
Computational Integer Programming
Universidad de los Andes

Lecture 9

Dr. Ted Ralphs



MIP Lecture 9 1

Reading for This Lecture

• Branch-and-Price: Integer Programming with Column Generation.
Savelsbergh (2001).

• Branch-and-Price: Column Generation for Huge Integer Programs.
Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance (1998).

1



MIP Lecture 9 2

Branch and Price

• Branch and cut is a method for solving integer programs whose LP
relaxations have a HUGE number of potential constraints.

• Branch and price, on the other hand, is a method for dealing with
problems that have a huge number of potential variables.

• The idea is to use column generation to solve the LP relaxations.

• We solve the LP relaxation to optimality with only a subset of the
columns.

• We then ask whether any column that has been left out has negative
reduced cost—if so, that column is added and we reoptimize.

• The problem of determining the column with most negative reduced cost
is an optimization problem.

• Note that this can be seen as cut generation with respect to the dual of
the LP relaxation.

2



MIP Lecture 9 3

Example: The Cutting Stock Problem

• We are selling rolls of paper in specified widths wi, i = 1, . . . , m.

• For each width i, we have a given demand di that must be satisfied.

• There are large rolls from which the smaller rolls are cut with width W .

• We want to minimize the total number of larger rolls we need to use.

• An IP formulation of this problem is

min
n∑

i=1

λi

s.t.
n∑

i=1

λia
i≥ d

λi ≥ 0, i = 1, . . . , n,

λi integer, i = 1, . . . , n

where the columns ai represent the feasible patterns.

3



MIP Lecture 9 4

The Column Generation Subproblem

• The potential columns correspond to feasible patterns.

• A given column vector a corresponds to a feasible pattern if and only if

m∑

i=1

aiwi ≤ W

and a contains only nonnegative integers.

• The objective function coefficient of every pattern (column) is 1.

• Finding the column with the smallest reduced cost is a knapsack problem:

max
m∑

i=1

piai

s.t.
m∑

i=1

wiai≤W

ai≥ 0

ai integer

4



MIP Lecture 9 5

Reformulating Using Dantzig-Wolfe

• Many (most?) problems that can be solved with column generation have
formulations with a much smaller number of variables.

• The cutting stock problem, for example, could be formulated with a
smaller number of variables, but typically is not.

• There are a number of reasons for using column generation in these cases

– In principle, these methods are used primarily to strengthen the LP
relaxation.

– However, they may also be applied when the relaxation of certain
linking constraints allows the problem to decompose into blocks.

– This may then help to eliminate symmetry from the model.
– A final possible reason is simply because solving the subproblem using

a combinatorial algorithm can lead to a more efficient way of solving
the LP relaxation.

• Extended formulations can be generated systematically using the method
of Dantzig-Wolfe decomposition discussed earlier.

5



MIP Lecture 9 6

Example: The Generalized Assignment Problem

• The problem is to assign m tasks to n machines subject to capacity
constraints.

• An IP formulation of this problem is

max
m∑

i=1

n∑

j=1

pijzij

s.t.
n∑

j=1

zij = 1, i = 1, . . . , m,

m∑

i=1

wijzij ≤ dj, j = 1, . . . , n,

zij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n,

6



MIP Lecture 9 7

Reformulating the Generalized Assignment Problem

• Let’s rewrite the GAP using a Dantzig-Wolfe reformulation by relaxing
the the first set of constraints.

• The subproblem then becomes a set of independent knapsack problems.

max
n∑

j=1

m∑

i=1

pij




Kj∑

k=1

λj
ka

j
ik




s.t.
n∑

j=1

Kj∑

k=1

λj
ka

j
ik = 1, i = 1, . . . , m,

Kj∑

k=1

λj
k = 1, j = 1, . . . , n,

λj
k ∈ {0, 1}, j = 1, . . . , n, k = 1, . . . , Kj,

• Note that this a set partitioning problem.

