Computational Integer Programming
Universidad de los Andes

Lecture 8

Dr. Ted Ralphs



MIP Lecture 8 1

Reading for This Lecture

e Wolsey Section 9.6
e Nemhauser and Wolsey Section [1.6
e Martin “Computational Issues for Branch-and-Cut Algorithms” (2001)

e Linderoth and Ralphs “Noncommercial Software for Mixed-Integer Linear
Programming”



MIP Lecture 8 2

Branch and Cut

e Branch and cut is an LP-based branch-and-bound scheme in which the
linear programming relaxations are augmented by valid inequalities.

e The valid inequalities are generated dynamically using separation
procedures.

e We iteratively try to improve the current bound by adding valid
inequalities.

e In practice, branch and cut is the method typically used for solving
difficult mixed-integer linear programs.

e Computational component of branch and cut

— Preprocessing

— Cut generation

— Managing the LP relaxation
— Search strategy

— Branching strategy

— Primal heuristics



MIP Lecture 8

Preprocessing and Probing

e Often, it is possible to simplify a model using logical arguments.

e Most commercial IP solvers have a built-in preprocessor.

e Effective preprocessing can pay large dividends.

o Let the upper and lower bounds on x; be u; and [;.

e The most basic type of preprocessing is calculating implied bounds.
e Let (7, my) be a valid inequality.

o If m; > 0, then

r1 < (mo — Z mily — Z )/ T

J:m; >0 J:m; <0

o If m; <0, then

r1 > (7o — Z il — Z Tjt)/ T

Jimi>0 g <0



MIP Lecture 8 4

Basic Preprocessing

e Again, let (7, my) be any valid inequality for S.

e T[he constraint mx < 7 Is redundant if

Z 7TjUj—|— Z lejgﬂ'o.

Jim; >0 J:m; <0

e S is empty (IP is infeasible) if

Z 7lej—|— Z TiU; > TQ.

J:m; >0 g <0

e For any IP of the form max{cx|Ax < b,l <z < b},xz € Z",

— If a;; > O0Vi € [1..m] and ¢; < 0, then x; = [; in any optimal solution.
— Ifa;; <0Vi € [1..m] and ¢; > 0, then z; = u; in any optimal solution.



MIP Lecture 8 5

Probing for Integer Programs

e It is also possible in many cases to fix variables or generate new valid
inequalities based on logical implications.

e Consider (7, ), a valid inequality for 0-1 integer program.
o If . >0 and m, + ijj@ m; > mp, then we can fix xj, to zero.

e Similarly, if 7z < 0 and ) m; > o, then we can fix x to one.

jimj<0,j#k



MIP Lecture 8 6

Improving Coefficients

e Suppose again that (7, 7o) is a valid inequality for a 0-1 integer program.

e Suppose that 7 > 0 and ) T < .

jimj>0,5#k

o If mp, > 7o — Zj,w'>0 ik Tj: then we can set
>0,

= Mg = T — (M0 — ijj>0,j;ék mj), and
- To ijj>o,j7sk UrE

e Similarly, suppose that 7, < 0 and 7, + ijj>0 ik T < To.

e Then we can again set m « T — (To — T — D0 <052k TJ)
>0,



MIP Lecture 8 7

Bound Improvement by Reduced Cost

e Consider an integer program max{cx | Az < b,0 <z < u}

e Suppose the linear programming relaxation has been solved to optimality
and row zero of the tableau looks like

z=ag+ ) dojzi+ Y doj(z; —uy)

jENB; jEN By
where N By are the nonbasic variables at 0 and N By are the nonbasic
variables at their upper bounds u;.

e |n addition, suppose that a lower bound z on the optimal solution value
for IP is known.

e Then in any optimal solution

apg) — Z
r; < L for y € NB;, and
T; > Uj— [%2—(;;—‘ for j € N Bs.
j



MIP Lecture 8 8

Preprocessing and Probing in Branch and Bound

e In practice, these rules are applied iteratively until none applies.
e Applying one of the rules may cause a new rule to apply.

e Bound improvement by reduced cost can be reapplied whenever a new
bound is computed.

e Furthermore, all rules can be reapplied after branching.

e These techniques can make a very big difference.



