Computational Integer Programming Universidad de los Andes

Lecture 6

Dr. Ted Ralphs

Reading for This Lecture

- Nemhauser and Wolsey Sections II.1.1-II.1.3, II.1.6
- Wolsey Chapter 8
- Valid Inequalities for Mixed Integer Linear Programs, G. Cornuejols (2006)

Describing $\mathbf{conv}(S)$

As before, we consider a pure integer program

```
z_{IP} = \max\{cx \mid x \in S\},
S = \{x \in \mathbb{Z}_+^n \mid Ax \le b\}.
```

- Under our assumptions, conv(S) is a rational polyhedron.
- Thus, in theory, it is possible to generate a complete description of it.
- So why aren't IPs easy to solve?
 - The number of inequalities required is generally HUGE!
 - The number of facets of the TSP polytope for an instance with 120 nodes is more than 10^{100} times the number of atoms in the universe.
 - It is physically impossible to write down a description of this polytope.
 - Not only that, but it is very difficult in general to generate these facets (this problem is not in \mathcal{P} in general).

Improving Bounds

 Our discussions of branch and bound have so far focused on the use of three basic bounding methods.

- LP relaxation
- Lagrangian relaxation
- Dantzig-Wolfe decomposition
- Recall that the bound produced by Lagrangian relaxation and Dantzig-Wolfe decomposition is

$$z_D = \max\{cx \mid A^1 x \le b^1, x \in \text{conv}(S_{LR})\},\$$

which is an improvement over that produced by solving the LP relaxation.

- Producing the bound z_D depends on our ability to efficiently optimize over $\operatorname{conv}(S_{LR})$.
- Can we improve the LP relaxation in some way?

Cutting Planes

- Recall that the inequality denoted by (π, π_0) is *valid* for a polyhedron \mathcal{P} if $\pi x \leq \pi_0 \ \forall x \in \mathcal{P}$.
- The term *cutting plane* usually refers to an inequality valid for conv(S), but which is violated by the solution obtained by solving the (current) LP relaxation.
- Note that this is not a very precise definition and the term is a bit colloquial, but we will use it anyway.
- Cutting plane methods attempt to improve the bound produced by the LP relaxation by iteratively adding cutting planes to the initial LP relaxation.
- Adding such inequalities to the LP relaxation may improve the bound (this is not a guarantee).

The Separation Problem

- Methods for generating cutting planes dynamically attempt to solve a *separation problem*.
- The separation problem can itself be formulated as an optimization problem in a number of ways.
- Most commonly, we wish to generate the valid inequality that is most violated.
- This problem is equivalent (in a complexity sense) to the optimization problem over the same convex set. optimization and separation, we could
- Hence, we could in principle use a cutting plane method as a third alternative to produce the bound z_D .

Methods for Generating Cutting Planes

- In most cases, the separation problems that arise cannot be solved exactly, so we either
 - solve the separation problem heuristically, or
 - solve the separation problem exactly, but for a relaxation.
- The *template paradigm* for separation consists of restricting the class of inequalities considered to just those with a specific form.
- This is equivalent, in some sense, to solving the separation problem for a relaxation.
- Separation algorithms can generally be divided into two classes
 - Algorithms that do not assume any specific structure.
 - Algorithms that only work in the presence of specific structure.

Generating Cutting Planes: Two Viewpoints

• There are a number of different points of view from which one can derive the standard methods used to generate cutting planes for general MILPs.

• As we have seen before, there is an *algebraic* point of view and a *geometric* point of view.

• Algebraic:

- Take combinations of the known valid inequalities.
- Use rounding to produce stronger ones.

• Geometric:

- Use a disjunction (as in branching) to generate several disjoint polyhedra whose union contains S.
- Generate inequalities valid for the convex hull of this union.
- Although these seem like very different points of view, they turn out to be roughly equivalent.

