure that for any τ ∈ R the quadric Q(τ) satisfies the
conditions Q(τ) ∩ A= = Q ∩ A= and Q(τ) ∩ B= = Q ∩ B=. It also allows us to characterize the
shapes of the quadrics in the family {Q(τ) | τ ∈ R} as follows. The matrix P (τ) is in general
non-singular, except for some specific values of τ , which are discussed in Sections 3.3 and 3.4. For
the case where P (τ) is non-singular, one can rewrite the definition of the quadric Q(τ) as

(w + P (τ)−1p(τ))>P (τ)(w + P (τ)−1p(τ)) ≤ p(τ)>P (τ)−1p(τ)− ρ(τ). (11)

Hence, using the same approach of Section 2, the shapes of the quadrics in the family {Q(τ) | τ ∈ R}
can be classified using the inertia of P (τ) and the term p(τ)>P (τ)−1p(τ)−ρ(τ). We use this result
in Sections 3.3 and 3.4 to proceed with the derivation of the closed forms of the DCCs and DCyCs.

3.3 Derivation of DCCs when FQ ∩ A= and FQ ∩ B= are bounded

We begin our derivation considering the case when the intersections of FQ with the hyperplanes A=

and B= are bounded. Recall the possible shapes of Q obtained at the end of Section 2. In Belotti
et al. [2013] the properties of the family of quadrics {Q(τ) | τ ∈ R} of Theorem 1 were analyzed
taking an ellipsoid as the initial quadric Q. This choice has two advantages: a) the sets Q∩A= and
Q∩B= are always bounded; and b) it simplifies the algebra. For the sake of consistency with Belotti
et al. [2013, 2015], we assume here that Q is an ellipsoid. As a consequence, we have in this case
that FQ = Q. However, we highlight that this analysis is also valid when Q is a paraboloid, one
branch of a hyperboloid of two sheets, or a quadratic cone, provided that the sets Q ∩ A= and
Q ∩ B= are bounded. In fact, the following result is a direct consequence of Lemmas 3.2 and 3.5
in Góez [2013].

Corollary 1. Let Q be an ellipsoid, a paraboloid, a hyperboloid of two sheets, or a quadratic cone,
and let A= and B= to parallel hyperplanes such that A= ∩Q 6= ∅ and B= ∩Q 6= ∅. If Q∩A= and
Q∩ B= are bounded, then there exists an ellipsoid in the family {Q(τ) | τ ∈ R} of Theorem 1.

Hence, the close forms for the cases of a paraboloid, one branch of a hyperboloid, or a quadratic
cone, may be obtained with the analysis presented here by taking one of the ellipsoids in the family
as the initial quadric Q.

In Belotti et al. [2013], it is shown that the term p(τ)>P (τ)−1p(τ)− ρ(τ) can be written as the
ratio

p(τ)>P (τ)−1p(τ)− ρ(τ) =
τ2 (α1−α2)2

4 + τ(1− α1α2) + 1

(1 + τ)
. (12)

Notice that for τ = −1 the denominator in (12) is zero, this is also the only value where P (τ)
becomes singular. Let τ̄1 ≤ τ̄2 be the roots of the numerator of (12). A full characterization of
the family Q(τ) for τ ∈ R, depending on the geometry of Q and the hyperplanes A= and B=, is
presented in [Belotti et al., 2013, Theorem 3.4], which we recall here.

Theorem 2. The following cases may occur for the shape of Q(τ):

1. τ̄1 < τ̄2 < −1: Q(−1) is a paraboloid, and Q(τ̄1), Q(τ̄2) are two cones.

2. τ̄1 = τ̄2 < −1: Q(−1) is a paraboloid and Q(τ̄2) is a cone.

3. τ̄1 < τ̄2 = −1: Q(τ̄1) is cone and Q(τ̄2) is a cylinder.
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4. τ̄1 = τ̄2 = −1: Q(τ̄2) is a line.

We may now used this characterization to identify a DCC or DCyC in the family of Theorem 1,
which convexifies the intersection of Q with a parallel disjunction. Our strategy in the next sections
works as follows. First, we identify a convex cone K or a convex cylinder C in families of quadrics
of Theorem 2. Second, we use the results of Propositions 1 and 2 to show that K ∩ Q or C ∩ Q
characterizes the convex hull for Q ∩ (A ∪ B). To simplify the analysis, we separate the cases of
cylinders and cones in the following two sections.

3.3.1 Cylinders

Consider the families {Q(τ), τ ∈ R}, described in the third and fourth cases in Theorem 2, where
Q(τ̄2) is a cylinder. Recall that

Q(τ̄2) =
{
w ∈ R`

∣∣∣ w>P (τ̄2)w + 2p(τ̄2)>w + ρ(τ̄2) ≤ 0
}
, (13)

where P (τ̄2) is a positive semidefinite matrix. Hence, the cylinder Q(τ̄2) is convex, and from
Proposition 2 we obtain that FQ ∩Q(τ̄2) = FQ ∩ (A∪B). In other words, we have that Q(τ̄2) is a
DCyC.

Example 2. To illustrate this result, consider the case when σ =
√

5 − 2 in Example (8). Using
this value we obtain that

FQ = {(x1, x2, x3)> ∈ R3 | x2
1 + x2

2 + (4
√

5− 8)x2
3 + (8− 4

√
5)x3 − 4 ≤ 0},

which is a non-normalized ellipsoid centered at (0, 0, 0.5)>. Now, for the objective function we use
(c1, c2, c3, c4) = (0, 1, 0, 0), the optimal solution for the continuous relaxation with this set up is

x∗ = (0,
√

2 +
√

5, 0.5, 1+
√

5
2 ). Given the integrality constraint over x3, we may use the disjunction

x3 ≤ 0 ∨ x3 ≥ 1 to derive a DCyC to cut off this solution. From B we obtain that the normalized

quadric Q is the unit ball and that α = −β =

√√
5−2√

6−
√

5
. Hence, from (12) we have

p(τ)>P (τ)−1p(τ)− ρ(τ) =
α2τ2 + τ(1 + α2) + 1

1 + τ
,

and the roots of the numerator are τ̄1 = − 1
2α2 and τ̄2 = −1. Henceforth, we know from Theorem

2 that Q(τ̄2) is a cylinder. We highlight that the normalization has been used for the analysis of
the quadrics, but it is not necessary to compute the cut. Specifically, in this case we have in the
original space of FQ that

τ̃2 =
τ̄2∥∥∥P− 1
2a
∥∥∥2 = 8− 4

√
5,

where P−
1
2 is the inverse of the matrix square root of P . Hence, using τ̃2 in Theorem 1 we obtain

the following DCyC,
Q̃(τ̃2) = {(x1, x2, x3)> ∈ R3 | x2

1 + x2
2 − 4 ≤ 0}.

Figure 2 illustrates Example 2, where one can appreciate how the DCyC cuts off the relaxed solution.

In this particular example, after adding the DCyC, we obtain that the solutions (0, 2, 1, 1 +
√

5
2 )

and (0, 2, 0, 1 +
√

5
2 ) are optimal for the continuous relaxation.
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Figure 2: Illustration of Example 2: a DCyC when both Q∩A= and Q∩ B= are bounded.

3.3.2 Cones

Consider now the cones described in the first and second cases of Theorem 2. The following results
provide a criterion to identify which of the cones Q(τ̄1) and Q(τ̄2) provides a DCC in those cases.

Lemma 3 (Belotti et al. [2015]). The quadric Q(τ̄2) in the families {Q(τ) | τ ∈ R} of the cases 1
and 2 of Theorem 2 contains a cone that satisfies Definition 1.

The proof of Lemma 3 is provided in Belotti et al. [2015] and is omitted here for the sake of
space. However, we still need to discuss how to obtain a DCC from Q(τ̄2), which is a non-convex
cone. For this purpose, we first show that Q(τ̄2) is the union of two convex cones. Then, we give a
criterion to decide which cone is a DCC.

Recall that τ̄2 < −1, hence P (τ̄2) is a symmetric and non-singular matrix and it has exactly
one negative eigenvalue. Then, P (τ̄2) can be diagonalized as P (τ̄2) = V DV >, where V ∈ R`×` is
an orthogonal matrix and D ∈ R`×` is a diagonal matrix having the eigenvalues of P (τ̄2) in its
diagonal. We may assume w.l.o.g. that D1,1 < 0, and let wc = −P (τ̄2)−1p(τ2), and B = V D̃1/2,
where D̃l,k = |Dl,k|. Thus, we can write Q(τ̄2) in terms of B as follows:

Q(τ̄2) =

{
w ∈ R`

∣∣∣∣(w − wc)>B2:`B
>
2:` (x− wc) ≤

(
B>1 (w − wc)

)2
}
,

where B2:` ∈ R`×(`−1), is formed by the columns 2 to ` of B. Now, define the sets Q(τ̄2)+, Q(τ̄2)−
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as follows

Q(τ̄2)+ ≡
{
w ∈ R`

∣∣∣ ∥∥∥B>2:`(w − wc)
∥∥∥ ≤ B>1 (w − wc)

}
, (14)

Q(τ̄2)− ≡
{
w ∈ R`

∣∣∣ ∥∥∥B>2:`(w − wc)
∥∥∥ ≤ −B>1 (w − wc)

}
, (15)

which are two second order cones, i.e., two convex cones. It is easy to verify that Q(τ̄2) = Q(τ̄2)+∪
Q(τ̄2)−.

The final step is to decide which of the cones Q(τ̄2)+ and Q(τ̄2)− is a DCC. This is decided
using the sign of B>1 (−P−1p− wc). Thus, using Proposition 1 we obtain that:

• if B>1 (−P−1p− wc) > 0, then Q(τ̄2)+ is a DCC for FQ and the disjunctive set A ∪ B;

• if B>1 (−P−1p− wc) < 0, then Q(τ̄2)− is a DCC for FQ and the disjunctive set A ∪ B.

