
Tools for Modeling Optimization Problems
A Short Course

Modeling with Python

Dr. Ted Ralphs

Modeling with Python 1

Why Python?

• Pros

– As with many high-level languages, development in Python is quick
and painless (relative to C++!).

– Python is popular in many disciplines and there is a dizzying array of
packages available.

– Python’s syntax is very clean and naturally adaptable to expressing
mathematical programming models.

– Python has the primary data structures necessary to build and
manipulate models built in.

– There has been a strong movement toward the adoption of Python as
the high-level language of choice for (discrete) optimizers.

– Sage is quickly emerging as a very capable open-source alternative to
Matlab.

• Cons

– Python’s one major downside is that it can be very slow.
– Solution is to use Python as a front-end to call lower-level tools.

1

Modeling with Python 2

Drinking the Python Kool-Aid

2

Modeling with Python 3

Two-minute Python Primer

• Python is object-oriented with a light-weight class and inheritance
mechanism.

• There is no explicit compilation; scripts are interpreted.

• Variables are dynamically typed with no declarations.

• Memory allocation and freeing all done automatically.

• Indentation has a syntactic meaning!

• Code is usually easy to read “in English” (keywords like is, not, and
in).

• Everything can be “printed.”

• Important programming constructs

– Functions/Classes
– Looping
– Conditionals
– Comprehensions

3

Modeling with Python 4

Two-minute Python Primer (cont’d)

• Built-in data structures:

– Lists (dynamic arrays)
– Tuples (static arrays)
– Dictionaries (hash tables)
– Sets

• Class mechanism:

– Classes are collections of data and associated methods.
– Members of a class are called attributes.
– Attributes are accessed using “.” syntax.

4

Modeling with Python 5

Introduction to PuLP

• PuLP is a modeling language in COIN-OR that provides data types for
Python that support algebraic modeling.

• PuLP only supports development of linear models.

• Main classes

– LpProblem
– LpVariable

• Variables can be declared individually or as “dictionaries” (variables
indexed on another set).

• We do not need an explicit notion of a parameter or set here because
Python provides data structures we can use.

• In PuLP, models are technically “concrete,” since the model is always
created with knowledge of the data.

• However, it is still possible to maintain a separation between model and
data.

5

Modeling with Python 6

Bond Portfolio Example: Simple PuLP Model
(bonds simple-PuLP.py)

from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value

prob = LpProblem("Dedication Model", LpMaximize)

X1 = LpVariable("X1", 0, None)
X2 = LpVariable("X2", 0, None)

prob += 4*X1 + 3*X2
prob += X1 + X2 <= 100
prob += 2*X1 + X2 <= 150
prob += 3*X1 + 4*X2 <= 360

prob.solve()

print ’Optimal total cost is: ’, value(prob.objective)

print "X1 :", X1.varValue
print "X2 :", X2.varValue

6

Modeling with Python 7

Notes About the Model

• Like the simple AMPL model, we are not using indexing or any sort of
abstraction here.

• The syntax is very similar to AMPL.

• To achieve separation of data and model, we use Python’s import
mechanism.

7

Modeling with Python 8

Bond Portfolio Example: Abstract PuLP Model
(bonds-PuLP.py)

from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value

from bonds import bonds, max_rating, max_maturity, max_cash

prob = LpProblem("Bond Selection Model", LpMaximize)

buy = LpVariable.dicts(’bonds’, bonds.keys(), 0, None)

prob += lpSum(bonds[b][’yield’] * buy[b] for b in bonds)

prob += lpSum(buy[b] for b in bonds) <= max_cash, "cash"

prob += (lpSum(bonds[b][’rating’] * buy[b] for b in bonds)
<= max_cash*max_rating, "ratings")

prob += (lpSum(bonds[b][’maturity’] * buy[b] for b in bonds)
<= max_cash*max_maturity, "maturities")

8

Modeling with Python 9

Notes About the Model

• We can use Python’s native import mechanism to get the data.

• Note, however, that the data is read and stored before the model.

• This means that we don’t need to declare sets and parameters.

• Carriage returns are syntactic (parentheses imply line continuation).