7



MIP Lecture 9 8

Using the Dantzig-Wolfe Reformulation

• We can solve the LP relaxation of this reformulation using column
generation to obtain a bound.

• The column generation subproblem is a set of independent knapsack
problems (easily parallelized).

• Note that if the machines are identical, this collapses down to a single,
much smaller subproblem.

• This corresponds to eliminating the symmetry that was present in the
original problem.

• Embedding this bounding scheme into a branch and bound algorithm,
we get branch and price.

8



MIP Lecture 9 9

Contrast with Branch and Cut

• Beware that the bound obtained by solving the LP relaxation is not a
valid upper bound unless no columns can be generated!

• Note that the same phenomena can occur in branch and cut, but we are
able to stop generating cuts anytime and still have a valid bound.

• It is possible to obtain a “true” upper bound, even when column
generation has not been completed.

• However, this still requires exact solution of the subproblem.

• Generally speaking, most of the general framework of branch and cut
can be transfered to branch and price.

9



MIP Lecture 9 10

Solving the Subproblem

• In practice, we do not need to solve the subproblem to optimality in
every iteration.

• We only need to find some column with negative reduced cost.

• The only time we actually need to solve to optimality is to obtain a valid
bound.

• It is also inefficient to generate just one single column in each iteration.

• As in branch and cut, we generally want to generate a number of columns
that can be added at once.

• This may require adjustment of the solution algorithm.

10



MIP Lecture 9 11

Incomplete Methods

• Branch and price can be easily used as a heuristic method (and often is).

• If we use a heuristic method to generate columns, then the resulting
solution solution will not necessarily be optimal.

• However, such a solution is often good enough.

• In many cases, an exact algorithm for the subproblem simply is not
possible.

• Another heuristic version of the method is to generate columns only in
the root node.

• We call this price and branch.

11



MIP Lecture 9 12

Branching with Dantzig-Wolfe Decomposition

• Unfortunately, branching on the variables of the reformulation doesn’t
work well.

• This is because it’s generally difficult to keep a variable from being
generated again after it’s been fixed to zero.

• Branching must be done in a way that does not destroy the structure of
the column generation subproblem.

• We can do this by branching on the original variables, i.e., before the
reformulation.

• In a 0-1 problem, branching on the jth original variable is equivalent to
fixing the value of some element of the columns to be generated.

• This can usually be incorporated into the column generation subproblem.

• By limiting column generation in this way, we can implement a much
wider array of branching rules.

• We may branch on disjunctions other than variables disjunctions.

12



MIP Lecture 9 13

Convergence and Tailing Off

• In practice, column generation methods are sometimes slow to converge.

• This can be due to instability of the dual solution, among other things.

• After a while, the bound may not change much after adding each new
column.

• At this point, it may be better to branch than to continue to generate
columns.

• Convergence can be accelerated using a number of different stablization
techniques.

13



MIP Lecture 9 14

Branch and Cut and Price

• One of the limitations of branch and price is that the strength of the
bound cannot really be improved arbitrarily as it can in branch and cut.

• In principle, however, it is possible to combine branch and cut with
branch and price to obtain a powerful hybrid class of methods.

• Cut generation can be done in the space of the compact formulation,
while bounding is done in the extended formulation space.

• This leads to a method that retains the advantages of both column and
cut generation.

14



MIP Lecture 9 15

Conclusions

• In this course, we have seen an overview of the basic theory and practice
of integer programming.

• What we have covered here only scratches the surface of what you must
understand in order to implement a real solver.

• In practice, there are many, many more details involved.

• For example, we did not discuss

– Numerical issues
– Projection and lifting
– Primal heuristics

• In practice, these issues are of crucial importance.

• With the knowledge of the tools described here, you should be able to
understand how solvers work.

• In practice, it is often necessary to tweak the parameters of a solver in
order to achieve desired performance for difficult classes of problems.

• This will be the focus of the exercises to come.

• Thanks for your attention!

15