Notice that B>1 (−P−1p − wc) = 0 implies that the center of the ellipsoid Q coincides with the
vertex of the selected cone. In this case the set FQ is a single point, which is a trivial case that
does not allow the generation of cuts. This completes the procedure.

Example 3. To illustrate this result, let us consider the case when σ =
√

2 − 1 in Example (8).
Using this value we obtain the quadric

FQ = {(x1, x2, x3)> ∈ R3 | x2
1 + x2

2 + 2(
√

2− 1)x2
3 + 4(1−

√
2)x3 − 4 ≤ 0},

which is a non-normalized ellipsoid centered at (0, 0, 1)>. Now, for the objective function we use

(c1, c2, c3, c4) = (0,
√

10 + 6
√

2, 2(1−
√

2), 0), and the optimal solution for the continuous relaxation

of the problem with this set up is x∗ = (0,

√
5+3
√

2
2 , 0.5, 3+

√
2

2 ). We may use again the disjunction
x3 ≤ 0 ∨ x3 ≥ 1 to derive a DCC to cut off this solution. Here, we have again that the normalize

quadric Q is the unit ball with α = 0 and β = −
√√

2−1√
2+1

. Hence, from (12) we have

p(τ)>P (τ)−1p(τ)− ρ(τ) =

√
2−1

4(
√

2+1)
τ2 + τ + 1

1 + τ
,

and from the roots of the numerator we obtain

τ̄2 =

2

(√
2(
√

2 + 1)−
√

2− 1

)
√

2− 1
.

Henceforth, we know from Theorem 2 that Q(τ̄2) is a cone. In this case, we have in the original
space of FQ that

τ̃2 =
τ̄2∥∥∥P− 1
2a
∥∥∥2 = 4

(√
2(
√

2 + 1)−
√

2− 1

)
.

Hence, using τ̃2 in Theorem 1 we obtain the following quadric,

Q̃(τ̃2) = {(x1, x2, x3)> ∈ R3 | x2
1 + x2

2 ≤ 0.0390 (x3 + 10.1333)2},
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where the results are given with a precision of up to 4 digits. Now, we have that −wc =
(0, 0, 10.1333)>, −P−1p = (0, 0, 1)>, andB1 = (0, 0, 0.1974)>. Hence, we obtain thatB>1

(
−P−1p− wc

)
≥

0, and our DCC is

Q̃(τ̃2)+ = {(x1, x2, x3)> ∈ R3 |
∥∥∥(x1, x2)>

∥∥∥ ≤ 0.1974 (x3 + 10.1333)}.

Figure 3 illustrates Example 3, where one can appreciate how the DCC cuts off the relaxed
solution. Notice that the DCC is a translated cone with the vertex at (0, 0, 10.1333)>.

Figure 3: Illustration of Example 3: a DCC when both Q∩A= and Q∩ B= are bounded.

Up to this point we have shown that for all the cases in Theorem 2, one can find a cone K or
a cylinder C that satisfies Definitions 1 or 3 respectively. Hence, by combining Theorem 2 with
Propositions 1 and 2 one obtains a procedure to find the convex hull of FQ ∩ (A ∪ B), when the
disjunctive set A ∪ B is such that both FQ ∩ A= and FQ ∩ B= are bounded.

3.4 Derivation of DCCs when both Q∩A= and Q∩ B= are unbounded

To complete the derivation of all the DCCs and DCyCs for MISOCO problems we need to consider
the case when both intersections Q∩A= and Q∩ B= are unbounded. Notice that in this case the
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quadric Q cannot be an ellipsoid. Hence, for the rest of this section we focus on the cases when Q
is a paraboloid, a hyperboloid of two sheets, or a non-convex cone.

Our strategy in the next sections works as follows. First, in Section 3.4.1 we analyze the case
of cylinders. In that case we have the additional challenge of having quadrics associated with the
DCyCs which may not be convex cylinders. We show that it is possible to find a convex cylinder C
such that C∩(A∪B) = FQ∩(A∪B). Then, we use Proposition 2 to prove that FQ∩C characterizes
the convex hull for FQ ∩ (A ∪ B). Second, in Section 3.4.2 we analyze the case of cones. In that
case the challenge we face is that a cone sharing the intersections FQ ∩ (A∪ B) with FQ may not
be unique, as it is shown in Belotti et al. [2015]. We prove that it is possible to find a convex
cone K in the family of quadrics of Theorem 1 such that FQ ∩ K characterizes the convex hull for
FQ ∩ (A ∪ B). Notice that the results in C and D are used in the proofs of this section.

3.4.1 Cylinders

We divide the derivation of the DCyCs in this section in two parts. First, we analyze the case
when Q is a paraboloid. Second, we analyze the case when Q is a hyperboloid of two sheets or a
non-convex cone.

Paraboloids Let us assume that Q is a paraboloid, which implies that the system Px = −p has
no solution, and also we have that FQ = Q . Recall our assumption that Q is normalized using
the procedure given in B. From that normalization we have that if a1 6= 0, then the intersections
Q ∩ A= and Q ∩ B= would be bounded. Hence, for the analysis of this case we may assume that
a1 = 0. As the first step in our strategy we have the following result for the family of quadrics in
Theorem 1.

Lemma 4 (Góez [2013]). If Q is a paraboloid and a1 = 0, then the quadric Q(−1) in the family
{Q(τ) | τ ∈ R} is a convex cylinder.

Proof. In this case the characteristic polynomial (37) for P (τ) simplifies to

(1− λ)n−2(λ2 − λ(1 + τ ‖a‖2) + τa2
1) = (1− λ)n−2(λ2 − λ(1 + τ) + τa2

1) = 0.

Thus, 1 is an eigenvalue of P with multiplicity ` − 2. The other two eigenvalues are given by the
roots of λ2 − λ(1 + τ) + τa2

1 = 0, which are

(1 + τ)±
√

(1 + τ)2 − 4τa2
1

2
. (16)

Hence, we have that zero is an eigenvalue of the matrix P (−1), with multiplicity 2. We perform
the proof in three steps. First, we find a basis for the null space of P (−1). Then, we find a direction
in that space that is orthogonal to p(−1). Finally, we show that Q(−1) is a convex cylinder in that
direction.

Recall that for τ ∈ R the first row and first column of P (−1) are zero vectors. Since ‖a‖ = 1,
and a1 = 0, we have that

P (−1)a =
(
J̃ − aa>

)
a = a− a = 0.

Thus, a and (1, 0>)> are eigenvectors of P (−1) associated with the 0 eigenvalue, and form a basis
for the null space of P (−1). Hence, any vector of the form (γ, a>2:`)

>, for all γ ∈ R, belongs to the
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null space of P (−1). Define γ̃ as

γ̃ =
−p>2:`a2:` − α+β

2

p1
,

and recall that Q being a paraboloid implies that p1 6= 0. The vector [γ̃, a>2:`]
> is orthogonal to

p(−1), since

p(−1)>
[
γ̃
a2:`

]
=

(
p> +

α+ β

2
a

)[−p>2:`a2:`−α+β2
p1
a2:`

]

= −p>2:`a2:` −
α+ β

2
+
α+ β

2
+ p>2:`a2:` = 0.

Let w̃ ∈ R` be a vector such that w̃ ∈ Q(−1) ∩ (A= ∪ B=), then we have that

w̃>P (−1)w̃ + 2p(−1)>w̃ + ρ(−1) ≤ 0.

Now, let ũ> = w̃> + θ[γ̃, a>2:`]
> for some θ ∈ R, then we have that

ũ>P (−1)ũ+ 2p(−1)>ũ+ ρ(−1)

= w̃>P (−1)w̃ + θ(γ̃, a>2:`)P (−1)w̃ + θ2(γ̃, a>2:`)P (−1)

[
γ̃
a2:`

]
+ 2p(−1)>ũ+ ρ(−1)

= w̃>P (−1)w̃ + 2p(−1)>w̃> + 2θp(−1)>
[
γ̃
a2:`

]
+ ρ(−1)

= w̃>P (−1)w̃ + 2p(−1)>w̃> + ρ(−1) ≤ 0,

where the last inequality follows from the assumption w̃ ∈ Q(−1)∩ (A=∪B=). Hence, the distance
of any vector ũ to the boundary of Q(−1) is constant for any θ ∈ R. Finally, we need to show
that any cross section of Q(−1) in the direction [γ̃, a>2:`]

> is a convex set. Consider the hyperplane
[γ̃, a>2:`]w = %, where % ∈ R, and let P̃ (−1) be the lower right ` − 1 × ` − 1 sub-matrix of P (−1).
Then, for a fixed % we obtain a quadric Q̃(−1) ∈ R`−1×`−1 defined by the inequality

w>2:nP̃ (−1)w2:n + 2

(
p(−1)2:n −

p1

γ̃
a2:n

)
w2:n + 2p1%+ ρ(−1) ≤ 0.

Note that P̃ (−1) is a positive semi-definite matrix, thus Q̃(−1) is a convex set. Therefore, Q(−1)
is a convex cylinder in the direction (γ̃, a>2:`)

>.