• Constraints

– Naming of constraints is optional and only necessary for certain kinds
of post-solution analysis.

– Constraints are added to the model using a very intuitive syntax.
– Objectives are nothing more than expressions that are to be optimized

rather than explicitly constrained.

• Indexing

– Indexing in Python is done using the native dictionary data structure.
– Note the extensive use of comprehensions, which have a syntax very

similar to quantifiers in a mathematical model.

9

Modeling with Python 10

Bond Portfolio Example: Solution in PuLP

prob.solve()

epsilon = .001

print ’Optimal purchases:’
for i in bonds:

if buy[i].varValue > epsilon:
print ’Bond’, i, ":", buy[i].varValue

10

Modeling with Python 11

Notes About the Data Import (bonds data.py)

• We are storing the data about the bonds in a “dictionary of dictionaries.”

• With this data structure, we don’t need to separately construct the list
of bonds.

• We can access the list of bonds as bonds.keys().

• Note, however, that we still end up hard-coding the list of features and
we must repeat this list of features for every bond.

• We can avoid this using some advanced Python programming techniques,
but SolverStudio makes this easy.

11

Modeling with Python 12

PuLP Model in SolverStudio
(FinancialModels.xlsx:Bonds-PuLP)

• We’ve explicitly allowed the option of optimizing over one of the features,
while constraining the others.

• Later, we’ll see how to create tradeoff curves showing the tradeoffs
among the constraints imposed on various features.

12

Modeling with Python 13

Portfolio Dedication

Definition 1. Dedication or cash flow matching refers to the funding of
known future liabilities through the purchase of a portfolio of risk-free
non-callable bonds.

Notes:

• Dedication is used to eliminate interest rate risk.

• Dedicated portfolios do not have to be managed.

• The goal is to construct such portfolio at a minimal price from a set of
available bonds.

• This is a multi-period model.

13

Modeling with Python 14

Example: Portfolio Dedication

• A pension fund faces liabilities totalling `j for years j = 1, ..., T .

• The fund wishes to dedicate these liabilities via a portfolio comprised of
n different types of bonds.

• Bond type i costs ci, matures in year mi, and yields a yearly coupon
payment of di up to maturity.

• The principal paid out at maturity for bond i is pi.

14

Modeling with Python 15

LP Formulation for Portfolio Dedication

We assume that for each year j there is at least one type of bond i with
maturity mi = j, and there are none with mi > T .

Let xi be the number of bonds of type i purchased, and let zj be the cash
on hand at the beginning of year j for j = 0, . . . , T . Then the dedication
problem is the following LP,

min
(x,z)

z0 +
∑

i

cixi

s.t. zj−1 − zj +
∑

{i:mi≥j}
dixi +

∑

{i:mi=j}
pixi = `j, (j = 1, . . . , T − 1)

zT +
∑

{i:mi=T}
(pi + di)xi = `T .

zj ≥ 0, j = 1, . . . , T

xi ≥ 0, i = 1, . . . , n

15

Modeling with Python 16

AMPL Model for Dedication (dedication.mod)

• In multi-period models, we have to somehow represent the set of periods.

• Such a set is different from a generic set because it involves ranged data.

• We must somehow do arithmetic with elements of this set in order to
express the model.

• In AMPL, a ranged set can be constructed using the syntax 1..T.

• Both endpoints are included in the range.

• Another important feature of the above model is the use of conditionals
in the limits of the sum.

• Conditionals can be used to choose a subset of the items in a given set
satisfying some condition.

16

Modeling with Python 17

PuLP Model for Dedication (dedication-PuLP.py)

• We are parsing the AMPL data file with a custom-written function
read data to obtain the data.

• The data is stored in a two-dimensional table (dictionary with tuples as
keys).

• The range operator is used to create ranged sets in Python.

• The upper endpoint is not included in the range and ranges start at 0 by
default (range(3) = [0, 1, 2]).

• The len operator gets the number of elements in a given data structure.

• Python also supports conditions in comprehensions, so the model reads
naturally in Python’s native syntax.

