
Multistage Discrete Optimization
Part IV: Software

Ted Ralphs1

Joint work with Suresh Bolusani1, Scott DeNegre3,
Menal Güzelsoy2, Anahita Hassanzadeh4, Sahar Tahernajad1

1COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University
2SAS Institute, Advanced Analytics, Operations Research R & D 3The Hospital for Special Surgery 4Climate Corp

Friedrich-Alexander-Universität Erlangen-Nürnberg, 20-21 March 2017

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Outline

1 COIN-OR
Overview
Projects

2 SYMPHONY

3 MibS

4 Generalized Benders

5 Conclusions

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Outline

1 COIN-OR
Overview
Projects

2 SYMPHONY

3 MibS

4 Generalized Benders

5 Conclusions

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Brief History of COIN-OR

The Common Optimization Interface for Operations Research Initiative was an
initiative launched by IBM at ISMP in 2000.

IBM seeded an open source repository with four initial projects and created a
Web site.

The goal was to develop the project and then hand it over to the community.

The project grew to be self-sustaining and was spun off as a nonprofit
educational foundation in the U.S. a decade ago.

The name was also changed to the Computational Infrastructure for Operations
Research to reflect a broader mission.

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

What is COIN-OR Today?

The COIN-OR Foundation

A non-profit foundation promoting the development and use of
interoperable, open-source software for operations research.

A consortium of researchers in both industry and academia dedicated to
improving the state of computational research in OR.

A venue for developing and maintaining standards.

A forum for discussion and interaction between practitioners and
researchers.

The COIN-OR Repository

A collection of interoperable software tools for building optimization
codes, as well as a few stand alone packages.

A venue for peer review of OR software tools.

A development platform for open source projects, including a wide range
of project management tools.

See www.coin-or.org for more information.
Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

The COIN Boards

The COIN-OR Foundation is governed by two boards.

Strategic Leadership Board

Kevin Furman

Bill Hart

Alan King (Treasurer)

Andrew Mason

Giacomo Nannicini

Ted Ralphs (TLC Rep)

Matt Saltzman (President)

Technical Leadership Council

Tony Kelman

Miles Lubin

Ted Ralphs (Chair)

Haroldo Santos

John Siirola

Mike Steglich

Stefan Vigerske

The SLB sets the overall strategic direction and manages the business operations:
budgeting, fund-raising, legal, etc.

The TLC focuses on technical issues: build system, versioning system, bug
reporting, interoperability, etc.

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

What You Can Do With COIN-OR: Low-level Tools

We currently have 50+ projects and more are being added all the time.

Most projects are now licensed under the EPL (very permissive).
COIN-OR has solvers for most common optimization problem classes.

Linear programming
Nonlinear programming
Mixed integer linear programming
Mixed integer nonlinear programming (convex and nonconvex)
Stochastic linear programming
Semidefinite programming
Graph problems
Combinatorial problems (VRP, TSP, SPP, etc.)

COIN-OR has various utilities for reading/building/manipulating/preprocessing
optimization models and getting them into solvers.
COIN-OR has overarching frameworks that support implementation of broad
algorithm classes.

Parallel search
Branch and cut (and price)
Decomposition-based algorithms

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

What You Can Do With COIN-OR: High-level Tools

One of the most exciting developments of recent years is the number of is the wide
range of high-level tools available to access COIN-OR solvers.

Python-based modeling languages

Spreadsheet modeling (!)

Commercial modeling languages

Mathematica

Matlab

R

Sage

Julia

...

COIN-OR isn’t just for breakfast anymore!

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

COIN-OR Projects Overview: Linear Optimization

Clp: COIN LP Solver
Project Manager: Julian Hall

DyLP: An implementation of the dynamic simplex method
Project Manager: Lou Hafer

Cbc: COIN Branch and Cut
Project Manager: Ted Ralphs

SYMPHONY: a flexible integer programming package that supports shared and
distributed memory parallel processing, biobjective optimization, warm starting,
sensitivity analysis, application development, etc.