Now, following our strategy, we use Proposition 2 to show that the quadric Q(−1) of Lemma 4
is a DCyC. Recall from the proof of Lemma 4 that the direction of the cylinder Q(−1) is given
by a vector [γ a>2:`]

>, for some γ ∈ R. Hence, we have that the product of the normal vector a
of the hyperplanes A= and B= with the direction of the cylinder is different from 0. Hence, from
Proposition 2 and Lemma 1 we obtain that Q(−1) is a DCyC.
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Non-convex cones and hyperboloids of two sheets We analyze now the cases when Q ∈ R`
is a non-convex cone or a hyperboloid of two sheets. Hence, using the procedure described in
Section 3.3.2, one can show that there are two convex sets Q+ and Q− such that Q+∪Q− = Q. In
this case we have either FQ = Q+ or FQ = Q−, we may assume w.l.o.g. that FQ = Q+. Finally,
given the assumption that Q is normalized, from B we know that the vector p in (4) is the zero
vector, and P1,1 = −1.

Recall the first step of our strategy. We need to identify a cylinder in the family {Q(τ) | τ ∈ R}
of Theorem 1. For that, we need the inertia of the matrix P (τ), and the explicit expression of
p(τ)P (τ)−1p(τ)−ρ(τ) in terms of P , p, and ρ. The inertia of P (τ) is characterized in the following
result.

Lemma 5. The eigenvalues of P (τ) are

τ ±
√
τ2 + 4 + 4τ(1− 2a2

1)

2

and 1 with multiplicity `− 2.

Proof. Using (37) we obtain that the characteristic polynomial of P (τ) simplifies to

(1− λ)`−2

(
λ2 − λτ ‖a‖2 + (τa2

1 − τ
∑̀
i=2

a2
1 − 1)

)
= (1− λ)`−2(λ2 − λτ + (2τa2

1 − τ − 1)) = 0.

Thus, 1 is an eigenvalue of P with multiplicity ` − 2. The other two eigenvalues are given by the
roots of λ2 − λτ + (2τa2

1 − τ − 1) = 0, which are

τ ±
√
τ2 + 4 + 4τ(1− 2a2

1)

2
.

Now, assuming that P (τ) is non-singular we have that

p(τ)>P (τ)−1p(τ)− ρ(τ)

=

(
−τ α+ β

2
a

)> (
J̃ + τaa>

)−1
(
−τ α+ β

2
a

)
− (ρ+ ταβ).

=
τ2(1− 2a2

1) (α−β)2

4 − τ(ρ(1− 2a2
1) + αβ)− ρ

1 + τ(1− 2a2
1)

. (17)

Notice that for τ̂ = − 1
(1−2a21)

the denominator of (17) becomes 0. In fact, τ̂ is such that P (τ̂) is

singular, and Q(τ̂) is a cylinder. Given that (17) depends on ρ and a2
1, we must analyze non-convex

cones and hyperboloids of two sheets separately in order to formalize this result.
Let us begin with the case when Q is a non-convex cone. From the normalization in B we know

that ρ = 0, which allows us to simplify (17) to:

p(τ)>P (τ)−1p(τ)− ρ(τ) =
τ2(1− 2a2

1) (α−β)2

4 − ταβ
1 + τ(1− 2a2

1)
. (18)
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Hence, we have that p(τ)>P (τ)−1p(τ) = 0 when the numerator of (18) is zero, and we obtain the
values

τ̄1 = 2

(
αβ − |αβ|

(1− 2a2
1)(α− β)2

)
and τ̄2 = 2

(
αβ + |αβ|

(1− 2a2
1)(α− β)2

)
. (19)

Now, we need to analyze the dependency of (17) on a2
1. First, notice that if a2

1 >
1
2 , then from

Lemma 5 we have that there is always a τ > 0 such that all the eigenvalues of P (τ) are positive.
In other words, there will be an ellipsoid in the family of quadrics, and this case falls within the
analysis of Section 3.3. Second, if a2

1 = 1
2 , then from Lemma 5 we have that P (τ) has always

one negative eigenvalue and ` − 1 positive eigenvalues. That implies that there is no cylinder in
this case. Even more, if a2

1 = 1
2 , then a is parallel to an extreme ray of Q+, which results in

Q+ ∩ (A∪B) = conv(Q+ ∩ (A∪B)). In that case the original cones is a DCC. As a result, we need
to focus our analysis on the range 0 ≤ a2

1 <
1
2 . Let τ̄ be the non-zero root in (19), then based on

the value of τ̄ we have the following result.

Theorem 3 (Classification for a non-convex cone [Góez, 2013]). If Q is a non-convex cone, and
a2

1 <
1
2 , then the shape of the quadric Q(τ̄) in the family {Q(τ) | τ ∈ R} is:

1. a cone if τ̄ > τ̂ ,

2. a hyperbolic cylinder of two sheets if τ̄ = τ̂ .

Proof. To facilitate the flow of the discussion we moved the proof of this result to D.1.

Consider now the case when Q is a hyperboloid of two sheets. From the normalization in B we
know that ρ = 1, which simplifies (17) to:

p(τ)>P (τ)−1p(τ)− ρ(τ) =
τ2(1− 2a2

1) (α−β)2

4 − τ((1− 2a2
1) + αβ)− 1

1 + τ(1− 2a2
1)

. (20)

In this case, similarly to the non-convex cone, if a2
1 >

1
2 we also obtain an ellipsoid in the family of

quadrics, which takes us to the analysis of Section 3.3. Additionally, if a2
1 = 1

2 one may show that
there is no cylinder in the family {Q(τ) | τ ∈ R}. That case is part of the analysis of Section 3.4.2,
where it becomes relevant. As a result, we need to focus our analysis on the range 0 ≤ a2

1 <
1
2 .

Let τ̄1 ≤ τ̄2 be the roots of the numerator of (20), then based on this roots we have the following
result.

Theorem 4 (Classification for a hyperboloid of two sheets [Góez, 2013]). If Q is a hyperboloid of
two sheets, and a2

1 <
1
2 , then the shapes of the quadrics Q(τ̄1) and Q(τ̄2) may be as follows:

1. if β 6= −α, then both quadrics are cones,

2. if β = −α, then τ̄1 = τ̂ , Q(τ̂) is a hyperbolic cylinder of two sheets, and Q(τ̄2) is a cone.

Proof. To facilitate the flow of the discussion we moved the proof of this result to D.2.

We need to analyze further the cylinders in the second cases of Theorems 4 and 3. In these
cases the quadric Q(τ̂) is a hyperbolic cylinder of two sheets, which is a non-convex quadric. For
these reasons, we must show that the feasible set of a MISOCO will be contained in one of the
branches of Q(τ̂). From the proofs of Theorems 4 and 3 we know that in both cases α = −β.
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Then, we have that p(τ̂) = 0, ρ(τ̂) > 0, and Q(τ̂) = {w ∈ R` | w>P (τ̂)w ≤ −ρ(τ̂)}. Consider the
eigenvalue decomposition P (τ̂) = V DV >, where D ∈ R`×` is a diagonal matrix, and V ∈ R`×` is
non-singular. We may assume w.l.o.g. that D1,1 = −1, D2,2 = 0, and Di,i > 0, i ∈ {3, . . . , `}. Now,

let B = V D̄
1
2 , where D̄ is a diagonal matrix such that D̄i,i = |Di,i|. Let B3:` be the matrix that

has the last `− 2 columns of B, and B1 be the first column of B. Then,

Q(τ̂) =

{
w ∈ R`

∣∣∣∣ ∥∥∥B>3:`w
∥∥∥2
≤ −ρ(τ̂) +

(
B>1 w

)2
}
.

Let us define the following two sets

Q+(τ̂) =
{
x ∈ R`

∣∣∣ ∥∥∥B>3:`x
∥∥∥ ≤ ξ, ∥∥∥[ξ √

ρ(τ̂)
]>∥∥∥ ≤ B>1 x} ,

Q−(τ̂) =
{
x ∈ R`

∣∣∣ ∥∥∥B>3:`x
∥∥∥ ≤ ξ, ∥∥∥[ξ √

ρ(τ̂)
]>∥∥∥ ≤ −B>1 x} ,

where
[
ξ
√
ρ(τ̂)

]> ∈ R2. Thus, Q(τ̂) = Q+(τ̂) ∪ Q−(τ̂), and each of these branches of Q(τ̂) are
convex cylinders in the direction V2, which is the second column of V . Also, note that Q+(τ̂) ∩
Q−(τ̂) = ∅. Then we obtain the following result.

Lemma 6 (Góez [2013]). In the second case in Theorem 3 and the second case in Theorem 4 the
set (A= ∪ B=) ∩Q+ is a subset of a single branch of Q(τ̂).

Proof. The proof is by contradiction. We show that if the set (A= ∪ B=) ∩ Q+ is not a subset of
a single branch of Q(τ̂), then (A= ∪ B=) ∩ Q 6= (A= ∪ B=) ∩ Q(τ̂), which is a contradiction. Let
u, v ∈ (A= ∪ B=) ∩Q+ be two vectors such that u ∈ Q+(τ̂) and v ∈ Q−(τ̂).

First, consider the case when u, v ∈ A= or u, v ∈ B=. Hence, we either have a>u = α and
a>v = α, or a>u = β and a>v = β, and then there must exist a 0 ≤ λ̃ ≤ 1 such that w = λ̃v+ (1−
λ̃)u ∈ (A= ∪B=)∩Q+ but w /∈ (A= ∪B=)∩Q(τ̂). This statement is true because Q+, Q+(τ̂), and
Q−(τ̂) are convex sets, and Q+(τ̂)∩Q−(τ̂) = ∅. This contradicts (A=∪B=)∩Q = (A=∪B=)∩Q(τ̂).

Second, consider the case when u ∈ A= and v ∈ B=. Therefore, a>u = α, a>v = β, and let
ã = [−a1 a

>
2:`]
>. From Theorem 1 we obtain that P (τ̂) = J̃ − aa>

(1−2a21)
, and for any θ ∈ R we have

that
(v + θã)>P (τ̂)(v + θã) + ρ(τ̂) = v>P (τ̂)v + ρ(τ̂) ≤ 0.

