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Why Python?

• Pros

– As with many high-level languages, development in Python is quick
and painless (relative to C++!).

– Python is popular in many disciplines and there is a dizzying array of
packages available.

– Python’s syntax is very clean and naturally adaptable to expressing
mathematical programming models.

– Python has the primary data structures necessary to build and
manipulate models built in.

– There has been a strong movement toward the adoption of Python as
the high-level language of choice for (discrete) optimizers.

– Sage is quickly emerging as a very capable open-source alternative to
Matlab.

• Cons

– Python’s one major downside is that it can be very slow.
– Solution is to use Python as a front-end to call lower-level tools.
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Drinking the Python Kool-Aid
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Two-minute Python Primer

• Python is object-oriented with a light-weight class and inheritance
mechanism.

• There is no explicit compilation; scripts are interpreted.

• Variables are dynamically typed with no declarations.

• Memory allocation and freeing all done automatically.

• Indentation has a syntactic meaning!

• Code is usually easy to read “in English” (keywords like is, not, and
in).

• Everything can be “printed.”

• Important programming constructs

– Functions/Classes
– Looping
– Conditionals
– Comprehensions
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Two-minute Python Primer (cont’d)

• Built-in data structures:

– Lists (dynamic arrays)
– Tuples (static arrays)
– Dictionaries (hash tables)
– Sets

• Class mechanism:

– Classes are collections of data and associated methods.
– Members of a class are called attributes.
– Attributes are accessed using “.” syntax.
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Introduction to PuLP

• PuLP is a modeling language in COIN-OR that provides data types for
Python that support algebraic modeling.

• PuLP only supports development of linear models.

• Main classes

– LpProblem
– LpVariable

• Variables can be declared individually or as “dictionaries” (variables
indexed on another set).

• We do not need an explicit notion of a parameter or set here because
Python provides data structures we can use.

• In PuLP, models are technically “concrete,” since the model is always
created with knowledge of the data.

• However, it is still possible to maintain a separation between model and
data.
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Bond Portfolio Example: Simple PuLP Model
(bonds simple-PuLP.py)

from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value

prob = LpProblem("Dedication Model", LpMaximize)

X1 = LpVariable("X1", 0, None)
X2 = LpVariable("X2", 0, None)

prob += 4*X1 + 3*X2
prob += X1 + X2 <= 100
prob += 2*X1 + X2 <= 150
prob += 3*X1 + 4*X2 <= 360

prob.solve()

print ’Optimal total cost is: ’, value(prob.objective)

print "X1 :", X1.varValue
print "X2 :", X2.varValue
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Notes About the Model

• Like the simple AMPL model, we are not using indexing or any sort of
abstraction here.

• The syntax is very similar to AMPL.

• To achieve separation of data and model, we use Python’s import
mechanism.
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Bond Portfolio Example: Abstract PuLP Model
(bonds-PuLP.py)

from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value

from bonds import bonds, max_rating, max_maturity, max_cash

prob = LpProblem("Bond Selection Model", LpMaximize)

buy = LpVariable.dicts(’bonds’, bonds.keys(), 0, None)

prob += lpSum(bonds[b][’yield’] * buy[b] for b in bonds)

prob += lpSum(buy[b] for b in bonds) <= max_cash, "cash"

prob += (lpSum(bonds[b][’rating’] * buy[b] for b in bonds)
<= max_cash*max_rating, "ratings")

prob += (lpSum(bonds[b][’maturity’] * buy[b] for b in bonds)
<= max_cash*max_maturity, "maturities")
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Notes About the Model

• We can use Python’s native import mechanism to get the data.

• Note, however, that the data is read and stored before the model.

• This means that we don’t need to declare sets and parameters.

• Carriage returns are syntactic (parentheses imply line continuation).

• Constraints

– Naming of constraints is optional and only necessary for certain kinds
of post-solution analysis.

– Constraints are added to the model using a very intuitive syntax.
– Objectives are nothing more than expressions that are to be optimized

rather than explicitly constrained.

• Indexing

– Indexing in Python is done using the native dictionary data structure.
– Note the extensive use of comprehensions, which have a syntax very

similar to quantifiers in a mathematical model.
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Bond Portfolio Example: Solution in PuLP

prob.solve()

epsilon = .001

print ’Optimal purchases:’
for i in bonds:

if buy[i].varValue > epsilon:
print ’Bond’, i, ":", buy[i].varValue
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Notes About the Data Import (bonds data.py)

• We are storing the data about the bonds in a “dictionary of dictionaries.”

• With this data structure, we don’t need to separately construct the list
of bonds.

• We can access the list of bonds as bonds.keys().

• Note, however, that we still end up hard-coding the list of features and
we must repeat this list of features for every bond.

• We can avoid this using some advanced Python programming techniques,
but SolverStudio makes this easy.
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PuLP Model in SolverStudio
(FinancialModels.xlsx:Bonds-PuLP)

• We’ve explicitly allowed the option of optimizing over one of the features,
while constraining the others.

• Later, we’ll see how to create tradeoff curves showing the tradeoffs
among the constraints imposed on various features.
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Portfolio Dedication

Definition 1. Dedication or cash flow matching refers to the funding of
known future liabilities through the purchase of a portfolio of risk-free
non-callable bonds.

Notes:

• Dedication is used to eliminate interest rate risk.

• Dedicated portfolios do not have to be managed.

• The goal is to construct such portfolio at a minimal price from a set of
available bonds.

• This is a multi-period model.
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Example: Portfolio Dedication

• A pension fund faces liabilities totalling `j for years j = 1, ..., T .

• The fund wishes to dedicate these liabilities via a portfolio comprised of
n different types of bonds.

