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Reading for This Lecture

e Nemhauser and Wolsey Sections 11.1.1-11.1.3, 11.1.6
e Wolsey Chapter 8

e Valid Inequalities for Mixed Integer Linear Programs, G. Cornuejols
(2006)
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Describing conv(.5)

e As before, we consider a pure integer program

zip = max{cx |x € S},

S = {xeZ}|Ax <b}.

e Under our assumptions, conv(S) is a rational polyhedron.
e Thus, in theory, it is possible to generate a complete description of it.
e So why aren’t IPs easy to solve?

— The number of inequalities required is generally HUGE!

— The number of facets of the TSP polytope for an instance with 120
nodes is more than 10'%° times the number of atoms in the universe.

— It is physically impossible to write down a description of this polytope.

— Not only that, but it is very difficult in general to generate these facets
(this problem is not in P in general).
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Improving Bounds

e Our discussions of branch and bound have so far focused on the use of
three basic bounding methods.

— LP relaxation
— Lagrangian relaxation
— Dantzig-Wolfe decomposition

e Recall that the bound produced by Lagrangian relaxation and Dantzig-
Wolfe decomposition is

Zp = max{caj ‘ Al,CC < bl,ZC € CODV(SLR)},

which is an improvement over that produced by solving the LP relaxation.

e Producing the bound zp depends on our ability to efficiently optimize
over conv(SLR).

e Can we improve the LP relaxation in some way?
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Cutting Planes

e Recall that the inequality denoted by (7, mg) is valid for a polyhedron P
if mx < mg Vo € P.

e The term cutting plane usually refers to an inequality valid for conv(\5),
but which is violated by the solution obtained by solving the (current)
LP relaxation.

e Note that this is not a very precise definition and the term is a bit
colloquial, but we will use it anyway.

e (utting plane methods attempt to improve the bound produced by the LP
relaxation by iteratively adding cutting planes to the initial LP relaxation.

e Adding such inequalities to the LP relaxation may improve the bound
(this is not a guarantee).
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The Separation Problem

e Methods for generating cutting planes dynamically attempt to solve a
separation problem.

e The separation problem can itself be formulated as an optimization
problem in a number of ways.

e Most commonly, we wish to generate the valid inequality that is most
violated.

e This problem is equivalent (in a complexity sense) to the optimization
problem over the same convex set. optimization and separation, we could

e Hence, we could in principle use a cutting plane method as a third
alternative to produce the bound zp.
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Methods for Generating Cutting Planes

e In most cases, the separation problems that arise cannot be solved
exactly, so we either

— solve the separation problem heuristically, or
— solve the separation problem exactly, but for a relaxation.

e The template paradigm for separation consists of restricting the class of
inequalities considered to just those with a specific form.

e This is equivalent, in some sense, to solving the separation problem for
a relaxation.

e Separation algorithms can generally be divided into two classes

— Algorithms that do not assume any specific structure.
— Algorithms that only work in the presence of specific structure.
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Generating Cutting Planes: Two Viewpoints

e There are a number of different points of view from which one can derive
the standard methods used to generate cutting planes for general MILPs.

e As we have seen before, there is an algebraic point of view and a
geometric point of view.

e Algebraic:

— Take combinations of the known valid inequalities.
— Use rounding to produce stronger ones.

o Geometric:

— Use a disjunction (as in branching) to generate several disjoint
polyhedra whose union contains S.
— Generate inequalities valid for the convex hull of this union.

e Although these seem like very different points of view, they turn out to
be roughly equivalent.
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Generating Valid Inequalities: Algebraic Viewpoint

o Consider the feasible region of the LP relaxation P = {z € R" | Az < b}.

e Valid inequalities for /P can be obtained by taking nonnegative linear
combinations of the rows of (A,b).

e Except for one pathological case!, all valid inequalities for P are either
equivalent to or dominated by an inequality of the form

uAr < ub,u € RT.

e To avoid the pathological case, we may assume that A contains explicit
upper bounds on the variables.

I The pathological case occurs when one or more variables have no explicit upper bound and both the
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Generating Valid Inequalities for conv(S)

e All inequalities valid for P are also valid for conv(.S), but they are not
cutting planes.

e \We can do better.

e We need the following simple principle: if a < b and a is an integer, then
a < |b|.

e Believe it or not, this simple fact is all we need to generate all valid
inequalities for conv(.S)!
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The Perfect Matching Problem

L
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Consider the perfect matching problem.

min Z Cele
e={i,j}€E

st. )  wmy=1VieN
{jl{ijreE}
z. € {0,1}, Ve ={i,j} € E.
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The Odd Cut Inequalities

e Each odd cutset induces a possible valid inequality.