Project Manager: Ted Ralphs

BLIS: Parallel IP solver built to test the scalability of the CHiPPS framework.
Project Manager: Ted Ralphs

Cgl: A library of cut generators
Project Manager: Robin Lougee

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

COIN-OR Projects Overview: Nonlinear Optimization

Ipopt: Interior Point OPTimizer for nonlinear optimization problems.
Project Manager: Andreas Wächter

DFO: An algorithm for derivative free optimization.
Project Manager: Katya Scheinberg

CSDP: A solver for semi-definite programs
Project Manager: Brian Borchers

OBOE: Oracle based optimization engine
Project Manager: Nidhi Sawhney

FilterSD: Package for solving linearly constrained non-linear optimization
problems.

Project Manager: Frank Curtis

OptiML: Optimization for Machine learning, interior point, active set method
and parametric solvers.

Project Manager: Katya Scheinberg

qpOASES: QP solver using the active online set strategy.
Project Manager: Joachim Ferreau

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

COIN-OR Projects Overview: Mixed Integer Nonlinear
Optimization

Bonmin: Basic Open-source Nonlinear Mixed INteger programming is for
(convex) nonlinear integer programming.

Project Manager: Pierre Bonami

Couenne: Solver for nonconvex nonlinear integer programming problems.
Project Manager: Pietro Belotti

LaGO: Lagrangian Global Optimizer, for the global optimization of nonconvex
mixed-integer nonlinear programs.

Project Manager: Stefan Vigerske

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

COIN-OR Projects Overview: Modeling

FLOPC++: An open-source modeling system.
Project Manager: Tim Hultberg

Pyomo: A repository of python-based modeling tools.
Project Manager: Bill Hart

PuLP: Another python-based modeling language.
Project Manager: Stu Mitchell

DipPy: A python-based modeling language for decomposition-based solvers.
Project Manager: Mike O’Sullivan

CMPL: An algebraic modeling language
Project Manager: Mike Steglich

SMI: Stochastic Modeling Interface, for optimization under uncertainty.
Project Manager: Alan King

yaposib: Yet Another Python OSI Binding.
Project Manager: Ted Ralphs

CyLP: Python interface to Cbc and Clp.
Project Manager: Mehdi Towhidi

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

COIN-OR Projects Overview: Interfaces and Solver Links

Osi: Open solver interface is a generic API for linear and mixed integer linear
programs.

Project Manager: Matthew Saltzman
GAMSlinks: Allows you to use the GAMS algebraic modeling language and call
COIN-OR solvers.

Project Manager: Stefan Vigerske
AIMMSlinks: Allows you to use the AIMMS modeling system and call
COIN-OR solvers.

Project Manager: Marcel Hunting
MSFlinks: Allows you to call COIN-OR solvers through Microsoft Solver
Foundation.

Project Manager: Lou Hafer
CoinMP: A callable library that wraps around CLP and CBC, providing an API
similar to CPLEX, XPRESS, Gurobi, etc.

Project Manager: Bjarni Kristjansson
Optimization Services: A framework defining data interchange formats and
providing tools for calling solvers locally and remotely through Web services.

Project Managers: Jun Ma, Gus Gassmann, and Kipp Martin
Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

COIN-OR Projects Overview: Frameworks

Bcp: A generic framework for implementing branch, cut, and price algorithms.
Project Manager: Laci Ladanyi

CHiPPS: A framework for developing parallel tree search algorithms.
Project Manager: Ted Ralphs

DIP: A framework for implementing decomposition-based algorithms for integer
programming, including Dantzig-Wolfe, Lagrangian relaxation, cutting plane,
and combinations.

Project Manager: Ted Ralphs

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

COIN-OR Projects Overview: Automatic Differentiation

ADOL-C: Package for the automatic differentiation of C and C++ programs.
Project Manager: Andrea Walther

CppAD: A tool for differentiation of C++ functions.
Project Manager: Brad Bell

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

COIN-OR Projects Overview: Graphs

GiMPy and GrUMPy: Python packages for visualizing algorithms
Project Manager: Ted Ralphs

Cgc: Coin graph class utilities, etc.
Project Manager: Phil Walton

LEMON: Library of Efficient Models and Optimization in Networks
Project Manager: Alpar Juttner

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

COIN-OR Projects Overview: Miscellaneous

Djinni: C++ framework with Python bindings for heuristic search
Project Manager: Justin Goodson

METSlib: An object oriented metaheuristics optimization framework and toolkit
in C++