Generating Valid Inequalities: Algebraic Viewpoint

- Consider the feasible region of the LP relaxation $\mathcal{P} = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$.
- Valid inequalities for \mathcal{P} can be obtained by taking nonnegative linear combinations of the rows of (A, b).
- Except for one pathological case¹, all valid inequalities for \mathcal{P} are either equivalent to or dominated by an inequality of the form

$$uAx \le ub, u \in \mathbb{R}^m_+.$$

ullet To avoid the pathological case, we may assume that A contains explicit upper bounds on the variables.

¹The pathological case occurs when one or more variables have no explicit upper bound *and* both the

Generating Valid Inequalities for conv(S)

- All inequalities valid for \mathcal{P} are also valid for $\mathrm{conv}(S)$, but they are not cutting planes.
- We can do better.
- We need the following simple principle: if $a \le b$ and a is an integer, then $a \le \lfloor b \rfloor$.
- Believe it or not, this simple fact is all we need to generate all valid inequalities for conv(S)!

The Perfect Matching Problem

Consider the perfect matching problem.

$$\min \sum_{e=\{i,j\} \in E} c_e x_e
s.t. \sum_{\{j | \{i,j\} \in E\}} x_{ij} = 1, \ \forall i \in N
x_e \in \{0,1\}, \ \forall e = \{i,j\} \in E.$$

The Odd Cut Inequalities

Each odd cutset induces a possible valid inequality.

$$\sum_{e \in \delta(S)} x_e \ge 1, S \subset N, |S| \text{ odd.}$$

- Let's derive these another way.
 - Consider an odd set of nodes U.
 - Sum the constraints $\sum_{\{i|\{i,j\}\in E\}} x_{ij} = 1$ for $i\in U$.
 - Relaxing to inequality, we get $2\sum_{e\in E(U)}x_e+\sum_{e\in\delta(u)}x_e\leq |U|$.
 - Dividing through by 2, we obtain $\sum_{e \in E(U)} x_e + \frac{1}{2} \sum_{e \in \delta(u)} x_e \leq \frac{1}{2} |U|$.
 - We can drop the second term of the sum to obtain

$$\sum_{e \in E(U)} x_e \le \frac{1}{2} |U|.$$

– What's the last step?

The Chvátal-Gomory Procedure

- Let $A = (a_1, a_2, \dots, a_n)$ and $N = \{1, \dots, n\}$.
 - 1. Choose a weight vector $u \geq 0$.
 - 2. Obtain the valid inequality $\sum_{j \in N} (ua_j)x \leq ub$.
 - 3. Round the coefficients down to obtain $\sum_{j \in N} (\lfloor ua_j \rfloor) x \leq ub$. Why can we do this?
 - 4. Finally, round the right hand side down to obtain the valid inequality

$$\sum_{j \in N} (\lfloor ua_j \rfloor) x \le \lfloor ub \rfloor$$

- This procedure is called the *Chvátal-Gomory* rounding procedure, or simply the *C-G procedure*.
- Surprisingly, any inequality valid for conv(S) can be produced by a finite number of iterations of this procedure!

Assessing the Procedure

- Although it is theoretically possible to generate any valid inequality using the C-G procedure, it is far from ideal.
- Depending on the weights chosen, we may not even obtain a supporting hyperplane.
- This is is because we can only push the inequality in until it meets some point in \mathbb{Z}^n , which may or may not also be in S.
- In fact, the procedure may not even generate a hyperplane that includes an integer point!
- The coefficients of the generated inequality must be relatively prime to ensure the generated hyperplane includes an integer point.
 - **Proposition 1.** Let $S = \{x \in \mathbb{Z}^n \mid \sum_{j \in N} a_j x_j \leq b\}$, where $a_j \in \mathbb{Z}$ for $j \in N$, and let $k = \gcd\{a_1, \ldots, a_n\}$. Then $\operatorname{conv}(S) = \{x \in \mathbb{R}^n \mid \sum_{j \in N} (a_j/k) x_j \leq \lfloor b/k \rfloor \}$.