Similarly, we have for any θ ∈ R that

(u+ θã)>P (τ̂)(u+ θã) + ρ(τ̂) = u>P (τ̂)u+ ρ(τ̂) ≤ 0,

Additionally, since a>ã 6= 0, then ∃θ̂ such that u + θ̂ã ∈ Q+(τ̂) and a>(u + θ̂ã) = β, which shows
that Q+(τ̂) ∩ B= 6= ∅. Similarly, ∃θ̃ such that v + θ̃ã ∈ Q−(τ̂) and a>(v + θ̃, ã) = α, which shows
that Q−(τ̂) ∩ A= 6= ∅.

Now, we show that Q+(τ̂) ∩ B= ∩Q+ = ∅ and Q−(τ̂) ∩A= ∩Q+ = ∅. Assume to the contrary
that Q+(τ̂) ∩ B= ∩ Q+ 6= ∅. Then, for any s ∈ Q+(τ̂) ∩ B= ∩ Q+ there must exist a 0 ≤ λ̃ ≤ 1
such that w = λ̃s + (1 − λ̃)v ∈ B= ∩ Q+ but w /∈ B= ∩ Q(τ̂). This is true because Q+ is
convex, Q+(τ̂) ∩ Q−(τ̂) = ∅, and v ∈ Q−(τ̂) ∩ B=. A similar contradiction would be obtained if
Q−(τ̂) ∩ A= ∩Q+ 6= ∅.

Now, since Q+(τ̂) ∩ B= 6= ∅ and Q−(τ̂) ∩ A= 6= ∅, and also Q+(τ̂) ∩ B= ∩ Q+ = ∅ and
Q−(τ̂) ∩ A= ∩ Q+ = ∅, we have that Q+(τ̂) ∩ B= ∩ Q− 6= ∅ and Q−(τ̂) ∩ A= ∩ Q− 6= ∅, because
(A= ∪ B=) ∩Q = (A= ∪ B=) ∩Q(τ̂).
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Let w ∈ Q+(τ̂) ∩ B= ∩ Q−. Then, λw + (1 − λ)u ∈ Q+(τ̂) for 0 ≤ λ ≤ 1, since Q+(τ̂) is
convex. Now, if Q is a hyperboloid, then there exists a 0 ≤ λ̃ ≤ 1 such that λ̃w + (1 − λ̃)u /∈ Q,
because u ∈ Q+ and w ∈ Q−. Hence, we obtain that (A= ∪ B=) ∩ Q 6= (A= ∪ B=) ∩ Q(τ̂),
which is a contradiction. On the other hand, if Q is a cone, there must exist a λ̃ such that
either λ̃w + (1 − λ̃)u /∈ Q or λ̃w + (1 − λ̃)u is the zero vector. In the first case, we find a
contradiction to (A= ∪ B=) ∩ Q = (A= ∪ B=) ∩ Q(τ̂) again. In the second case, let us consider a
vector s ∈ Q−(τ̂) ∩ A= ∩ Q−. Then, λs+ (1− λ)v ∈ Q−(τ̂) for 0 ≤ λ ≤ 1, since Q−(τ̂) is convex.
In this case, there must exist a λ̄ such that λ̄s+ (1− λ̄)v /∈ Q. The last statement is true because
v ∈ Q+ and s ∈ Q−, the zero vector is in Q+(τ̂) and Q−(τ̂) ∩ Q+(τ̂) = ∅. Hence, we obtain that
(A= ∪B=)∩Q 6= (A= ∪B=)∩Q(τ̂), which is again a contradiction. This completes the proof.

We can now complete the derivation of the DCyCs of this section. From Proposition 2 and
Lemma 6, we know that the branch of Q(τ̂) containing the set (A= ∪ B=) ∩ Q+ is a DCyC for
Problem (MISOCO). Henceforth, to complete the derivation we need to define a criteria to identify
the branch of Q(τ̂) that defines the DCyC. First, consider the case when Q+ = {x ∈ R` | x ∈
Q, x1 ≥ 0}, then the DCyC is given by Q+(τ̂). Second, consider the case when Q+ = {x ∈ R` | x ∈
Q, x1 ≤ 0}, then the DCyC is given by Q−(τ̂). This completes the derivation of all the possible
DCyCs for MISOCO problems.

Example 4. To illustrate these results, let us consider the case when σ = 1 in Example (8). Using
this value we obtain the set

FQ = {(x1, x2, x3)> ∈ R3 | x2
1 + x2

2 − 4x3 − 4 ≤ 0},

which is a non-normalized paraboloid. Now, for the objective function we use (c1, c2, c3, c4) =
(0, 1,−4, 0), the optimal solution for the continuous relaxation with this setup is x∗ = (0, 0.5,−15

8 ,
17
16).

Given the integrality constraint over x2, we may use the disjunction x2 ≤ 0 ∨ x2 ≥ 1 to derive a
DCyC to cut off this solution. From B we obtain that the normalized quadric Q is a paraboloid
and that α = 1

2 and β = 0. Henceforth, we know from Lemma 4 that Q(−1) is a parabolic cylinder.
For paraboloids, we have from the normalization process that in the original space of FQ we can
use the same value found for the normalized quadric, i.e., τ̃ = −1. Hence, using τ̃ in Lemma 4 we
obtain the following DCyC:

Q̃(−1) = {(x1, x2, x3)> ∈ R3 | x2
1 + x2 − 4x3 − 4 ≤ 0},

which is a parabolic cylinder. Figure 4 illustrates Example 4, where one can appreciate how the
DCyC cuts off the relaxed solution. In Example 4, after adding the DCyC, we obtain that the
solutions (0, 0,−1, 1) and (0, 1,−3

4 ,
5
4) are optimal for the continuous relaxation.

3.4.2 Cones

The final part of our analysis is to complete the derivation of DCCs. For this there are three
remaining cases we must consider: the family {Q(τ) | τ ∈ R} associated with the first cases of
Theorems 3 and 4, and the case when Q is a hyperboloid of two sheets and a2

1 = 1
2 .

Using our strategy, we must find first a cone in the family {Q(τ) | τ ∈ R} when Q is a
hyperboloid of two sheets and a2

1 = 1
2 . In this case we have that the numerator of (17) simplifies to

−αβτ − ρ. (21)

Then, we have the following result.
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Figure 4: Illustration of Example 4: a DCyC when both Q∩A= and Q∩ B= are unbounded.

Lemma 7 (Góez [2013]). If Q is a hyperboloid, and a2
1 = 1

2 , then for τ̄ = − ρ
αβ the quadric Q(τ̄)

in the family {Q(τ) | τ ∈ R} is a cone.

Proof. In this case we have from Lemma 5 that P (τ) is always an invertible matrix with one
negative eigenvalue. On the other hand, we have from (21) that p(τ̄)P (τ̄)−1p(τ̄) − ρ(τ̄) = 0 for
τ̄ = −ρ/αβ. Hence, we have that the quadric Q(τ̄) in the family {Q(τ) | τ ∈ R} is a cone.

For the derivation of the cuts we use the following representation for Q. When Q is a normalized
non-convex cone, we have that Q = {w ∈ R` | ‖w2:`‖2 ≤ w2

1}. In this case we may define Q+ =
{w ∈ R` | ‖w2:`‖ ≤ w1} and Q− = {w ∈ Rn | ‖w2:`‖ ≤ −w1}, where Q = Q+ ∪ Q−, Q+ ∩ Q− = 0,
and 0 is the origin. Also, note that Q+ and Q− are two second order cones. Now, when Q is a
normalized hyperboloid, we have that Q = {w ∈ R` | ‖w2:`‖2 ≤ w2

1−1}. In this case, we may define
Q+ = {w ∈ R` | ‖w2:`‖2 ≤ ξ, ‖(ξ, 1)‖ ≤ w1} and Q− = {w ∈ R` | ‖w2:`‖2 ≤ ξ, ‖(ξ, 1)‖ ≤ −w1},
then Q = Q+ ∪Q− and Q+ ∩Q− = ∅. Also, note that Q+ and Q− are two convex sets.

Given that the result for cones and hyperboloids of two sheets are similar, we will use Q+ and
Q− indistinctively for cones and hyperboloids. We will specify whether we are referring to a cone
or a hyperboloid of two sheets when needed. Notice that in this case neither Proposition 1 or 2
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applies. Hence for the derivation of the DCCs we need to prove that the cones in the first cases of
Theorems 3 and 4, and of Lemma 7 satisfy Definition 1. To prove this, we use some intermediate
results that are omitted here for the ease of the discussion. The interested reader can find the
details of these intermediate steps in D.3, in Lemmas 8, and 11.

Theorem 5 (Góez [2013]). Let τ̄ be the smaller root of the numerator of (17). The quadric
Q(τ̄) ∈ {Q(τ) | τ ∈ R} of the first case of Theorems 3 and 4, and Lemma 7 contains a cone that
satisfies Definition 1.

Proof. We divide the proof into two parts. First, we show that the theorem is true for the first
case of Theorem 3 when 0 ∈ Q ∩ (A ∪ B). Second, we show that the theorem is true when Q is a
hyperboloid of two sheets, or Q is a cone and 0 /∈ Q ∩ (A ∪ B).