Project Manager: Mirko Maischberger

CoinBazaar: A collection of examples, application codes, utilities, etc.
Project Manager: Bill Hart

PFunc: Parallel Functions, a lightweight and portable library that provides C and
C++ APIs to express task parallelism

Project Manager: Prabhanjan Kambadur

ROSE: Reformulation-Optimization Software Engine, software for performing
symbolic reformulations to Mathematical Programs (MP)

Project Manager: David Savourey

MOCHA: Matroid Optimization: Combinatorial Heuristics and Algorithms,
heuristics and algorithms for multicriteria matroid optimization

Project Manager: David Hawes

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Outline

1 COIN-OR
Overview
Projects

2 SYMPHONY

3 MibS

4 Generalized Benders

5 Conclusions

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

The SYMPHONY MILP Solver Framework

Warm-starting is an inherently useful technique in the solution of these
algorithms.
Since one of our constraints involves the value function, we must (either
implicitly or explicitly construct an approximation of this is function.
This can be done in a number of ways, as we’ll see.
SYMPHONY is an MILP solver framework that supports

Warm starting of the solution process.
Sensitivity analysis
Exporting of the branch-and-bound dual function.

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

SYMPHONY

Overview of Features
An open source, customizable, callable library for solving mixed integer
linear programs. with a wide variety of customization options.
Core solution methodology is branch and cut.
Includes advanced features, such as solution of biobjective problems.
Supports shared and distributed parallel solution modes.
Extensive documentation available.
Available for download at projects.coin-or.org/SYMPHONY.
All of the methods discussed in this talk are in SYMPHONY 5.6.

Available Customized Solvers Built with SYMPHONY

- Generic MILP
- Multicriteria MILP
- Traveling Salesman Problem
- Vehicle Routing Problem

- Mixed Postman Problem
- Set Partitioning Problem
- Matching Problem
- Network Routing

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

SYMPHONY: Support for Warm Starting

Currently supported

Change to objective function (no reduced cost fixing during generation of
warm start).
Change to right hand side (cuts are discarded when resolving).
Changes to variable bounds.
Addition of columns.

Coming soon

Addition of constraints (easy).
Changes to right hand side without discarding cuts (not so easy).
Changes to objective function with reduced cost fixing (not so easy).

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Basic Sensitivity Analysis

SYMPHONY will calculate bounds after changing the objective or right-hand side
vectors.

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.setSymParam(OsiSymSensitivityAnalysis,

true);
si.initialSolve();
int ind[2];
double val[2];
ind[0] = 4; val[0] = 7000;
ind[1] = 7; val[1] = 6000;
lb = si.getLbForNewRhs(2, ind, val);

}

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Warm Starting Example (Parameter Modification)

The following example shows a simple use of warm starting to create a dynamic
algorithm.

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.setSymParam(OsiSymFindFirstFeasible,true);
si.setSymParam(OsiSymSearchStrategy,

DEPTH_FIRST_SEARCH);
si.initialSolve();
si.setSymParam(OsiSymFindFirstFeasible,false);
si.setSymParam(OsiSymSearchStrategy,

BEST_FIRST_SEARCH);
si.resolve();

}

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Warm Starting Example (Problem Modification)

This example shows how to warm start after problem modification.

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
CoinWarmStart ws;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.setSymParam(OsiSymNodeLimit, 100);
si.initialSolve();
ws = si.getWarmStart();
si.resolve();
si.setObjCoeff(0, 1);
si.setObjCoeff(200, 150);
si.setWarmStart(ws);
si.resolve();

}

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Improving Variable Bounds

Prior to any warm solve, we can improve variable bounds by computing
generalized reduced costs.
For each variable, we increase its lower bound temporarily and perform a
sensitivity analysis.
If such a bound change leads to a dual (lower) bound (on the modified instance)
exceeding the known primal (upper) bound (on the instance), we can improve the
variable’s upper bound.
The same can be done to improve lower bounds.

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Outline

1 COIN-OR
Overview
Projects

2 SYMPHONY

3 MibS

4 Generalized Benders

5 Conclusions

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Implementation

The Mixed Integer Bilevel Solver (MibS) implements the branch and bound
framework and heuristic methods described here using software available from the
Computational Infrastructure for Operations Research (COIN-OR) repository.