Z re > 1,5 C N,|S| odd.
e€d(S)

e Let's derive these another way.

— Consider an odd set of nodes U.

— Sum the constraints Do iltinem Tig = 1forieU.

— Relaxing to inequality, we get 2 gy Ze + 2 ocs(u) Te < U]

— Dividing through by 2, we obtain ) __ 55 Ze + : D ecs(u) Le < = U).
— We can drop the second term of the sum to obtain

S oz < %\U\.

ecE(U)

— What's the last step?
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The Chvatal-Gomory Procedure

o Let A= (ay,as,...,a,)and N ={1,...,n}.

1. Choose a weight vector u > 0.

Obtain the valid inequality } .y (uaj)z < ub.

3. Round the coefficients down to obtain > .y (|ua;])z < ub. Why
can we do this?

4. Finally, round the right hand side down to obtain the valid inequality

D

> (lua;))z < [ubl

JEN

e This procedure is called the Chvatal-Gomory rounding procedure, or
simply the C-G procedure.

e Surprisingly, any inequality valid for conv(S) can be produced by a finite
number of iterations of this procedure!
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Assessing the Procedure

e Although it is theoretically possible to generate any valid inequality using
the C-G procedure, it is far from ideal.

e Depending on the weights chosen, we may not even obtain a supporting
hyperplane.

e This is is because we can only push the inequality in until it meets some
point in Z™, which may or may not also be in S.

e In fact, the procedure may not even generate a hyperplane that includes
an integer point!

e The coefficients of the generated inequality must be relatively prime to
ensure the generated hyperplane includes an integer point.

Proposition 1. Let S = {z € Z" | ) .cyajz; < b}, where a; € Z
for j € N, and let k = gcd{ay,...,a,}. Then conv(S) = {x €
R™ | 2 jenlaj/k)z; < [b/k]}.
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Generating All Valid Inequalities

e Any valid inequality that can be obtained through iterative application
of the C-G procedure is a C-G inequality.

e For pure integer programs, all valid inequalities are C-G inequalities.

Theorem 1. Let (w,mg) € Z""! be a valid inequality for S = {x €
7% | Az < b} # 0. Then (m,m) is a C-G inequality for S.

e The number of applications of the C-G procedure necessary to obtain a
given valid inequality is called its C-G rank, denoted r(m, 7).

e The C-G rank of a polyhedron is the number of applications of the C-G
procedure necessary to obtain conv(.S).

e The rank of a polyhedron, denoted p(P), is equal to the maximum of
the ranks of its facets.

e For pure integer programs, the rank is always finite.
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The Gomory Cut

e Let's consider S, the set of solutions to an IP with one equation:

n
S = ZCEZTL‘_‘ E a;T; = ag
J=1

e For each j, let f; =a; — |a;|. Then equivalently

n
S=qxecZy | ijxj = fo + k for some integer k
j=1

e Since ), fjz; > 0and fo <1, then k > 0 and so

Z Jix; = fo
j=1

is a valid inequality for S called a Gomory cut.
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The Gomory Cut (cont)

e The importance of Gomory cutting planes is that they can be derived
from the tableau while solving an LP relaxation.

e Consider the set S = {z € Z"™ | (A,I)x = b} where A has integral
coefficients.

e Derive a new valid equation by combining the equations in the
representation with weight vector \ to obtain

n

> (AA T+ > Aingi = Ab,

j=1 i=1

where A; is the j*" column of A.
e Applying the previous procedure, we can obtain the valid inequality

n

> (A — [ M)y, + Z(Ai — [Ai]) @0t = 0 — [b].

g=1

e Note that this is really just a C-G inequality with weights u; = \; — [ \;].
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Deriving Valid Inequalities from the Tableau

e Note that each row of the tableau is a nonnegative linear combination of
the original equations.

e Suppose we choose a row in which the value of the basic variable is not
an integer.

e Applying the procedure from the last slide, the resulting inequality will
only involve nonbasic variables and will be of the form

Z Jix; = fo

JENB

where 0 < f; <1and 0 < fy < 1.

e \We can conclude that the generated inequality will be violated by the
current LP solution.