DCC when Q is a cone and the vector zero is an element of Q∩ (A∪B): This occurs
when α and β have the same sign. Then, the smallest root of f(τ) in this case is τ̄ = 0. Hence, it
is enough to show that Q+ = conv(Q+ ∩ (A ∪ B)) in this case. First of all, since Q+ is a convex
set, we have that conv(Q+ ∩ (A ∪ B)) ⊆ Q+. Thus, to complete the proof of the first part we
need to show that Q+ ⊆ conv(Q+ ∩ (A ∪ B)). From the definition of convex hull it is clear that
Q+ ∩ (A∪B) ⊆ conv(Q+ ∩ (A∪B)). Now, let x̂ ∈ Q+ be such that x̂ /∈ A∪B. Then, we have that
β ≤ a>x̂ = σ ≤ α. Assume first that 0 ≤ β ≤ α, and consequently the vector zero is contained
in B. Since Q+ is a cone, then γx̂ ∈ Q+ for γ ≥ 0. Now, we have that a>(γx̂) = γσ. Then, for
γ1 = α

σ we obtain a>(γ1x̂) = α, and for γ2 = β
σ we obtain a>(γ2x̂) = β. Now, consider the convex

combination λ(γ1x̂) + (1 − λ)(γ2x̂), 0 ≤ λ ≤ 1. For λ̂ = 1−γ2
γ1−γ2 we obtain that 0 ≤ λ̂ ≤ 1, and

λ(γ1x̂) + (1− λ)(γ2x̂) = x̂. Since γ2x̂ ∈ Q+ ∩ B and γ1x̂ ∈ Q+ ∩A, then x̂ ∈ conv(Q+ ∩ (A∪ B)).
Now, if β ≤ α ≤ 0, it can be shown with a similar argument that x̂ ∈ conv(Q+ ∩ (A ∪ B)). Hence
Q+ ⊆ conv(Q+ ∩ (A∪B)), and it satisfies Definition 1, i.e., it is a DCC for Q+ and the disjunctive
set A ∪ B.

DCC when Q is a hyperboloid of two sheets, or Q is a cone and the vector zero is
not an element of Q∩ (A∪B): In this case we have from Lemma 11 that Q+∩ (A∪B) ∈ Q+(τ̄)
or Q+ ∩ (A ∪ B) ∈ Q−(τ̄). We may assume w.l.o.g. that Q+ ∩ (A ∪ B) ⊆ Q+(τ̄). Since Q+(τ̄) is a
convex set we have that conv(Q+ ∩ (A ∪ B)) ⊆ (Q+ ∩Q+(τ̄).

To complete the proof we need to show that Q+∩Q+(τ̄) ⊆ conv((A∪B)∩Q+). For this purpose,
we prove first that Q+ ∩A= = Q+(τ̄)∩A= and Q+ ∩B= = Q+(τ̄)∩B=. Observe that Q+ ∩A= ⊆
Q+(τ̄), then Q+∩A= ⊆ Q+(τ̄)∩A=. Thus, it is enough to show that Q+(τ̄)∩A= ⊆ Q+∩A=. Let
u ∈ Q+ ∩ A=. Recall that Q ∩ (A= ∪ B=) = Q(τ̄) ∩ (A= ∪ B=), hence if Q+(τ̄) ∩ A= 6⊆ Q+ ∩ A=,
then there exists a vector v ∈ Q− ∩ A= ∩ Q+(τ̄). We know that Q+ ∩ Q− = 0 if Q is a cone, and
Q+ ∩ Q− = ∅ if Q is a hyperboloid of two sheets. Even more, in this case if Q is a cone, we know
that 0 /∈ Q ∩ A=. Hence, using the separation theorem we have that there exists a hyperplane
H = {x ∈ R` | h>x = η} separating Q+ and Q−, such that 0 ∈ H. Then, there exists a 0 ≤ λ ≤ 1
such that λu+ (1− λ)v ∈ Q+(τ̄) ∩A= and h>(λu+ (1− λ)v) = η, i.e., (λu+ (1− λ)v) /∈ Q. This
contradicts Q ∩ (A= ∪ B=) = Q(τ̄) ∩ (A= ∪ B=). Hence, Q+(τ̄) ∩ A= ⊆ Q+ ∩ A=. Similarly, we
can show that Q+ ∩ B= = Q−(τ̄) ∩ B=.

Now, for any x ∈ Q+ ∩ (A ∪ B), we have that x ∈ Q+ ∩ Q+(τ̄) and x ∈ conv(Q+ ∩ (A ∪ B)).
Next, we need to consider a vector x̃ ∈ Rn such that x̃ ∈ Q+(τ̄) ∩ Q+ ∩ Ā ∩ B̄, where Ā and
B̄ are the complements of A and B, respectively. From Lemma 8 we have that x(τ̄) ∈ A or
x(τ̄) ∈ B. We may assume w.l.o.g. that x(τ̄) ∈ B. Since Q+(τ̄) is a translated cone, then {x ∈
Rn | x = x(τ̄) + θ(x̃ − x(τ̄)), θ ≥ 0} ⊆ Q+(τ̄). Thus, there exists a scalar 0 < θ1 < 1 such that
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a>(x(τ̄) + θ1(x − x(τ̄))) = β and a scalar 1 < θ2 such that a>(x(τ̄) + θ2(x − x(τ̄))) = α. Let
λ = (1− θ1)/(θ2 − θ1), then x̃ = (1− λ)(x(τ̄) + θ1(x− x(τ̄))) + λ(x(τ̄) + θ2(x− x(τ̄))). Therefore,
x̃ ∈ conv((A ∪ B) ∩ Q+). The same conclusion is found if we assume that x(τ̄) ∈ A. This proves
that Q+∩Q+(τ̄) ⊆ conv((A∪B)∩Q+). Thus, the cone Q+(τ̄) is a DCC for Q+ and the disjunctive
set A ∪ B. Finally, if Q+ ∩ (A ∪ B) ⊆ Q−(τ̄), then we can use a similar argument to prove that
Q−(τ̄) is a DCC for Q+ and the disjunctive set A ∪ B.

To complete the derivation we must define a criterion to identify which branch of Q(τ̄) in
Theorem 5 defines a DCC. First, we consider the case when FQ = Q+, then the conic cut is given
by Q+(τ̄). Second, we consider the case when FQ = Q−, then the conic cut is given by Q−(τ̄).
This completes the derivation of all the possible DCCs for MISOCO problems.

Example 5. To illustrate this result, let us consider the case when σ =
√

2 + 1 in Example (8).
Using this value we obtain the

FQ = {(x1, x2, x3)> ∈ R3 | x2
1 + x2

2 − 2(1 +
√

2)x2
3 − 4(1 +

√
2)x3 − 4 ≤ 0,

2 + (
√

2 + 1)x3 ≥ 0},

where the quadric is a non-normalized hyperboloid of two sheets centered at (0, 0,−1)>. Given the
constraint 2 + (

√
2 + 1)x3 ≥ 0, we obtain

FQ = {(x1, x2, x3)> ∈ R3 |
∥∥∥(x1, x2)>

∥∥∥ ≤ ξ, ‖ξ, ρ̄‖ ≤√2(1 +
√

2)(x3 + 1)},

where ρ̄ =
√

2(
√

2− 1). Now, for the objective function we use (c1, c2, c3, c4) = (0, 0.5,−
√

18 + 2
√

2, 0),
and the optimal solution for the continuous relaxation of the problem with this set up is x∗ =

(0, 0.5,−1 +
√

1− 15
8(1+

√
2)
,

√
31+15

√
2

2
√

2
). We may use again the disjunction x2 ≤ 0∨x2 ≥ 1 to derive

a DCC to cut off this solution. Here, we have that the normalized quadric Q is a hyperboloid of
two sheets centered at the origin with α = 1√

2(1−
√

2)
and β = 0. Hence, from (20) we have

p(τ)>P (τ)−1p(τ)− ρ(τ) =

1
8(
√

2−1)
τ2 + τ + 1

1 + τ
,

and from the roots of the numerator we obtain

τ̄ = 4(
√

2− 1)−
√

40− 24
√

2.

Henceforth, we know from Theorem 4 that Q(τ̄) is a cone. In this case, we have that
∥∥∥B− 1

2V >a
∥∥∥ =

1, and in the original space of FQ we obtain

τ̃ =
τ̄∥∥∥B− 1

2V >a
∥∥∥2 = τ̄ .

Hence, using τ̃ in Theorem 1 we obtain the following quadric:

Q̃(τ̃) = {(x1, x2, x3)> ∈ R3 | x2
1 + (1 + τ̃)x2

2 − τ̃x2 ≤ 2(1 +
√

2)(x2
3 − 2x3) + 4}.
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Now, we have that wc = (0,− τ̃
2(1+τ̃) ,−1)> , and we obtain that our DCC is

Q̃(τ̃)+ = {(x1, x2, x3)> ∈ R3 |
∥∥∥(x1,

√
Q2,2(x2 − wc2))>

∥∥∥ ≤√Q3,3 (x3 + 1)},

where Q2,2 = 1+ τ̃ and Q3,3 = 2(1+
√

2). Figure 5 illustrates Example 5, where one can appreciate
how the DCC cuts off the relaxed solution. Notice that the DCC is a translated cone with the
vertex at (0,−2.0592,−1)>.

Figure 5: Illustration of Example 5: a DCC when both Q∩A= and Q∩ B= are unbounded.

