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Reading for This Lecture

• Nemhauser and Wolsey Sections II.1.1-II.1.3, II.1.6

• Wolsey Chapter 8

• Valid Inequalities for Mixed Integer Linear Programs, G. Cornuejols
(2006)
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Describing conv(S)

• As before, we consider a pure integer program

zIP = max{cx | x ∈ S},
S = {x ∈ Zn

+ | Ax ≤ b}.

• Under our assumptions, conv(S) is a rational polyhedron.

• Thus, in theory, it is possible to generate a complete description of it.

• So why aren’t IPs easy to solve?

– The number of inequalities required is generally HUGE!
– The number of facets of the TSP polytope for an instance with 120

nodes is more than 10100 times the number of atoms in the universe.
– It is physically impossible to write down a description of this polytope.
– Not only that, but it is very difficult in general to generate these facets

(this problem is not in P in general).
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Improving Bounds

• Our discussions of branch and bound have so far focused on the use of
three basic bounding methods.

– LP relaxation
– Lagrangian relaxation
– Dantzig-Wolfe decomposition

• Recall that the bound produced by Lagrangian relaxation and Dantzig-
Wolfe decomposition is

zD = max{cx | A1x ≤ b1, x ∈ conv(SLR)},

which is an improvement over that produced by solving the LP relaxation.

• Producing the bound zD depends on our ability to efficiently optimize
over conv(SLR).

• Can we improve the LP relaxation in some way?
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Cutting Planes

• Recall that the inequality denoted by (π, π0) is valid for a polyhedron P
if πx ≤ π0 ∀x ∈ P.

• The term cutting plane usually refers to an inequality valid for conv(S),
but which is violated by the solution obtained by solving the (current)
LP relaxation.

• Note that this is not a very precise definition and the term is a bit
colloquial, but we will use it anyway.

• Cutting plane methods attempt to improve the bound produced by the LP
relaxation by iteratively adding cutting planes to the initial LP relaxation.

• Adding such inequalities to the LP relaxation may improve the bound
(this is not a guarantee).
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The Separation Problem

• Methods for generating cutting planes dynamically attempt to solve a
separation problem.

• The separation problem can itself be formulated as an optimization
problem in a number of ways.

• Most commonly, we wish to generate the valid inequality that is most
violated.

• This problem is equivalent (in a complexity sense) to the optimization
problem over the same convex set. optimization and separation, we could

• Hence, we could in principle use a cutting plane method as a third
alternative to produce the bound zD.
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Methods for Generating Cutting Planes

• In most cases, the separation problems that arise cannot be solved
exactly, so we either

– solve the separation problem heuristically, or
– solve the separation problem exactly, but for a relaxation.

• The template paradigm for separation consists of restricting the class of
inequalities considered to just those with a specific form.

• This is equivalent, in some sense, to solving the separation problem for
a relaxation.

• Separation algorithms can generally be divided into two classes

– Algorithms that do not assume any specific structure.
– Algorithms that only work in the presence of specific structure.
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Generating Cutting Planes: Two Viewpoints

• There are a number of different points of view from which one can derive
the standard methods used to generate cutting planes for general MILPs.

• As we have seen before, there is an algebraic point of view and a
geometric point of view.

• Algebraic:

– Take combinations of the known valid inequalities.
– Use rounding to produce stronger ones.

• Geometric:

– Use a disjunction (as in branching) to generate several disjoint
polyhedra whose union contains S.

– Generate inequalities valid for the convex hull of this union.

• Although these seem like very different points of view, they turn out to
be roughly equivalent.
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Generating Valid Inequalities: Algebraic Viewpoint

• Consider the feasible region of the LP relaxation P = {x ∈ Rn
+ | Ax ≤ b}.

• Valid inequalities for P can be obtained by taking nonnegative linear
combinations of the rows of (A, b).

• Except for one pathological case1, all valid inequalities for P are either
equivalent to or dominated by an inequality of the form

uAx ≤ ub, u ∈ Rm
+ .

• To avoid the pathological case, we may assume that A contains explicit
upper bounds on the variables.