e Under mild assumptions on the algorithm used to solve the LP, this yields
a finite algorithm for solving pure integer programs.

e However, its convergence can be very slow.
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Valid Inequalities from Disjunctions

e Valid inequalities for conv(.S) can also be generated based on disjunctions.

e In fact, in some sense, all valid inequalities arise from some sort of logical
disjunction.

e In this way, branch and cutting are two different methods of exploiting a
given disjunction.

e We will not have time to delve into the details of the tradeoffs between
the two, but it is a topic of current research.

e Let P, ={z eR" | A's <V'}fori=1,...,k besuchthat S C U¥_,P;.

e Then inequalities valid for U¥_,P; are also valid for conv(S).
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Valid Inequalities for the Union of Polyhedra

Valid inequalities based on disjunctions can be derived from the following
straightforward result:

Proposition 2. If} 7 | ; L <y is valid for S; C R and >
is valid for So C R, then

=1 T <7

Z min(wjl-, W?)CC < max(mj, )

forx € S;1USs.

In fact, all valid inequalities for the union of two polyhedra can be obtained
in this way.

Proposition 3. [f P = {z € R" | A'x < b'} for i = 1,2 are nonempty
polyhedra, then (w,m) is a valid Inequal/ty for conv(Pt U P?) if and only
if there exist u',u?> € R™ such m < u'A* and 7wy > u'b* fori =1, 2.
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Strengthening Gomory Cuts Using Disjunction

e Consider again the set of solutions to an IP with one equation.

e This time, we write S equivalently as

S=qxcZy| Z fix; + Z (f; — Dx; = fo+ k for some integer k
J:1i<fo J:f>fo

e Since kK < —1 or k£ > 0, we have the disjunction

OR
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The Gomory Mixed Integer Cut

e Applying Proposition 2, we get

e This is called a Gomory mixed integer (GMI) cut.

e GMI cuts dominate the associated Gomory cut in general and can also
be obtained easily from the tableau.

e |n the case of the mixed integer set

S=qzeZ x R"p]Zajxj+Zgj:1:j—ao 7
j=p+1

the GMI cut is
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Example

Consider the following two variable IP.

min 2000021 4+ 15000z-
s.t. 0.321 + 0.425 > 2.0
0.4x1 4+ 0.229 > 1.5
0.2x1 + 0.3 > 0.5
0<z21<9
0<x25,<6

X1, Ty € L

The optimal solution to the LP relaxation is (2,3.5).
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Example (cont.)

e The two rows of the optimal tableau corresponding to the solution
(2,3.5) that correspond to binding constraints are

1 — 481 + 282 = 2033'2 -+ 381 — 482 =3.5 (1)

e Note that these rows are combinations of the rows corresponding to the
two binding constraints from the formulation (in standard form).

e The GMI cut resulting from row 2 is

681 —|—882 Z 1

e |n terms of the original variables, this is

1221 + 11z > 65

e This is violated by the solution (2, 3.5).
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Lift and Project

e Let's now consider S = P NB" and assume that the inequalities x <1
are included among those in Ax <b.

e Note that conv(S) C conv(P}UP;) where P = PN{x € R" | z; = 0}
and P; = PN {zx cR"|z; =1} for some j € {1,...,n}.
e Applying Proposition 3, we see that the inequality (7, mg) is valid for

Pj = conv(P; U P;) if there exists u* € R, and v* € Ry for i = 0,1
such that

T < uwA+ voej,
T < ulA-— fvlej,
¥ >V,
¥ > ulb— ol

e Notice that this is a set of linear constraints, i.e., we could write a linear
program to generate constraints based on this disjunction.
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The Cut Generating LP

e This leads to the cut generating LP (CGLP), which generates the most
violated inequality valid for P;.

min 7% — 7w
subject to m < u’A+ vV,
T < ulA—’Ulej,
7 > 4V,
7 > ulb — ol
™m ™m
g u?+v0+ g uzlJrfUl =1
u’, w00 vt >0

e The last constraint is just for normalization.

e This shows that the separation problem for P; is polynomially solvable.
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Gomory Cuts vs. Lift-and-Project Cuts

e Note that all Gomory cuts are lift-and-project cuts.

e In fact, there is a direct correspondence between basic feasible solutions
of the CGLP and basic (possibly infeasible) solutions of the usual LP
relaxation.