MIP Lecture 8

Preprocessing Based on Problem Structure

e Example: Preprocessing Methods in Set Partitioning

— Duplicate columns

— Dominated rows

— Column is a sum of other columns
— Extended row clique

— Singleton row

— Rows differ by two entries



MIP Lecture 8 10

Managing the LP Relaxations

e In practice, the number of inequalities generated can be HUGE.

e \We must be careful to keep the size of the LP relaxations small or we
will sacrifice efficiency.

e This is done in two ways:

— Limiting the number of cuts that are added each iteration.
— Systematically deleting cuts that have become ineffective.

e How do we decide which cuts to add?
e And what do we do with the rest?
e \What is an ineffective cut?

— One whose dual value is (near) zero.
— One whose slack variable is basic.
— One whose slack variable is positive.



MIP Lecture 8 11

Managing the LP Relaxations

e Below is a graphical representation of how the LP relaxation is managed
In practice.

e Newly generated cuts enter a buffer (called the local cut pool).

e Only a small number of the most violated cuts from the buffer are added
each iteration.

e Cuts that prove effective locally are eventually sent to the global pool
for future use.

Locd

Pool
Global
Pool
Cut
Generator




MIP Lecture 8 12

Cut Generation and Management

A significant question in branch and cut is what classes of valid
inequalities to generate and when?

It is generally not a good idea to try all cut generation procedures on
every fractional solution arising.

For generic mixed-integer programs, cut generation is most important in
the root node.

Using cut generation only in the root node yields a procedure called cut
and branch.

Depending on the structure of the instance, different classes of valid
inequalities may be effective.

Sometimes, this can be predicted ahead of time (knapsack inequalities).
In other cases, we have to use past history as a predictor of effectiveness.

Generally, each procedure is only applied at a dynamically determined
frequency.



MIP Lecture 8 13

Cut Sharing

e Note that cuts generated by the C-G procedure are not globally valid,
i.e., at other search tree nodes (why not?).

e Structural cuts generated using problem-specific separation algorithms
are globally valid by definition.

e Sometimes these cuts are difficult to generate and some amount of luck
may be involved in finding “important” ones.

e The advantage of generating globally valid inequalities is that they can
be used later in other search tree nodes.

e This sharing of polyhedral information can help create a much better
approximation of the convex hull of solutions.

e This is done through the use of one or more cut pools.



MIP Lecture 8 14

Cut Pools

e Cut pools can be used to store cuts that have proven effective for later
use.

e The cut pool can be considered as an auxiliary mechanism for performing
separation.

e The solver can check the cut pool periodically to see if it contains any
inequalities that can separate the current LP solution.

e In this way, the cut pool can be thought of as a global database of
polyhedral information that is queried to obtain localized descriptions.

e As already noted, the number of generated cuts can be HUGE, so the
cut pool must be carefully maintained (more on that later).



MIP Lecture 8

15

Managing the Cut Pool

Cut pools can easily grow quite large.
We need to limit their size for two reasons

— Memory
— Efficiency

We limit the size of the cut pool by

— Eliminating duplicates.

— Only allowing in cuts that have already proved effective.

— Purging cuts that are underutilized or irrelevant.

How do we judge which cuts are irrelevant?



MIP Lecture 8 16

Searching the Cut Pool

e Searching the cut pool means locating cuts in the list that are violated
by a given LP solution.

e Computing the violation of each cut with respect to a given solution can
take time.

e We still may not want to search through the entire pool.
e Which cuts do we check?

— Those that have proven the most effective.
— Those that were generated “nearby” in the search tree.

e Another idea for increasing the efficiency of the cut pool is to have
multiple pools servicing different parts of the tree.



MIP Lecture 8

17

Overview of the Bounding Process

\i

Solve current LP relaxation Fathom
v A
Bound test Fathom
\
Feasibility test Fathom
v Branch
Primal heuristics 1
v Compare candidates
Preprocessing 1
v Select candidates
Branch or cut? Branch }
\i
Generate valid inequalities
\i
Cut management
\i
Branch

Branching test