1The pathological case occurs when one or more variables have no explicit upper bound and both the
primal and dual problems are infeasible.
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Generating Valid Inequalities for conv(S)

• All inequalities valid for P are also valid for conv(S), but they are not
cutting planes.

• We can do better.

• We need the following simple principle: if a ≤ b and a is an integer, then
a ≤ bbc.

• Believe it or not, this simple fact is all we need to generate all valid
inequalities for conv(S)!
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The Perfect Matching Problem
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Consider the perfect matching problem.

min
∑

e={i,j}∈E

cexe

s.t.
∑

{j|{i,j}∈E}
xij = 1, ∀i ∈ N

xe ∈ {0, 1}, ∀e = {i, j} ∈ E.

10



MIP Lecture 6 11

The Odd Cut Inequalities

• Each odd cutset induces a possible valid inequality.

∑

e∈δ(S)

xe ≥ 1, S ⊂ N, |S| odd.

• Let’s derive these another way.

– Consider an odd set of nodes U .
– Sum the constraints

∑
{j|{i,j}∈E} xij = 1 for i ∈ U .

– Relaxing to inequality, we get 2
∑

e∈E(U) xe +
∑

e∈δ(u) xe ≤ |U |.
– Dividing through by 2, we obtain

∑
e∈E(U) xe + 1

2

∑
e∈δ(u) xe ≤ 1

2|U |.
– We can drop the second term of the sum to obtain

∑

e∈E(U)

xe ≤ 1
2
|U |.

– What’s the last step?
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The Chvátal-Gomory Procedure

• Let A = (a1, a2, . . . , an) and N = {1, . . . , n}.
1. Choose a weight vector u ≥ 0.
2. Obtain the valid inequality

∑
j∈N(uaj)x ≤ ub.

3. Round the coefficients down to obtain
∑

j∈N(buajc)x ≤ ub. Why
can we do this?

4. Finally, round the right hand side down to obtain the valid inequality

∑

j∈N

(buajc)x ≤ bubc

• This procedure is called the Chvátal-Gomory rounding procedure, or
simply the C-G procedure.

• Surprisingly, any inequality valid for conv(S) can be produced by a finite
number of iterations of this procedure!
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Assessing the Procedure

• Although it is theoretically possible to generate any valid inequality using
the C-G procedure, it is far from ideal.

• Depending on the weights chosen, we may not even obtain a supporting
hyperplane.

• This is is because we can only push the inequality in until it meets some
point in Zn, which may or may not also be in S.

• In fact, the procedure may not even generate a hyperplane that includes
an integer point!

• The coefficients of the generated inequality must be relatively prime to
ensure the generated hyperplane includes an integer point.

Proposition 1. Let S = {x ∈ Zn | ∑
j∈N ajxj ≤ b}, where aj ∈ Z

for j ∈ N , and let k = gcd{a1, . . . , an}. Then conv(S) = {x ∈
Rn | ∑

j∈N(aj/k)xj ≤ bb/kc}.
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Generating All Valid Inequalities

• Any valid inequality that can be obtained through iterative application
of the C-G procedure is a C-G inequality.

• For pure integer programs, all valid inequalities are C-G inequalities.

Theorem 1. Let (π, π0) ∈ Zn+1 be a valid inequality for S = {x ∈
Zn

+ | Ax ≤ b} 6= ∅. Then (π, π0) is a C-G inequality for S.

• The number of applications of the C-G procedure necessary to obtain a
given valid inequality is called its C-G rank, denoted r(π, π0).

• The C-G rank of a polyhedron is the number of applications of the C-G
procedure necessary to obtain conv(S).

• The rank of a polyhedron, denoted ρ(P), is equal to the maximum of
the ranks of its facets.