e By pivoting in the LP relaxation, we can implicitly solve the cut generating
LP (see Balas and Perregaard).

e Thus, the procedure for generating lift-and-project cuts is almost exactly
the same as that for generating Gomory cuts.
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Valid Inequalities for the Traveling Salesman Problem

e Consider a complete graph G = (V, F).

e A tour in this graph is a cycle containing all nodes, i.e., a set of edges
inducing a connected subgraph where the degree of every node is 2.

e Let S be the set of all incidence vectors of tours.

e Let ' D S be defined by

T={xeB" |z <2z for some 2’ € S}

e We are interested in T" because conv(T') is full-dimensional and therefore
easier to analyze.

e The dimension of conv(S), on the other hand, is |E| — |V| (proving this
is nontrivial).

e All inequalities valid for T are also valid for S.
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Trivial Inequalities of the TSP Polytope

e |t is easy to show that the upper and lower bound constraints are facets
of conv(T).

e In fact, they are also facets of conv(S) for all graphs with |[V| > 5.
e The degree constraints s,y Ze = 2 are valid for conv(S).
e The inequalities }_ 5,y Ze < 2 are facets of conv(T).

e How do we separate these inequalities?
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The Subtour Elimination Constraints

e The constraints } ,  pyyr) Ze < |W|—1 are called the subtour elimination
constraints.

e These constraints eliminate integer solutions with cycles that do not
include all of the nodes.

e The subtour elimination constraints are facet-defining for conv(S) if
m > 4 for all W with 2 < |[W| < |[m/2].

e How can we formulate the problem of generating a most violated subtour
elimination constraints with respect to £ € R™?
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The 2-matching Inequalities

e Even for small examples, the set of inequalities we have discussed so far
do not describe the convex hull of integer solutions.

e Let H be any subset of the nodes with 3 < |H| < |V]| — 1.

e Let £ C (H,V \ H) be an odd set of disjoint edges crossing the cut
defined by H.

e By combining the degree constraints for the nodes in H and the
nonnegativity constraints for the edges in E, we get the 2-matching

inequalities.
S et Swo<u) 4 |
- 2

e€E(H) ecE
e These are similar to the odd set inequalities for the perfect matching
problem.

e Combining these inequalities with the degree constraints yields a complete
description of the matching polytope.
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Generalizing the 2-matching Inequalities

e The 2-matching inequalities can be restated as

SRS xe§|H\+Z\W]—1 i

eCE(H) i=1 e€ E(W;)

e To get a 2-matching inequality, we can simply take the sets IV; to be the
endpoints of the edges in F.

e This inequality remains valid even if the sets IV; contain more than two
points.

e Each set must contain at least one node in H and one node note in H
and the sets must all be disjoint.

e These inequalities are called the comb inequalities and are also rank 1
C-G inequalities.

e The sets W, are called the teeth and the set H is called the handle.
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Higher Rank C-G Inequalities

e We can further generalize the comb inequalities by constructing combs
whose teeth are themselves combs.

e These generalized comb inequalities are obtained by combining the degree
constraints, nonnegativity constraints, subtour elimination constraints,
and comb inequalities.

e In fact, the generalized comb inequalities turn out to be facet-defining
for conv(.9).

e By allowing the vertices of the comb to be cliques, we get the facet-
defining clique-tree inequalities.

e Additional known classes of facet-defining inequalities.

— Path Inequalities
— Wheelbarrows

— Bicycles

— Ladders

— Crowns
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More Inequalities

e The inequalities we have discussed so far are still not enough to define
the convex hull of solutions.

e There are small graphs for which these inequalities are not enough.

e Because the TSP is N"P-hard, it is unlikely that the TSP polytope has
bounded rank, so it is likely that many more facets exist.

e Computationally, knowledge of just this set of inequalities has been
enough to solve very large examples, however.

e The largest TSP solved to date is 24978 cities.
e This is an integer program with on the order of half a billion variables.

e Of course, it took 85 years (yes, years!) of CPU time to solve ;).
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Separation Procedures

e An exact separation procedure for a class of inequalities is an algorithm
that is guaranteed to return an inequality of that class violated by a
given point if one exists.

e A heuristic separation procedure is a procedure that may or may not
return a violated inequality of a given class.

e The subtour elimination constraints and the 2-matching inequalities are
the only classes for which we have polynomial time exact separation
procedures.

e However, powerful heuristics are known for many classes.

e These heuristics can take a long time to run.