COIN-OR Components Used

The COIN High Performance Parallel Search (CHiPPS) framework to
perform the branch and bound.
The COIN Branch and Cut (CBC) framework for solving the MILPs.
The COIN LP Solver (CLP) framework for solving the LPs arising in the
branch and cut.
The Cut Generation Library (CGL) for generating cutting planes within
CBC.
The Open Solver Interface (OSI) for interfacing with CBC and CLP.

Please visit www.coin-or.org for information on obtaining these codes.

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Primary MibS Classes

The primary classes the comprise MibS are as follows:

MibS Classes
1 MibSModel: Derived from the virtual BLIS class BlisModel and

stores information about the original problem.
2 MibSCutGenerator: Derived from the virtual BLIS class
BlisConGenerator, and used to generate cuts when CHiPPs finds
integer, bilevel infeasible solutions.

3 MibSSolution: Derived from the virtual BLIS class BlisSolution
and stores and prints integer bilevel feasible solutions.

4 MibSBilevel: Specific to MibS and used to test bilevel feasibility of
integer solutions.

5 MibSHeuristic: Specific to MibS and used to generate heuristic
solutions.

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Main Parameters

Branching
branchStrategy: linking, fractional
�blisBranchStrategy: strong, pseudocost, reliability

Cutting
Turn all classes of cuts on and off (automatic defaults)
Determine how often to generate cuts

Primal Heuristics
Turn all heuristics on and off (automatic defaults).
Determine how often to execute heuristics.

useLinkingSolutionPool: true, false.
When to solve (SS-MILP) and (UB).

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Getting and Installing MibS

MibS source is available at:

https://github.com/tkralphs/MibS

Basic install on Linux/OS X

git clone https://github.com/tkralphs/MibS
cd MibS
git clone https://github.com/coin-or-tools/BuildTools/
BuildTools/get.dependencies fetch
BuildTools/get.dependencies build --parallel-jobs=2
BuildTools/get.dependencies install --prefix=/path/to/inst/dir

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

https://github.com/tkralphs/MibS

File Format

MibS currently supports specifying main problem data in MPS format.
An auxiliary file contains information indicating which variables and constraints
are associated with which level.

M: Number of lower level variables
N: Number of lower level constraints
LC: Index of a lower-level variable
LR: Index of a lower-level constraint
LO: Coefficients of lower-level objective
OS: Lower-level objective sense

./mibs -Alps_instance file.mps -MibS_auxiliaryInfoFile
aux_file.txt

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Computational Results

All computations were done on a Linux (Debian 6.0.9) box 16 AMD 800 MHz
processors and 32 GB RAM.
Test set was as follows.

Table 1: The summary of data sets

Data Set First-level
Vars Num

Second-level
Vars Num

First-level
Cons Num

Second-level
Cons Num

First-level
Vars Type

Second-level
Vars Type Size

INTER-DEN 10 10 1 11 binary binary 20
IBLP-DEN 5-15 5-15 0 20 discrete discrete 50
IBLP-FIS 4-2481 2-2480 0 16-4944 binary binary 24

MIBLP-XU 10-460 10-460 4-184 4-184 discrete continuous,
discrete 100

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Solving Problems (SS-MILP) and (UB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

whenLVarsInt
whenLVarsFixed
whenXYVarsInt

whenXYVarsIntOrLVarsFixed

Figure 1: Impact of the parameters for solving problems (SS-MILP) and (UB)

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Impact of Branching Strategy

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20

fractionalBranchingStrategy
linkingBranchingStrategy

(a) r1 ≤ r2

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

fractionalBranchingStrategy
linkingBranchingStrategy

(b) r1 > r2

Figure 2: Impact of the �branchStrategy parameter.

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Impact of Linking Solution Pool

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

withoutPoolWhenXYVarsInt
withPoolWhenXYVarsInt

withoutPoolWhenXYVarsIntOrLVarsFixed
withPoolWhenXYVarsIntOrLVarsFixed

(a) �fractional branching strategy

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

withoutPoolWhenXYVarsInt
withPoolWhenXYVarsInt

withoutPoolWhenXYVarsIntOrLVarsFixed
withPoolWhenXYVarsIntOrLVarsFixed

(b) �linking branching strategy

Figure 3: Impact of the linking solution pool.