• For pure integer programs, the rank is always finite.
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The Gomory Cut

• Let’s consider S, the set of solutions to an IP with one equation:

S =



x ∈ Zn

+ |
n∑

j=1

ajxj = a0





• For each j, let fj = aj − bajc. Then equivalently

S =



x ∈ Zn

+ |
n∑

j=1

fjxj = f0 + k for some integer k





• Since
∑n

j=1 fjxj ≥ 0 and f0 < 1, then k ≥ 0 and so

n∑

j=1

fjxj ≥ f0

is a valid inequality for S called a Gomory cut.
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The Gomory Cut (cont)

• The importance of Gomory cutting planes is that they can be derived
from the tableau while solving an LP relaxation.

• Consider the set S = {x ∈ Zn+m
+ | (A, I)x = b} where A has integral

coefficients.

• Derive a new valid equation by combining the equations in the
representation with weight vector λ to obtain

n∑

j=1

(λAj)xj +
m∑

i=1

λixn+i = λb,

where Aj is the jth column of A.

• Applying the previous procedure, we can obtain the valid inequality

n∑

j=1

(λAj − bλAjc)xk +
m∑

i=1

(λi − bλic)xn+i ≥ b̄− bb̄c.

• Note that this is really just a C-G inequality with weights ui = λi−bλic.
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Deriving Valid Inequalities from the Tableau

• Note that each row of the tableau is a nonnegative linear combination of
the original equations.

• Suppose we choose a row in which the value of the basic variable is not
an integer.

• Applying the procedure from the last slide, the resulting inequality will
only involve nonbasic variables and will be of the form

∑

j∈NB

fjxj ≥ f0

where 0 ≤ fj < 1 and 0 < f0 < 1.

• We can conclude that the generated inequality will be violated by the
current LP solution.

• Under mild assumptions on the algorithm used to solve the LP, this yields
a finite algorithm for solving pure integer programs.

• However, its convergence can be very slow.
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Valid Inequalities from Disjunctions

• Valid inequalities for conv(S) can also be generated based on disjunctions.

• In fact, in some sense, all valid inequalities arise from some sort of logical
disjunction.

• In this way, branch and cutting are two different methods of exploiting a
given disjunction.

• We will not have time to delve into the details of the tradeoffs between
the two, but it is a topic of current research.

• Let Pi = {x ∈ Rn
+ | Aix ≤ bi} for i = 1, . . . , k be such that S ⊆ ∪k

i=1Pi.

• Then inequalities valid for ∪k
i=1Pi are also valid for conv(S).
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Valid Inequalities for the Union of Polyhedra

Valid inequalities based on disjunctions can be derived from the following
straightforward result:

Proposition 2. If
∑n

j=1 π1
j ≤ π1

0 is valid for S1 ⊆ Rn
+ and

∑n
j=1 π2

j ≤ π2
0

is valid for S2 ⊆ Rn
+, then

n∑

j=1

min(π1
j , π

2
j )x ≤ max(π1

0, π
1
0)

for x ∈ S1 ∪ S2.

In fact, all valid inequalities for the union of two polyhedra can be obtained
in this way.

Proposition 3. If Pi = {x ∈ Rn
+ | Aix ≤ bi} for i = 1, 2 are nonempty

polyhedra, then (π, π0) is a valid inequality for conv(P1 ∪ P2) if and only
if there exist u1, u2 ∈ Rm such π ≤ uiAi and π0 ≥ uibi for i = 1, 2.
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Strengthening Gomory Cuts Using Disjunction

• Consider again the set of solutions to an IP with one equation.

• This time, we write S equivalently as

S =



x ∈ Zn

+ |
∑

j:fj≤f0

fjxj +
∑

j:fj>f0

(fj − 1)xj = f0 + k for some integer k





• Since k ≤ −1 or k ≥ 0, we have the disjunction

∑

j:fj≤f0

fj

f0
xj −

∑

j:fj>f0

(1− fj)
f0

xj ≥ 1

OR

−
∑

j:fj≤f0

fj

(1− f0)
xj +

∑

j:fj>f0

(1− fj)
(1− f0)

xj ≥ 1
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The Gomory Mixed Integer Cut

• Applying Proposition 2, we get

∑

j:fj≤f0

fj

f0
xj +

∑

j:fj>f0

(1− fj)
(1− f0)

xj ≥ 1

• This is called a Gomory mixed integer (GMI) cut.