Generating All Valid Inequalities

- Any valid inequality that can be obtained through iterative application of the C-G procedure is a C-G inequality.
- For pure integer programs, all valid inequalities are C-G inequalities.

Theorem 1. Let $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$ be a valid inequality for $S = \{x \in \mathbb{Z}_+^n \mid Ax \leq b\} \neq \emptyset$. Then (π, π_0) is a C-G inequality for S.

- The number of applications of the C-G procedure necessary to obtain a given valid inequality is called its C-G rank, denoted $r(\pi, \pi_0)$.
- The C-G rank of a polyhedron is the number of applications of the C-G procedure necessary to obtain conv(S).
- The rank of a polyhedron, denoted $\rho(\mathcal{P})$, is equal to the maximum of the ranks of its facets.
- For pure integer programs, the rank is always finite.

The Gomory Cut

• Let's consider S, the set of solutions to an IP with one equation:

$$S = \left\{ x \in \mathbb{Z}_{+}^{n} \mid \sum_{j=1}^{n} a_{j} x_{j} = a_{0} \right\}$$

• For each j, let $f_j = a_j - \lfloor a_j \rfloor$. Then equivalently

$$S = \left\{ x \in \mathbb{Z}_+^n \mid \sum_{j=1}^n f_j x_j = f_0 + k \text{ for some integer } k \right\}$$

• Since $\sum_{j=1}^{n} f_j x_j \geq 0$ and $f_0 < 1$, then $k \geq 0$ and so

$$\sum_{j=1}^{n} f_j x_j \ge f_0$$

is a valid inequality for S called a Gomory cut.

The Gomory Cut (cont)

- The importance of Gomory cutting planes is that they can be derived from the tableau while solving an LP relaxation.
- Consider the set $S = \{x \in \mathbb{Z}_+^{n+m} \mid (A,I)x = b\}$ where A has integral coefficients.
- ullet Derive a new valid equation by combining the equations in the representation with weight vector λ to obtain

$$\sum_{j=1}^{n} (\lambda A_j) x_j + \sum_{i=1}^{m} \lambda_i x_{n+i} = \lambda b,$$

where A_j is the j^{th} column of A.

Applying the previous procedure, we can obtain the valid inequality

$$\sum_{j=1}^{n} (\lambda A_j - \lfloor \lambda A_j \rfloor) x_k + \sum_{i=1}^{m} (\lambda_i - \lfloor \lambda_i \rfloor) x_{n+i} \ge \overline{b} - \lfloor \overline{b} \rfloor.$$

• Note that this is really just a C-G inequality with weights $u_i = \lambda_i - \lfloor \lambda_i \rfloor$.

Deriving Valid Inequalities from the Tableau

- Note that each row of the tableau is a nonnegative linear combination of the original equations.
- Suppose we choose a row in which the value of the basic variable is not an integer.
- Applying the procedure from the last slide, the resulting inequality will only involve nonbasic variables and will be of the form

$$\sum_{j \in NB} f_j x_j \ge f_0$$

where $0 \le f_i < 1$ and $0 < f_0 < 1$.

- We can conclude that the generated inequality will be violated by the current LP solution.
- Under mild assumptions on the algorithm used to solve the LP, this yields a finite algorithm for solving pure integer programs.
- However, its convergence can be very slow.

Valid Inequalities from Disjunctions

- Valid inequalities for conv(S) can also be generated based on disjunctions.
- In fact, in some sense, all valid inequalities arise from some sort of logical disjunction.
- In this way, branch and cutting are two different methods of exploiting a given disjunction.
- We will not have time to delve into the details of the tradeoffs between the two, but it is a topic of current research.
- Let $\mathcal{P}_i = \{x \in \mathbb{R}^n_+ \mid A^i x \leq b^i\}$ for $i = 1, \dots, k$ be such that $S \subseteq \bigcup_{i=1}^k \mathcal{P}_i$.
- Then inequalities valid for $\bigcup_{i=1}^k \mathcal{P}_i$ are also valid for $\operatorname{conv}(S)$.