4 Conclusions

In this paper, we investigated the derivation of disjunctive conic cuts (DCCs) and Disjunctive
Cylindrical Cuts (DCyC) for MISOCO problems. This was achieved by extending the ideas of
disjunctive programming that have been applied successfully for obtaining linear cuts for MILO
problems. We introduced first the concept of DCCs and DCyCs, which are an extension of the
disjunctive cuts that have been well studied for MILO problems. In this analysis we considered
disjunctions that are defined by parallel hyperplanes. Under some mild assumptions we were able
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to show that the intersection of these cuts with a closed convex set, given as the intersection of a
SOC and an affine set, is the convex hull of the intersection of the same set with a linear disjunction.
Additionally, we provided a full characterization of DCCs and DCyCs for MISOCO problems when
the disjunctions are defined by parallel hyperplanes. This analysis provides a procedure for the
derivation of DCCs and DCyCs. In this paper we focus our study on the geometric analysis of the
sets without any deep discussion on how to solve the separation problem of a given point from the
feasible set of a MISOCO problem. This is an important question given its algorithmic implications,
but it is outside the scope of this paper. However, this keeps as an open topic for further research
in this area.
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A Shapes of quadrics

Here we show that the shapes of the quadric Q are limited to those described in Section 2. We
may assume that Q is not an empty set, otherwise there is no need for classification. Now, for
the analysis of the shapes of Q we need the following. First, recall that Ax0 = b, then the system
Hw = −x0 will have a solution if and only if b = 0. Second, recall that P = H>JH, and let H1:

be the first row of H. Then, we have that

PH1: = (H>JH)H1: = (I − 2H1:H
>
1: )H1: = (1− 2H>1:H1:)H1:.

As a result, H1: is an eigenvector of P associated with the eigenvalue (1− 2H>1:H1:). Third, let us
define the set

Fr = {x ∈ Rn | Ax = b, x>Jx ≤ 0}
= {x ∈ Rn | x = x0 +Hw, with w ∈ Q}, (22)

which is a relaxation of F . Note that due to the constraint x>Jx ≤ 0, if the set Fr contains a line,
then the zero vector is an element of Fr, i.e. b = 0. Finally, for the sake of clarity, we present the
definition of a cylinder that is used here.

Definition 4 (Convex Cylinder [Belotti et al., 2015]). Let D ⊆ Rn be a convex set and d0 ∈ Rn a
vector. Then, the set C = {x ∈ Rn|x = d+ σd0, d ∈ D, σ ∈ R} is a convex cylinder in Rn.

We divide the classification of the shapes of Q in two cases: P is singular, and P is non-singular.
Let us begin classifying the shapes of Q when P is singular. First of all, from Lemma 2 we

know that if P is singular, then P � 0 and (1− 2H>1:H1:) = 0. Consequently, H1: is an eigenvector
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of P associated with its zero eigenvalue. Now, from Section 2 we know that Q may be a paraboloid
or a cylinder. To decide which is the case, one has to verify if the system Pw = −p is solvable. On
one hand, if Pw = −p has no solution, then we obtain that Q is a paraboloid. On the other hand,
if the system Pw = −p is solvable, then Q is a cylinder. We show now that if Pw = −p, then given
the setup of Section 2, Q is always a line, i.e., a cylinder whose base is a point.

Let wc ∈ R` be such that Pwc = −p. Hence, Q is a cylinder, and contains a line. Now, consider
the set L = {w ∈ R` | w = wc + σH1:, σ ∈ R}. Note that L ⊆ Q, which follows from the following
inequality

(wc + σH1:)
>P (wc + σH1:) + 2p>(wc + σH1:) + ρ = (wc)>Pwc + 2p>wc + ρ ≤ 0.

The first equality is true because p>H1: = 0. The last inequality follows from the assumption that
Q is not an empty set. Thus, H1: is the vector defining the direction of the cylinder Q. Let us
define the set

S = {x ∈ Rn | x = x0 +H(wc + σH1:), σ ∈ R},

which is a line in Rn. Hence, since L ⊆ Q, we obtain from (22) that S ⊆ Fr. Additionally, recall
that Fr may contain a line if and only if b = 0. Hence, it follows from S ⊆ Fr that b = 0, and the
system Hw = −x0 is solvable because −x0 is in the null space of A. Let wc = (ŵ + σH1:), where
σ ∈ R and Hŵ = −x0. Note that ŵ is unique since the columns of H are linearly independent.
Then, for σ ∈ R we have that Pwc = H>JHŵ = −H>Jx0 = −p, and we obtain that

(wc)>Pwc + 2p>wc + ρ = −(ŵ)>Pŵ + ρ = −(ŵ)>H>JHŵ + (x0)>Jx0 = 0.

This shows that if the system Pw = −p is solvable, then we have that Q is a line.
We now classify the shapes of Q when P is non-singular. In this case we have that (4) is

equivalent to

Q = {w ∈ R` |
(
w + P−1p

)>
P
(
w + P−1p

)
≤ p>P−1p− ρ}. (23)

The shape of Q in this case is determined by the inertia of P and the value of the right hand side
of (23) [Belotti et al., 2013]. The first case to consider is when P � 0, in which case we have that
Q is an ellipsoid. Now, to complete the classification of Q we need to consider the case when P is
an ID1 matrix. We have the following possibilities [Belotti et al., 2013]:

• if p>P−1p− ρ ≤ 0, then Q is a hyperboloid of two sheets;

• if p>P−1p− ρ = 0, then Q is a scaled and translated second order cone;

• if p>P−1p− ρ ≥ 0, then Q is a hyperboloid of one sheet.

We show here that the setup of Section 2 only allows p>P−1p− ρ ≤ 0. In other words, we need to
show that Q is never a hyperboloid of one sheet.

We know that the vector −P−1p is either the vertex of a scaled second order cone or the
intersection point of the asymptotes of a hyperboloid [Belotti et al., 2013]. Now, note that if
Q is a cone or a hyperboloid of one sheet, then −P−1p ∈ Q. In this case, we need to show that
p>P−1p−ρ = 0 is always true to exclude the possibility of hyperboloid of one sheet. From Lemma 2
we know that if P is ID1, then (1− 2H>1:H1:) < 0, and H1: is an eigenvector of P associated with
its negative eigenvalue. Recall the set L, then we have the following inequality

(−P−1p+ σH1: + P−1p)>P (−P−1p+ σH1: + P−1p) = σ2H>1:PH1: ≤ 0,
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which shows that L ⊆ Q when Q is either a cone or a hyperboloid of one sheet. Define the set

T = {x ∈ Rn | x = x0 +H(−P−1p+ σH1:), σ ∈ R}.

Then, T ⊆ Fr when Q is either a cone or a hyperboloid of one sheet. Now, since T ⊂ Rn is a line,
from T ⊆ Fr follows that b = 0, which implies the existence of a unique vector wc ∈ R` such that
Hwc = −x0. Further, we have that

(wc + P−1p)>P (wc + P−1p) = (wc)>Pwc + 2p>wc + p>P−1p

= (wc)>H>JHwc + 2(x0)>JHwc + p>P−1p

= p>P−1p+ (x0)>Jx0 − 2(x0)>Jx0

= p>P−1p− ρ.

On the other hand, we have that

P (wc + P−1p) = Pwc + p = H>JHwc +H>Jx0 = −H>Jx0 +H>Jx0 = 0.

Henceforth, we have that p>P−1p−ρ = 0, and the quadric Q cannot be a hyperboloid of one sheet.

B Normalized quadrics

To facilitate the algebra in Sections 3.3 and 3.4 we use normalized quadrics. For discussing the
normalization we need to define

J̃ =

[
J̃1,1 0
0 I

]
.

Also, since P is a real symmetric matrix, recall that P has the following eigenvector decomposition
P = V DV >, where V ∈ R`×` is an orthonormal matrix and D ∈ R`×` is a diagonal matrix. Finally,
we may assume w.l.o.g. that the diagonal elements of D are arranged from smaller to bigger, where
D1,1 is the smallest value [Searle, 1982].

Using this framework, we consider the following two cases to obtain a normalized descriptions
for a quadric Q.

B.1 P is non-singular

When Q is a cone, a hyperboloid of two sheets, or an ellipsoid, then P is non-singular and the
quadric Q can be writen as

Q =
{
w ∈ R` | (w + P−1q)>P (w + P−1p) ≤ pP−1p− ρ

}
. (24)

Equation (24) can be expressed in terms of V and D. First, for J̃ let

J̃i,i =
Di,i

|Di,i|
, i = 1, . . . , `. (25)

Hence, if D1,1 < 0 we obtain J̃1,1 = −1, and J̃ is the identity matrix if D1,1 > 0. Now, let D̃ ∈ R`×`

be a diagonal matrix defined as D̃i,i = |Di,i|, i = 1, . . . , `. Then, we have that P = (V D̃
1
2 )J̃(D̃

1
2V >)

and we obtain

Q = {w ∈ R` |
(
w + P−1p

)>
(V D̃

1
2 )J̃(D̃

1
2V >)

(
w + P−1p

)
≤ p>P−1p− ρ}. (26)
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For this first normalized description we may define the affine transformation L : R` 7→ R` as follows

L(w) = D̃
1
2V >

(
w + P−1p

)
. (27)

Recall that V is an orthonormal matrix, and that D̃ is non-singular by definition. Hence, the
matrix D̃

1
2V > is non-singular.

To complete the description of this normalization case we need now to examine the term
p>P−1p− ρ. Consider the case p>P−1p− ρ 6= 0, and define

u =
1√

|p>P−1p− ρ|
L(w) and δ = − p>P−1p− ρ

|p>P−1p− ρ|
. (28)

Then, since D̃
1
2V > is non-singular, using (28) we obtain a one-to-one mapping between every

element of Q and the set

Q̃ =
{
u ∈ Rn | u>J̃u+ δ ≤ 0

}
. (29)

Now, for the case p>P−1p− ρ = 0 let

u = L(w) and δ = 0. (30)

In this case, using (30) we obtain a one-to-one mapping between Q and Q̃. The set Q̃ in (29)
defines our normalization when Q is a cone, a hyperboloid of two sheets or an ellipsoid.