• GMI cuts dominate the associated Gomory cut in general and can also
be obtained easily from the tableau.

• In the case of the mixed integer set

S =



x ∈ Zp

+ × Rn−p
+ |

p∑

j=1

ajxj +
n∑

j=p+1

gjxj = a0



 ,

the GMI cut is

∑

j:fj≤f0

fj

f0
xj +

∑

j:fj>f0

(1− fj)
(1− f0)

xj +
∑

j:gj>0

gj

f0
xj −

∑

j:gj<0

gj

(1− f0)
xj ≥ 1
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Example

Consider the following two variable IP.

min 20000x1 + 15000x2

s.t. 0.3x1 + 0.4x2≥ 2.0

0.4x1 + 0.2x2≥ 1.5

0.2x1 + 0.3x2≥ 0.5

0 ≤ x1≤ 9

0 ≤ x2≤ 6

x1, x2 ∈ Z

The optimal solution to the LP relaxation is (2, 3.5).
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Example (cont.)

• The two rows of the optimal tableau corresponding to the solution
(2, 3.5) that correspond to binding constraints are

x1 − 4s1 + 2s2 = 2.0x2 + 3s1 − 4s2 = 3.5 (1)

• Note that these rows are combinations of the rows corresponding to the
two binding constraints from the formulation (in standard form).

• The GMI cut resulting from row 2 is

6s1 + 8s2 ≥ 1

• In terms of the original variables, this is

12x1 + 11x2 ≥ 65

• This is violated by the solution (2, 3.5).
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Lift and Project

• Let’s now consider S = P ∩ Bn and assume that the inequalities x ≤ 1
are included among those in Ax ≤ b.

• Note that conv(S) ⊆ conv(P0
j ∪P1

j ) where P0
j = P ∩{x ∈ Rn | xj = 0}

and P1
j = P ∩ {x ∈ Rn | xj = 1} for some j ∈ {1, . . . , n}.

• Applying Proposition 3, we see that the inequality (π, π0) is valid for
Pj = conv(P0

j ∪ P1
j ) if there exists ui ∈ Rm

+ , and vi ∈ R+ for i = 0, 1
such that

π ≤ u0A + v0ej,

π ≤ u1A− v1ej,

π0 ≥ u0b,

π0 ≥ u1b− v1,

• Notice that this is a set of linear constraints, i.e., we could write a linear
program to generate constraints based on this disjunction.
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The Cut Generating LP

• This leads to the cut generating LP (CGLP), which generates the most
violated inequality valid for Pj.

min πx̂− π0

subject to π ≤ u0A + v0ej,

π ≤ u1A− v1ej,

π0 ≥ u0b,

π0 ≥ u1b− v1,
m∑

i=1

u0
i + v0 +

m∑

i=1

u1
i + v1 = 1

u0, u1, v0, v1 ≥ 0

• The last constraint is just for normalization.

• This shows that the separation problem for Pj is polynomially solvable.
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Gomory Cuts vs. Lift-and-Project Cuts

• Note that all Gomory cuts are lift-and-project cuts.

• In fact, there is a direct correspondence between basic feasible solutions
of the CGLP and basic (possibly infeasible) solutions of the usual LP
relaxation.

• By pivoting in the LP relaxation, we can implicitly solve the cut generating
LP (see Balas and Perregaard).

• Thus, the procedure for generating lift-and-project cuts is almost exactly
the same as that for generating Gomory cuts.
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Valid Inequalities for the Traveling Salesman Problem

• Consider a complete graph G = (V, E).

• A tour in this graph is a cycle containing all nodes, i.e., a set of edges
inducing a connected subgraph where the degree of every node is 2.

• Let S be the set of all incidence vectors of tours.

• Let T ⊃ S be defined by

T = {x ∈ Bn | x ≤ x′ for some x′ ∈ S}

• We are interested in T because conv(T ) is full-dimensional and therefore
easier to analyze.