Valid Inequalities for the Union of Polyhedra

Valid inequalities based on disjunctions can be derived from the following straightforward result:

Proposition 2. If $\sum_{j=1}^n \pi_j^1 \le \pi_0^1$ is valid for $S_1 \subseteq \mathbb{R}_+^n$ and $\sum_{j=1}^n \pi_j^2 \le \pi_0^2$ is valid for $S_2 \subseteq \mathbb{R}_+^n$, then

$$\sum_{j=1}^{n} \min(\pi_j^1, \pi_j^2) x \le \max(\pi_0^1, \pi_0^1)$$

for $x \in S_1 \cup S_2$.

In fact, all valid inequalities for the union of two polyhedra can be obtained in this way.

Proposition 3. If $\mathcal{P}^i = \{x \in \mathbb{R}^n_+ \mid A^i x \leq b^i\}$ for i = 1, 2 are nonempty polyhedra, then (π, π_0) is a valid inequality for $conv(\mathcal{P}^1 \cup \mathcal{P}^2)$ if and only if there exist $u^1, u^2 \in \mathbb{R}^m$ such $\pi \leq u^i A^i$ and $\pi_0 \geq u^i b^i$ for i = 1, 2.

Strengthening Gomory Cuts Using Disjunction

- Consider again the set of solutions to an IP with one equation.
- ullet This time, we write S equivalently as

$$S = \left\{ x \in \mathbb{Z}_+^n \mid \sum_{j: f_j \le f_0} f_j x_j + \sum_{j: f_j > f_0} (f_j - 1) x_j = f_0 + k \text{ for some integer k} \right\}$$

• Since $k \leq -1$ or $k \geq 0$, we have the disjunction

$$\sum_{j:f_j \le f_0} \frac{f_j}{f_0} x_j - \sum_{j:f_j > f_0} \frac{(1 - f_j)}{f_0} x_j \ge 1$$

OR
$$-\sum_{j:f_{i} \leq f_{0}} \frac{f_{j}}{(1-f_{0})} x_{j} + \sum_{j:f_{i} \geq f_{0}} \frac{(1-f_{j})}{(1-f_{0})} x_{j} \geq 1$$

The Gomory Mixed Integer Cut

Applying Proposition 2, we get

$$\sum_{j:f_j \le f_0} \frac{f_j}{f_0} x_j + \sum_{j:f_j > f_0} \frac{(1 - f_j)}{(1 - f_0)} x_j \ge 1$$

- This is called a *Gomory mixed integer* (GMI) cut.
- GMI cuts dominate the associated Gomory cut in general and can also be obtained easily from the tableau.
- In the case of the mixed integer set

$$S = \left\{ x \in \mathbb{Z}_+^p \times \mathbb{R}_+^{n-p} \mid \sum_{j=1}^p a_j x_j + \sum_{j=p+1}^n g_j x_j = a_0 \right\},\,$$

the GMI cut is

$$\sum_{j:f_j \le f_0} \frac{f_j}{f_0} x_j + \sum_{j:f_j > f_0} \frac{(1 - f_j)}{(1 - f_0)} x_j + \sum_{j:g_j > 0} \frac{g_j}{f_0} x_j - \sum_{j:g_j < 0} \frac{g_j}{(1 - f_0)} x_j \ge 1$$

Example

Consider the following two variable IP.

min
$$20000x_1 + 15000x_2$$

s.t. $0.3x_1 + 0.4x_2 \ge 2.0$
 $0.4x_1 + 0.2x_2 \ge 1.5$
 $0.2x_1 + 0.3x_2 \ge 0.5$
 $0 \le x_1 \le 9$
 $0 \le x_2 \le 6$
 $x_1, x_2 \in \mathbb{Z}$

The optimal solution to the LP relaxation is (2, 3.5).

Example (cont.)