B.2 P is singular

When Q is a paraboloid P has at most one non-positive eigenvalue, thus its non-positive eigenvalue
in this case is 0. Hence, we have that D1,1 = 0 for the matrix D of the diagonalization of P . Define
a diagonal matrix D̃ ∈ R`×` as D̄i,i = Di,i for i ∈ {2, . . . , `} and D̄1,1 = 1, and let

J̃i,i = 1, i ∈ {2, . . . , `}, and J̃1,1 = 0. (31)

Thus, we obtain the following equivalent description

Q =
{
w ∈ R` | w>V D̃

1
2 J̃D̃

1
2V >w + 2(p>V D̃−

1
2 )(D̃

1
2V >w) + ρ ≤ 0

}
. (32)

For this normalization we define the affine transformation L : R` 7→ R` as follows:

L(w) = D̃
1
2V >w. (33)

Recall that V is an orthonormal matrix, and that by construction D̃ is non-singular. Hence, the
matrix D̃

1
2V > is non-singular.

To complete the description of the second normalization we need to examine the value of ρ.
Consider the case ρ 6= 0, and define

u =
1√
|ρ|

L(w), p̄ =
1√
|ρ|
D̃−

1
2V >p, ω =

ρ

|ρ|
. (34)

Then, since D̃
1
2V > is non-singular, using (34) we obtain a one-to-one mapping between Q and the

set
Q̃ =

{
u ∈ R` | u>J̃u+ 2p̃>u+ ω ≤ 0

}
. (35)
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Now, for the case ρ = 0 define

u = L(w), p̃ = D̄−
1
2V >p, ω = 0. (36)

In this case, using (36) we obtain a one-to-one mapping between Q and Q̃. Hence, the set Q̃ in
(35) defines our normalization when Q is a paraboloid.

Note that in the two cases considered P and J̃ have always the same inertia. Hence, the classifi-
cation of the quadrics Q and Q̃ is the same. Additionally, if we apply the affine transformations L as
given in (27) and (33) to two parallel hyperplanes, then the resulting hyperplanes are still parallel.
Finally, by construction the transformation L has an inverse in both normalizations. These three
features show that the results obtained in Section 3 using the normalized quadrics are both valid
and applicable in the original space.

C Definitions and known results

Definition 5 (Base of a Convex Cylinder). Let C ⊂ Rn be a convex cylinder with the direction
d0 ∈ Rn. A set D ⊂ C is called a base of C if for every vector x ∈ C, there is a unique d ∈ D and
σ ∈ R such that x = d+ σd0.

C.1 Eigenvalues of a rank one update

Recall that the eigenvalues of P + τaa> can be computed by finding the roots of the equation

det(P + τaa> − λI) = 0.

This equation is shown [Golub, 1973] to be equivalent to the characteristic equation

n∏
i=1

(Pi,i − λ) + τ

n∑
i=1

a2
i

n∏
j=1
j 6=i

(Pi,i − λ) = 0. (37)

We use this result in the proofs of this paper.

D Results for proofs with the unbounded intersections in Sec-
tion 3.4

D.1 Proof of Theorem 3

We first show that

τ̄ ≥ − 1

(1− 2a2
1)
.

From (19) we have that the most negative value τ̄ can take is achieved when αβ < 0. We have

−4 |αβ|
(1− 2a2

1)(α− β)2
=

(
−1

(1− 2a2
1)

)(
4 |αβ|

(α− β)2

)
≥ −1

(1− 2a2
1)
. (38)

The last inequality follows because if αβ < 0, then α2 − 2αβ + β2 ≥ 4 |αβ|, since α2 + β2 ≥ 2 |αβ|.
From Lemma 5 we know that P (τ̄) has one negative eigenvalue and n−1 positive eigenvalues if the
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inequality (38) is strict. If (38) is satisfied with equality, then P (τ̄) has one negative eigenvalue,
one zero eigenvalue, and n− 2 positive eigenvalues.

If τ̄ > − 1
(1−2a21)

, then we obtain that Q(τ̄) is a cone. Now, we analyze the case when τ̄ =

− 1
(1−2a21)

, which by (38) can happen only when β = −α. In this case P (τ̄) is singular, p(τ̄) = 0,

and ρ(τ̄) > 0. Recall that since P (τ̄) is symmetric, then there exist D(τ̄) ∈ R`×` and V (τ̄) ∈ R`×`
such that P (τ̄) = V (τ̄)>D(τ̄)V (τ̄).

Let us now characterize the shape of the quadric Q(τ̄). First, recall that when τ̄ = − 1
(1−2a21)

then P (τ̄) has one negative eigenvalue, one zero eigenvalue, and `−2 positive eigenvalues. We may
assume w.l.o.g. that D1,1(τ̄) < 0, D2,2(τ̄) = 0, and Di,i(τ̄) > 0, i ∈ {3, . . . n}. Then

P (τ̄) = V (τ̄)D̂(τ̄)
1
2 ĴD̂(τ̄)

1
2V (τ̄)>,

where D̂(τ̄) is a diagonal matrix with D̂i,i(τ̄) = |Di,i(τ̄)|, i ∈ {1, . . . n} \ {2}, and D̂2,2(τ̄) = 1.
Additionally, Ĵ is a diagonal matrix defined as Ĵ1,1 = −1, Ĵ2,2 = 0, and Ĵi,i = 1, i ∈ {3, . . . n}.
Thus, using the transformation

u =
D̂(τ)

1
2V (τ)>w√
ρ(τ̄)

, ∀w ∈ Q(τ̄),

we obtain that Q(τ̄) is an affine transformation of the set

{u ∈ R` | u>Ĵu ≤ −1}, (39)

which is a hyperbolic cylinder of two sheets. The right hand side of the quadratic equation in (39)
is −1 because

ρ(τ̄) = − βα

(1− 2a2
1)

=
α2

(1− 2a2
1)
> 0.

Finally, given that Ĵ and P (τ̄) have the same inertia, we have shown that Q(τ̄) is a hyperbolic
cylinder of two sheets. This proves the result.

D.2 Proof of Theorem 4

First, to facilitate the discussion let f : R 7→ R be such that f(τ) = τ2(1 − 2a2
1) (α−β)2

4 − τ((1 −
2a2

1) +αβ)−1, which is the numerator of (20). We need to compare the roots of f with the critical
value τ̂ = − 1

(1−2a21)
. Based on this comparison, we then classify the shapes of the quadrics Q(τ) at

these two roots.
Recalling that α 6= β, the roots τ̄1 and τ̄2 of f are

2(1− 2a2
1 + αβ ±

√
(1− 2a2

1 + αβ)2 + (1− 2a2
1)(α− β)2)

(1− 2a2
1)(α− β)2

. (40)

Hence, since (1 − 2a2
1)(α − β)2 > 0, we have that one root is positive and the other is negative.

We may assume w.l.o.g. that τ̄1 ≤ τ̄2. Also, observe that the roots are always different, since the
discriminant of (40) is never zero for a2

1 < 1/2.
Let us compare these two roots with the critical value τ̂ = − 1

(1−2a21)
. First of all, note that

f(τ̂) > 0, and that the coefficient of τ2 in f(τ) is positive since a2
1 < 1

2 . Hence, τ̂ ∈ (τ̄1, τ̄2).
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Additionally, if α 6= −β, then f(τ) > 0. To complete the comparison we need to check the value of
the derivative f ′(τ̂) to verify in which branch of f the value τ̂ lies. We have that

f ′(τ̂) = −(α− β)2

2
− (1− 2a2

1 + αβ) = −(α2 + β2)

2
− (1− 2a2

1) ≤ 0.

Hence, the inequality τ̂ ≤ τ̄1 is always satisfied, and it is strict if α 6= −β.
From Lemma 5, we know that if τ̂ < τ̄1, then P (τ̄1) and P (τ̄2) have ` − 1 positive eigenvalues

and one negative eigenvalue. As a result, Q(τ1) and Q(τ2) are two different scaled second order
cones. On the other hand, if α = −β, then the roots of f are given by

1− 2a2
1 − α2 ±

√
(1− 2a2

1 + α2)2

2(1− 2a2
1)α2

.

Thus, τ̂ = τ̄1 when the hyperplanes are symmetric with respect to the origin. From Lemma 5 we
know that P (τ̄1) has one negative eigenvalue, one zero eigenvalue, and ` − 2 positive eigenvalues.
Additionally, note that

ρ(τ̄1) = 1 +
α2

(1− 2a2
1)
> 0.

Thus, similarly to the proof of Theorem 3, one can use the eigenvalue decomposition of P (τ̄1) to
show that Q(τ̄1) is an affine transformation of the set (39). Thus, Q(τ̄1) is a cylindrical hyperboloid
of two sheets. Finally, since τ̄1 < τ̄2, we have that P (τ̄2) has one negative eigenvalue and ` − 1
positive eigenvalues, and we obtain that Q(τ̄2) is a cone. This proves the result.

D.3 Additional lemmas for Section 3.4.2

Lemma 8. Let τ̄ be the the smaller root of the numerator of (17). In the first cases of Theorems
3 and 4, one has that in Lemma 7 the vertex x(τ̄) of the quadric Q(τ̄) is either in A or B.

Proof. From Theorem 1 we have that

a>x(τ̄) = −a>P (τ̄)−1p(τ̄) = τ̄
(α+ β)(1− 2a2

1)

2(1 + τ̄(1− 2a2
1))

.

First of all, for Lemma 7 we obtain that a>x(τ̄) = 0. Note that if α and β have opposite signs,
then each hyperplane is intersecting a different branch of Q. This is not possible for MISOCO
problems, because the feasible set of its SOCO relaxation would be non-convex. Now note that
α 6= 0 and β 6= 0, since otherwise one of the intersections Q ∩ A= = ∅ or Q ∩ B= = ∅. Hence, we
have that x(τ̄) ∈ A or x(τ̄) ∈ B.