• The dimension of conv(S), on the other hand, is |E| − |V | (proving this
is nontrivial).

• All inequalities valid for T are also valid for S.
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Trivial Inequalities of the TSP Polytope

• It is easy to show that the upper and lower bound constraints are facets
of conv(T ).

• In fact, they are also facets of conv(S) for all graphs with |V | ≥ 5.

• The degree constraints
∑

e∈δ({v}) xe = 2 are valid for conv(S).

• The inequalities
∑

e∈δ({v}) xe ≤ 2 are facets of conv(T ).

• How do we separate these inequalities?
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The Subtour Elimination Constraints

• The constraints
∑

e∈E(W ) xe ≤ |W |−1 are called the subtour elimination
constraints.

• These constraints eliminate integer solutions with cycles that do not
include all of the nodes.

• The subtour elimination constraints are facet-defining for conv(S) if
m ≥ 4 for all W with 2 ≤ |W | ≤ bm/2c.

• How can we formulate the problem of generating a most violated subtour
elimination constraints with respect to x̂ ∈ Rn?
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The 2-matching Inequalities

• Even for small examples, the set of inequalities we have discussed so far
do not describe the convex hull of integer solutions.

• Let H be any subset of the nodes with 3 ≤ |H| ≤ |V | − 1.

• Let Ê ⊂ (H, V \ H) be an odd set of disjoint edges crossing the cut
defined by H.

• By combining the degree constraints for the nodes in H and the
nonnegativity constraints for the edges in Ê, we get the 2-matching
inequalities.

∑

e∈E(H)

xe +
∑

e∈Ê

xe ≤ |H|+
⌊
|Ê|
2

⌋
.

• These are similar to the odd set inequalities for the perfect matching
problem.

• Combining these inequalities with the degree constraints yields a complete
description of the matching polytope.
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Generalizing the 2-matching Inequalities

• The 2-matching inequalities can be restated as

∑

e∈E(H)

xe +
k∑

i=1

∑

e∈E(Wi)

xe ≤ |H|+
k∑

i=1

(|Wi| − 1)− k + 1
2

.

• To get a 2-matching inequality, we can simply take the sets Wi to be the
endpoints of the edges in Ê.

• This inequality remains valid even if the sets Wi contain more than two
points.

• Each set must contain at least one node in H and one node note in H
and the sets must all be disjoint.

• These inequalities are called the comb inequalities and are also rank 1
C-G inequalities.

• The sets Wi are called the teeth and the set H is called the handle.
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Higher Rank C-G Inequalities

• We can further generalize the comb inequalities by constructing combs
whose teeth are themselves combs.

• These generalized comb inequalities are obtained by combining the degree
constraints, nonnegativity constraints, subtour elimination constraints,
and comb inequalities.

• In fact, the generalized comb inequalities turn out to be facet-defining
for conv(S).

• By allowing the vertices of the comb to be cliques, we get the facet-
defining clique-tree inequalities.

• Additional known classes of facet-defining inequalities.

– Path Inequalities
– Wheelbarrows
– Bicycles
– Ladders
– Crowns
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More Inequalities

• The inequalities we have discussed so far are still not enough to define
the convex hull of solutions.

• There are small graphs for which these inequalities are not enough.

• Because the TSP is NP-hard, it is unlikely that the TSP polytope has
bounded rank, so it is likely that many more facets exist.

• Computationally, knowledge of just this set of inequalities has been
enough to solve very large examples, however.

• The largest TSP solved to date is 24978 cities.

• This is an integer program with on the order of half a billion variables.

• Of course, it took 85 years (yes, years!) of CPU time to solve ;).
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Separation Procedures

• An exact separation procedure for a class of inequalities is an algorithm
that is guaranteed to return an inequality of that class violated by a
given point if one exists.

• A heuristic separation procedure is a procedure that may or may not
return a violated inequality of a given class.

• The subtour elimination constraints and the 2-matching inequalities are
the only classes for which we have polynomial time exact separation
procedures.

• However, powerful heuristics are known for many classes.

• These heuristics can take a long time to run.
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