• See also FinancialModels.xlsx:Dedication-PuLP.

17

Modeling with Python 18

Introduction to Pyomo

• Pyomo further generalizes the basic framework of PuLP.

– Support for nonlinear functions.
– Constraint are defined using Python functions.
– Support for the construction of “true” abstract models.
– Built-in support for reading AMPL-style data files.

• Primary classes

– ConcreteModel, AbstractModel
– Set, Parameter
– Var, Constraint

18

Modeling with Python 19

Concrete Pyomo Model for Dedication
(dedication-PyomoConcrete.py)

• This model is almost identical to the PuLP model.

• The only substantial difference is the way in which constraints are defined,
using “rules.”

• Indexing is implemented by specifying additional arguments to the rule
functions.

• When the rule function specifies an indexed set of constraints, the indices
are passed through the arguments to the function.

• The model is constructed by looping over the index set, constructing
each associated constraint.

• Note that if the name of a constraint is xxx, the rule function is assumed
to be xxx rule unless otherwise specified.

• Note the use of the Python slice operator to extract a subset of a ranged
set.

19

Modeling with Python 20

Instantiating and Solving a Pyomo Model

• The easiest way to solve a Pyomo Model is from the command line.

pyomo --solver=cbc --summary dedication-PyomoConcrete.py

• It is instructive, however, to see what is going on under the hood.

– Pyomo explicitly creates an “instance” in a solver-independent form.
– The instance is then translated into a format that can be understood

by the chosen solver.
– After solution, the result is imported back into the instance class.

• We can explicitly invoke these steps in a script.

• This gives a bit more flexibility in post-solution analysis.

20

Modeling with Python 21

Abstract Pyomo Model for Dedication
(dedication-PyomoAbstract.py)

• In an abstract model, we declare sets and parameters abstractly.

• After declaration, they can be used without instantiation, as in AMPL.

• When creating the instance, we explicitly pass the name of an AMPL-
style data file, which is used to instantiate the concrete model.

instance = model.create(’dedication.dat’)

• See also FinancialModels.xlsx:Dedication-Pyomo.

21

Modeling with Python 22

Example: Short Term Financing

A company needs to make provisions for the following cash flows over the
coming five months: −150K, −100K, 200K, −200K, 300K.

• The following options for obtaining/using funds are available,

– The company can borrow up to $100K at 1% interest per month,
– The company can issue a 2-month zero-coupon bond yielding 2%

interest over the two months,
– Excess funds can be invested at 0.3% monthly interest.

• How should the company finance these cash flows if no payment
obligations are to remain at the end of the period?

22

Modeling with Python 23

Example (cont.)

• All investments are risk-free, so there is no stochasticity.

• What are the decision variables?

– xi, the amount drawn from the line of credit in month i,
– yi, the number of bonds issued in month i,
– zi, the amount invested in month i,

• What is the goal?

– To maximize the the cash on hand at the end of the horizon.

23

Modeling with Python 24

Example (cont.)

The problem can then be modelled as the following linear program:

max
(x,y,z,v)∈R12

f(x, y, z, v) = v

s.t. x1 + y1 − z1 = 150

x2 − 1.01x1 + y2 − z2 + 1.003z1 = 100

x3 − 1.01x2 + y3 − 1.02y1 − z3 + 1.003z2 = −200

x4 − 1.01x3 − 1.02y2 − z4 + 1.003z3 = 200

− 1.01x4 − 1.02y3 − v + 1.003z4 = −300

100− xi ≥ 0 (i = 1, . . . , 4)

xi ≥ 0 (i = 1, . . . , 4)

yi ≥ 0 (i = 1, . . . , 3)

zi ≥ 0 (i = 1, . . . , 4)

v ≥ 0.

24

Modeling with Python 25

AMPL Model for Short Term Financing
(short term financing.*)

• Note that we’ve created some “dummy” variables for use of bonds and
credit and investment before time zero.

• These are only for convenience to avoid edge cases when expressing the
constraints.

• Again, we see the use of the parameter T to capture the number of
periods.

• See also FinancialModels.xlsx:Short-term-financing-AMPL.

25