Now, recall also from Sections D.1 and D.2 that − 1
(1−2a21)

≤ τ̄ . Hence,

lim
τ̄→∞

a>x(τ̄) =
(α+ β)

2
.

On the other hand, we have

lim
τ̄↘− 1

(1−2a21)

a>x(τ̄) =

{
−∞ if α+ β > 0,

+∞ if α+ β < 0.
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Thus, if α+ β > 0 then a>x(τ̄) < α. Now, if a>x(τ̄) ≤ β is true, then we obtain that

τ̄
(α+ β)(1− 2a2

1)

2(1 + τ̄(1− 2a2
1))
≤ β which implies τ̄ ≤ 2β

(α− β)(1− 2a2
1)
.

On the other hand, if α+β < 0, then a>x(τ̄) > β. Now, if a>x(τ̄) ≥ α is true, then we obtain that

τ̄
(α+ β)(1− 2a2

1)

2(1 + τ̄(1− 2a2
1))
≥ α that implies τ̄ ≤ −2α

(α− β)(1− 2a2
1)
.

Recall that β < α. Then, α + β > 0 implies that α > 0 and α > |β|. Additionally, α + β < 0
implies that β < 0 and β < − |α|.

For the first case of Theorem 3 we need to consider two cases. On one hand if αβ ≥ 0, then
τ̄ = 0. In this case, if α + β > 0 then 2β

(α−β)(1−2a21)
≥ 0, and x(τ̄) ∈ B. Additionally, if α + β < 0

then −2α
(α−β)(1−2a21)

≥ 0 and x(τ̄) ∈ A. On the other hand, if αβ ≤ 0 then τ̄ = 4αβ
(1−2a21)(α−β)2

≤ 0.

Hence, if α+ β > 0 then

4αβ

(1− 2a2
1)(α− β)2

=

(
2β

(1− 2a2
1)(α− β)

)(
2α

(α− β)

)
≤ 2β

(α− β)(1− 2a2
1)
,

and the vertex x(τ̄) ∈ B. Additionally, if α+ β < 0 then

4αβ

(1− 2a2
1)(α− β)2

=

(
2α

(1− 2a2
1)(α− β)

)(
2β

(α− β)

)
≤ −2α

(α− β)(1− 2a2
1)
,

and the vertex x(τ̄) ∈ A.
For the first case of Theorem 4 recall that

τ̄ =
2
(

1− 2a2
1 + αβ −

√
(1− 2a2

1 + αβ)2 + (1− 2a2
1)(α− β)2

)
(1− 2a2

1)(α− β)2

=
2
(

1− 2a2
1 + αβ −

√
(1− 2a2

1 + α2)(1− 2a2
1 + β2)

)
(1− 2a2

1)(α− β)2
.

Hence, if α+ β > 0, then

2
(

1− 2a2
1 + αβ −

√
(1− 2a2

1 + α2)(1− 2a2
1 + β2)

)
(1− 2a2

1)(α− β)2
≤ 2β

(α− β)(1− 2a2
1)
,

and the vertex x(τ̄) ∈ B. Additionally, if α+ β < 0 then

2
(

1− 2a2
1 + αβ −

√
(1− 2a2

1 + α2)(1− 2a2
1 + β2)

)
(1− 2a2

1)(α− β)2
≤ −2α

(α− β)(1− 2a2
1)
,

and the vertex x(τ̄) ∈ A. This shows that x(τ̄) is contained in one of the sets A or B.

Lemma 9. Let τ̄ be the smaller root of the numerator of (17). In the first cases of Theorems 3
and 4, and in Lemma 7, we have that Q∩ (A ∪ B) ⊆ Q(τ̄).
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Proof. Recall that Q(τ̄) = {x ∈ R` | x>P (τ̄)x + 2p(τ̄)>x + ρ(τ̄) ≤ 0}, then from Theorem 1 we
have for the first case of Theorem 3 that

x>P (τ̄)x+ 2p(τ̄)>x+ ρ(τ̄) = x>Jx+ τ̄1

(
(a>x)2 − αa>x− βa>x+ αβ

)
,

and for the first case of Theorem 4 and Lemma 7 we have that

x>P (τ̄)x+ 2p(τ̄)>x+ ρ(τ̄) = x>Jx+ 1 + τ̄
(

(a>x)2 − αa>x− βa>x+ αβ
)
.

Recall that in the case of Lemma 7, we have that α 6= 0 and β 6= 0 have the same sign. From
(19), (40), and (21) we know that τ̄1 ≤ 0 and for x̃ ∈ Q we have x̃>Jx̃ ≤ 0 or x̃>Jx̃+ 1 ≤ 0. Now,
observe that (a>x)2 − αa>x− βa>x+ αβ = (a>x− α)(a>x− β). On one hand, if x̃ ∈ B ∩Q, then
(a>x̃ − α) ≤ 0 and (a>x̃ − β) ≤ 0. On the other hand, if x̃ ∈ A ∩ Q, then (a>x̃ − α) ≥ 0 and
(a>x̃− β) ≥ 0. Thus, if x̃ ∈ Q ∩ (A ∪ B), we have that

(a>x̃)2 − α(a>x̃)− β(a>x̃) + αβ ≥ 0,

and we obtain that x̃>P (τ̄)x̃+2p(τ̄)>x̃+ρ(τ̄) ≤ 0 for x̃ ∈ Q∩(A∪B). Thus, Q∩(A∪B) ⊆ Q(τ̄).

Lemma 10. Let τ̄ be the smaller root of the numerator of (17). In the first case of Theorems 3
and 4, and Lemma 7, each of the subsets Q+ ∩ A, Q+ ∩ B, Q− ∩ A, and Q− ∩ B, is a subset of
one of the branches Q+(τ̄) or Q−(τ̄).

Proof. First, we show that eitherQ+∩A ⊆ Q+(τ̄) orQ+∩A ⊆ Q−(τ̄). We know from the definition
of the sets in Section 3.4.2 that Q+ ∩A, Q+(τ̄), Q−(τ̄) are convex sets and from Lemma 9 we have
that Q+ ∩ A ⊆ Q(τ̄1). Recall also that Q(τ̄) is a cone, which vertex is denoted by x(τ̄), and that
Q+(τ̄)∩Q−(τ̄) = x(τ̄). Then, observe that if Q+ ∩A∩Q+(τ̄) 6= ∅ and Q+ ∩A∩Q−(τ̄) 6= ∅, then
x(τ̄) ∈ Q+ ∩ A, otherwise Q+ ∩ A 6⊆ Q(τ̄). We have

x(τ̄) = −P (τ̄)−1p(τ̄) = −
(
J − τ̄ Jaa>J

1 + τ̄(1− 2a2
1)

)(
−τ̄1

α+ β

2
a

)
= τ̄

α+ β

2

(
1− τ̄ (1− 2a2

1)

1 + τ̄(1− 2a2
1)

)
Ja

= τ̄
α+ β

2(1 + τ̄(1− 2a2
1))

Ja.

Then, we obtain that

x(τ̄)>Jx(τ̄) = τ̄2 (α+ β)2(1− 2a2
1)

4(1 + τ̄(1− 2a2
1))2

≥ 0.

Now, if τ̄ = 0, then Q(τ̄) = Q, and it is clear that Q+ is a subset of Q+(τ̄). On the other hand,
if τ̄ 6= 0, then x(τ̄) /∈ Q. For that reason x(τ̄) /∈ Q+ ∩ A, and either Q+ ∩ A ∩ Q+(τ̄) = ∅ or
Q+ ∩ A ∩ Q−(τ̄) = ∅. Hence, Q+ ∩ A must be a subset of either Q+(τ̄) or Q−(τ̄). A similar
argument can be built to show that each subsets Q+ ∩ B, Q− ∩ A, and Q− ∩ B, must be a subset
of either Q+(τ̄) or Q−(τ̄).

Lemma 11. In the first case of Theorems 3 and 4 if Q+ ∩ A 6= ∅ and Q+ ∩ B 6= ∅, then we have
either Q+ ∩ (A ∪ B) ⊆ Q+(τ̄1) or Q+ ∩ (A ∪ B) ⊆ Q−(τ̄1).
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Proof. From Lemma 10 we know that Q+∩A and Q+∩B are subsets of one of the branches Q+(τ1)
or Q−(τ1). Recall that Q+, Q−, Q+(τ1), and Q−(τ1) are convex sets.

Now, assume to the contrary that Q+∩A ⊆ Q+(τ̄1) and Q+∩B ⊆ Q−(τ̄1). We need to consider
two cases. First, if Q is a cone and 0 ∈ A∪B, then from (19) we obtain that τ̄ = 0, i.e., Q = Q(τ̄).
Hence it is clear that Q+ ∩ (A ∪ B) ⊆ Q+(τ̄1), which contradicts the assumption.

Second, if Q is a hyperboloid of two sheets, or Q is a cone and 0 /∈ A∪B, then from the proof of
Lemma 10 we know that x(τ̄) /∈ Q. Recall that Q+(τ̄)∩Q−(τ̄) = x(τ̄). Hence, using the separation
theorem we know that there exists a hyperplane H = {x ∈ R` | h>x = η} separating Q+(τ̄1) and
Q−(τ̄1), such that x(τ̄1) ∈ H. Given the assumption Q+ ∩ A ⊂ Q+(τ̄1) and Q+ ∩ B ⊂ Q−(τ̄1), we
have that H must separate Q+ ∩ A and Q+ ∩ B as well. Hence, H must be parallel to A and B,
and β ≤ η ≤ α. Now, if β < η < α, then we obtain that x(τ̄) /∈ A ∪ B, which contradicts Lemma
8. On the other hand, if η = α or η = β, we obtain that x(τ̄1) ∈ Q, which is also a contradiction.
This proves the lemma.
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