• The two rows of the optimal tableau corresponding to the solution (2,3.5) that correspond to binding constraints are

$$x_1 - 4s_1 + 2s_2 = 2.0x_2 + 3s_1 - 4s_2 = 3.5 \tag{1}$$

- Note that these rows are combinations of the rows corresponding to the two binding constraints from the formulation (in standard form).
- The GMI cut resulting from row 2 is

$$6s_1 + 8s_2 \ge 1$$

In terms of the original variables, this is

$$12x_1 + 11x_2 \ge 65$$

• This is violated by the solution (2,3.5).

Lift and Project

- Let's now consider $S = \mathcal{P} \cap \mathbb{B}^n$ and assume that the inequalities $x \leq 1$ are included among those in $Ax \leq b$.
- Note that $conv(S) \subseteq conv(\mathcal{P}_{j}^{0} \cup \mathcal{P}_{j}^{1})$ where $\mathcal{P}_{j}^{0} = \mathcal{P} \cap \{x \in \mathbb{R}^{n} \mid x_{j} = 0\}$ and $\mathcal{P}_{j}^{1} = \mathcal{P} \cap \{x \in \mathbb{R}^{n} \mid x_{j} = 1\}$ for some $j \in \{1, \ldots, n\}$.
- Applying Proposition 3, we see that the inequality (π, π_0) is valid for $\mathcal{P}_j = conv(\mathcal{P}_j^0 \cup \mathcal{P}_j^1)$ if there exists $u^i \in \mathbb{R}_+^m$, and $v^i \in \mathbb{R}_+$ for i = 0, 1 such that

$$\pi \leq u^{0}A + v^{0}e_{j},$$
 $\pi \leq u^{1}A - v^{1}e_{j},$
 $\pi^{0} \geq u^{0}b,$
 $\pi^{0} \geq u^{1}b - v^{1},$

 Notice that this is a set of linear constraints, i.e., we could write a linear program to generate constraints based on this disjunction.

The Cut Generating LP

• This leads to the cut generating LP (CGLP), which generates the most violated inequality valid for \mathcal{P}_j .

subject to
$$\pi \leq u^0A + v^0e_j,$$

$$\pi \leq u^1A - v^1e_j,$$

$$\pi^0 \geq u^0b,$$

$$\pi^0 \geq u^1b - v^1,$$

$$\sum_{i=1}^m u_i^0 + v^0 + \sum_{i=1}^m u_i^1 + v^1 = 1$$

$$u^0, u^1, v^0, v^1 \geq 0$$

- The last constraint is just for normalization.
- This shows that the separation problem for \mathcal{P}_j is polynomially solvable.

Gomory Cuts vs. Lift-and-Project Cuts

- Note that all Gomory cuts are lift-and-project cuts.
- In fact, there is a direct correspondence between basic feasible solutions of the CGLP and basic (possibly infeasible) solutions of the usual LP relaxation.
- By pivoting in the LP relaxation, we can implicitly solve the cut generating LP (see Balas and Perregaard).
- Thus, the procedure for generating lift-and-project cuts is almost exactly the same as that for generating Gomory cuts.

Valid Inequalities for the Traveling Salesman Problem

- Consider a complete graph G = (V, E).
- A *tour* in this graph is a cycle containing all nodes, i.e., a set of edges inducing a connected subgraph where the degree of every node is 2.
- Let S be the set of all incidence vectors of tours.
- Let $T \supset S$ be defined by

$$T = \{x \in \mathbb{B}^n \mid x \le x' \text{ for some } x' \in S\}$$

- We are interested in T because conv(T) is full-dimensional and therefore easier to analyze.
- The dimension of $\operatorname{conv}(S)$, on the other hand, is |E| |V| (proving this is nontrivial).
- All inequalities valid for T are also valid for S.