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Outline

1 COIN-OR
Overview
Projects

2 SYMPHONY

3 MibS

4 Generalized Benders

5 Conclusions

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Generalized Bender Implementation

We’ve implemented the generalized Benders Algorithm from the previous slides.
We use SYMPHONY as the solver for the second-stage because it is capable of
exporting the required dual functions.
Either CPLEX or Cbc can be used to solve the master problem.
The source will be made available open source “soon.”
I first have to put my acronym generation skills to the test :).

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

SSLP Instances

We apply the algorithm to the SSLP test instances from SIPLIB. The instances have
the following properties. The last column shows the deterministic equivalent solution
time in seconds.

DEP 2nd Stage
Instance cons bin int cons bin int Time (s) % Gap

sslp-5-25(25) 751 3130 125 30 130 5 3.17 0
sslp-5-25(50) 1501 6255 250 30 130 5 4.22 0

sslp-5-25(100) 3001 12505 500 30 130 5 14.34 0
sslp-10-50(50) 3001 25010 500 60 510 10 3600+ 70

sslp-10-50(100) 6001 50010 1000 60 510 10 3600+ 15
sslp-15-45(5) 301 3390 75 60 690 15 3600+ 1

sslp-15-45(10) 601 6765 150 60 690 15 1088.69 0

Table 2: The deterministic equivalent of SSLP instances

where “DEP” and “2nd Stage” correspond to the deterministic equivalent and the
second stage problems and “cons”, “bins” and “int” respectively represent the number
of constraints, binary variables and general integer variables in the corresponding
problem.

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

SSLP Instances

Instance Iteration Size Time (s) %Gap
sslp-5-25(25) 16 (2493, 3639) 182.58 0
sslp-5-25(50) 18 (789, 1821) 12.16 0

sslp-5-25(100) 18 (1322, 3410) 27.91 0
sslp-10-50(50) 8 (40K, 71K) - 23
sslp-10-50(100) 8 (74K, 125K) - 9

sslp-15-45(5) 7 (29K, 56K) - 99
sslp-15-45(10) 26 (17K, 29K) - 52

Table 3: Generalized Benders’ algorithm applied to SSLP instances

The results are generated using the MILP solver SYMPHONY version WS
revision 2522 and CPLEX 12.5.
The tests were performed on a 16-core Linux box with 800 MHz AMD
processors and 31 GB RAM compiled with g++.
SSLP 10 and 15 runs were in parallel using 16 cores, other runs sequential.
The “Gap%” column refers to the relative gap between the upper bound and
lower bound of the Generalized Benders’ algorithm.
Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Analysis

Getting this all to work well is a PITA!

Figure 4: Jack-in-the-Box Chicken Fajita Pita

It appears possible to generalize the master problem to work for more general
bilevel problems, but there are some potential stumbling blocks.
Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Outline

1 COIN-OR
Overview
Projects

2 SYMPHONY

3 MibS

4 Generalized Benders

5 Conclusions

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Conclusions

The theory underlying these algorithms is maturing.
Many of the computational tools necessary for experimentation now also exist.
Computationally, we have looked primarily at the recourse (stochastic
programming) and interdiction (zero sum) cases.
Substantial progress has been made on these, but they appear much easier than
the general case.
In future work, we plan to leverage what we’ve learned to develop methodology
for the general case.

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

Shameless Promotion: Free Stuff!

CHiPPS: Parallel tree search framework
DIP/DipPy: Decomposition-based modeling language and MILP solver
DiSCO, OsiConic, CglConic: Mixed integer conic solver
MibS: Mixed integer bilevel solver
SYMPHONY: MILP solver framework with bicriteria, warm starting, etc.
GiMPy, GrUMPy: Visualizations and illustrative implementations for graph and
optimization algorithms.
CuPPy: Cutting planes in Python
Value Function: Algorithm for constructing value functions
And more...

http://github.com/tkralphs

Ralphs et.al. (COR@L Lab) Multistage Discrete Optimization

http://github.com/tkralphs

	COIN-OR
	Overview
	Projects

	SYMPHONY
	MibS