• Bond type i costs ci, matures in year mi, and yields a yearly coupon
payment of di up to maturity.

• The principal paid out at maturity for bond i is pi.
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LP Formulation for Portfolio Dedication

We assume that for each year j there is at least one type of bond i with
maturity mi = j, and there are none with mi > T .

Let xi be the number of bonds of type i purchased, and let zj be the cash
on hand at the beginning of year j for j = 0, . . . , T . Then the dedication
problem is the following LP,

min
(x,z)

z0 +
∑

i

cixi

s.t. zj−1 − zj +
∑

{i:mi≥j}
dixi +

∑

{i:mi=j}
pixi = `j, (j = 1, . . . , T − 1)

zT +
∑

{i:mi=T}
(pi + di)xi = `T .

zj ≥ 0, j = 1, . . . , T

xi ≥ 0, i = 1, . . . , n
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AMPL Model for Dedication (dedication.mod)

• In multi-period models, we have to somehow represent the set of periods.

• Such a set is different from a generic set because it involves ranged data.

• We must somehow do arithmetic with elements of this set in order to
express the model.

• In AMPL, a ranged set can be constructed using the syntax 1..T.

• Both endpoints are included in the range.

• Another important feature of the above model is the use of conditionals
in the limits of the sum.

• Conditionals can be used to choose a subset of the items in a given set
satisfying some condition.
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PuLP Model for Dedication (dedication-PuLP.py)

• We are parsing the AMPL data file with a custom-written function
read data to obtain the data.

• The data is stored in a two-dimensional table (dictionary with tuples as
keys).

• The range operator is used to create ranged sets in Python.

• The upper endpoint is not included in the range and ranges start at 0 by
default (range(3) = [0, 1, 2]).

• The len operator gets the number of elements in a given data structure.

• Python also supports conditions in comprehensions, so the model reads
naturally in Python’s native syntax.

• See also FinancialModels.xlsx:Dedication-PuLP.
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Introduction to Pyomo

• Pyomo further generalizes the basic framework of PuLP.

– Support for nonlinear functions.
– Constraint are defined using Python functions.
– Support for the construction of “true” abstract models.
– Built-in support for reading AMPL-style data files.

• Primary classes

– ConcreteModel, AbstractModel
– Set, Parameter
– Var, Constraint
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Concrete Pyomo Model for Dedication
(dedication-PyomoConcrete.py)

• This model is almost identical to the PuLP model.

• The only substantial difference is the way in which constraints are defined,
using “rules.”

• Indexing is implemented by specifying additional arguments to the rule
functions.

• When the rule function specifies an indexed set of constraints, the indices
are passed through the arguments to the function.

• The model is constructed by looping over the index set, constructing
each associated constraint.

• Note that if the name of a constraint is xxx, the rule function is assumed
to be xxx rule unless otherwise specified.

• Note the use of the Python slice operator to extract a subset of a ranged
set.
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Instantiating and Solving a Pyomo Model

• The easiest way to solve a Pyomo Model is from the command line.

pyomo --solver=cbc --summary dedication-PyomoConcrete.py

• It is instructive, however, to see what is going on under the hood.

– Pyomo explicitly creates an “instance” in a solver-independent form.
– The instance is then translated into a format that can be understood

by the chosen solver.
– After solution, the result is imported back into the instance class.

• We can explicitly invoke these steps in a script.

• This gives a bit more flexibility in post-solution analysis.
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Abstract Pyomo Model for Dedication
(dedication-PyomoAbstract.py)

• In an abstract model, we declare sets and parameters abstractly.

• After declaration, they can be used without instantiation, as in AMPL.

• When creating the instance, we explicitly pass the name of an AMPL-
style data file, which is used to instantiate the concrete model.

instance = model.create(’dedication.dat’)

• See also FinancialModels.xlsx:Dedication-Pyomo.
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Example: Short Term Financing

A company needs to make provisions for the following cash flows over the
coming five months: −150K, −100K, 200K, −200K, 300K.

• The following options for obtaining/using funds are available,

– The company can borrow up to $100K at 1% interest per month,
– The company can issue a 2-month zero-coupon bond yielding 2%

interest over the two months,
– Excess funds can be invested at 0.3% monthly interest.

• How should the company finance these cash flows if no payment
obligations are to remain at the end of the period?
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Example (cont.)

• All investments are risk-free, so there is no stochasticity.

• What are the decision variables?

– xi, the amount drawn from the line of credit in month i,
– yi, the number of bonds issued in month i,
– zi, the amount invested in month i,

• What is the goal?

– To maximize the the cash on hand at the end of the horizon.
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Example (cont.)

The problem can then be modelled as the following linear program:

max
(x,y,z,v)∈R12

f(x, y, z, v) = v

s.t. x1 + y1 − z1 = 150

x2 − 1.01x1 + y2 − z2 + 1.003z1 = 100

x3 − 1.01x2 + y3 − 1.02y1 − z3 + 1.003z2 = −200

x4 − 1.01x3 − 1.02y2 − z4 + 1.003z3 = 200

− 1.01x4 − 1.02y3 − v + 1.003z4 = −300

100− xi ≥ 0 (i = 1, . . . , 4)

xi ≥ 0 (i = 1, . . . , 4)

yi ≥ 0 (i = 1, . . . , 3)

zi ≥ 0 (i = 1, . . . , 4)

v ≥ 0.
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AMPL Model for Short Term Financing
(short term financing.*)

• Note that we’ve created some “dummy” variables for use of bonds and
credit and investment before time zero.

• These are only for convenience to avoid edge cases when expressing the
constraints.

• Again, we see the use of the parameter T to capture the number of
periods.

• See also FinancialModels.xlsx:Short-term-financing-AMPL.
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