Trivial Inequalities of the TSP Polytope

- It is easy to show that the upper and lower bound constraints are facets of conv(T).
- In fact, they are also facets of $\operatorname{conv}(S)$ for all graphs with $|V| \geq 5$.
- The degree constraints $\sum_{e \in \delta(\{v\})} x_e = 2$ are valid for $\operatorname{conv}(S)$.
- The inequalities $\sum_{e \in \delta(\{v\})} x_e \leq 2$ are facets of $\operatorname{conv}(T)$.
- How do we separate these inequalities?

The Subtour Elimination Constraints

- The constraints $\sum_{e \in E(W)} x_e \le |W| 1$ are called the *subtour elimination* constraints.
- These constraints eliminate integer solutions with cycles that do not include all of the nodes.
- The subtour elimination constraints are facet-defining for $\operatorname{conv}(S)$ if $m \geq 4$ for all W with $2 \leq |W| \leq |m/2|$.
- How can we formulate the problem of generating a most violated subtour elimination constraints with respect to $\hat{x} \in \mathbb{R}^n$?

The 2-matching Inequalities

• Even for small examples, the set of inequalities we have discussed so far do not describe the convex hull of integer solutions.

- Let H be any subset of the nodes with $3 \le |H| \le |V| 1$.
- Let $\hat{E} \subset (H, V \setminus H)$ be an odd set of disjoint edges crossing the cut defined by H.
- By combining the degree constraints for the nodes in H and the nonnegativity constraints for the edges in \hat{E} , we get the 2-matching inequalities.

$$\sum_{e \in E(H)} x_e + \sum_{e \in \hat{E}} x_e \le |H| + \left\lfloor \frac{|\hat{E}|}{2} \right\rfloor.$$

- These are similar to the odd set inequalities for the perfect matching problem.
- Combining these inequalities with the degree constraints yields a complete description of the matching polytope.

Generalizing the 2-matching Inequalities

• The 2-matching inequalities can be restated as

$$\sum_{e \in E(H)} x_e + \sum_{i=1}^k \sum_{e \in E(W_i)} x_e \le |H| + \sum_{i=1}^k (|W_i| - 1) - \frac{k+1}{2}.$$

- To get a 2-matching inequality, we can simply take the sets W_i to be the endpoints of the edges in \hat{E} .
- This inequality remains valid even if the sets W_i contain more than two points.
- Each set must contain at least one node in H and one node note in H and the sets must all be disjoint.
- These inequalities are called the *comb inequalities* and are also rank 1 C-G inequalities.
- The sets W_i are called the *teeth* and the set H is called the *handle*.

Higher Rank C-G Inequalities

- We can further generalize the comb inequalities by constructing combs whose teeth are themselves combs.
- These *generalized comb inequalities* are obtained by combining the degree constraints, nonnegativity constraints, subtour elimination constraints, and comb inequalities.
- In fact, the generalized comb inequalities turn out to be facet-defining for conv(S).
- By allowing the vertices of the comb to be cliques, we get the facetdefining clique-tree inequalities.
- Additional known classes of facet-defining inequalities.
 - Path Inequalities
 - Wheelbarrows
 - Bicycles
 - Ladders
 - Crowns

More Inequalities

- The inequalities we have discussed so far are still not enough to define the convex hull of solutions.
- There are small graphs for which these inequalities are not enough.
- Because the TSP is \mathcal{NP} -hard, it is unlikely that the TSP polytope has bounded rank, so it is likely that many more facets exist.
- Computationally, knowledge of just this set of inequalities has been enough to solve very large examples, however.
- The largest TSP solved to date is 24978 cities.
- This is an integer program with on the order of half a billion variables.
- Of course, it took 85 years (yes, years!) of CPU time to solve;).

Separation Procedures

- An exact separation procedure for a class of inequalities is an algorithm that is guaranteed to return an inequality of that class violated by a given point if one exists.
- A *heuristic separation procedure* is a procedure that may or may not return a violated inequality of a given class.
- The subtour elimination constraints and the 2-matching inequalities are the only classes for which we have polynomial time exact separation procedures.
- However, powerful heuristics are known for many classes.
- These heuristics can take a long time to run.