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Reading for This Lecture

• Wolsey, Chapters 10 and 11

• Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4

• “Decomposition in Integer Programming,” Ralphs and Galati.
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The Decomposition Principle

• Again, we consider a pure integer program IP defined by

zIP = max{cx | x ∈ S},
S = {x ∈ Zn

+ | Ax ≤ b}.

• We also assume all variables have finite upper and lower bounds.

• Recall the concept of Lagrangian relaxation: we relax some constraints
and then penalize their violation.

• The principle of decomposition is to divide the inequalities describing S
into two sets:

– the “easy constraints,” and
– the “complicating constraints,” and

is such a way that removing the complicating constraints results in a
integer program we can solve effectively.
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The Lagrangian Relaxation

• Suppose as before that our IP is defined by

max cx

s.t. A1x ≤ b1 (the “complicating” constraints)

A2x ≤ b2 (the “nice” constraints)

x ∈ Zn

where optimizing over SLR = {x ∈ Zn | A2x ≤ b2} is “easy.”

• Lagrangian Relaxation (for u ≥ 0):

LR(u) : zLR(u) = ub1 + max
x∈SLR

{(c− uA1)x}.
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The Lagrangian Dual

• The next step is to obtain a dual problem formed by allowing u to vary.

• We are looking for the value of u ≥ 0 that yield the lowest upper bound.

• The Lagrangian dual problem, LD, is

zLD = min
u≥0

zLR(u)

• The Lagrangian dual can be rewritten as the following LP

zLD = min
η,u
{η + ub1 | η ≥ (c− uA1)xi, i ∈ 1, . . . , T, u ≥ 0}

where {xi}Ti=1 are the extreme points of conv(SLR).

• This can be solved using a cutting plane algorithm where the separation
problem is an optimization problem over the set SLR.
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Solving the Lagrangian Dual with Subgradient
Optimization

• Note that (c− uA1)x is an affine function of u for a fixed x.

• This tells us that zLR(u), when viewed as a function of u, is the maximum
of a finite number of affine functions.

• Hence, it is piecewise linear and convex on the domain over which it is
finite.

• We can easily minimize any convex function which we can evaluate and
subdifferentiate using a technique called subgradient optimization.

• This technique is covered in detail in nonlinear programming.

• The procedure iteratively adjusts the weights according to the degree of
violation of each constraint.
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Subgradient Algorithm for the Lagrangian Dual

• The idea of the subgradient algorithm is to first fix u and determine x
by optimizing over SLR.

• Then update u according to the observed violations.

• Here is a basic subgradient algorithm for solving the Lagrangian dual:

1. Choose initial Lagrange multipliers u0 ≥ 0 and set t = 0.
2. Solve the Lagrangian subproblem LR(ut).
3. Calculate the current violation of the complicating constraints s =

b1 −A1x.
4. Set ut+1

j ← max{ut
j − µt sj

‖s‖, 0} where µt is the chosen step size.

5. Set t← t + 1 and go to step 2.

• This algorithm is guaranteed to converge to the optimal solution as long
as {µt}∞t=0 → 0 and

∑∞
t=0 µt =∞

• In practice, one usually uses a geometric progression for the step sizes.

• Sometimes, it’s difficult to know when the optimal solution has been
reached.

6



MIP Lecture 5 7

Dantzig-Wolfe Decomposition

• In this technique, we utilize the fact that every point in conv(SLR) can
be written as the convex combination of extreme points of conv(SLR).

• Here is the Dantzig-Wolfe LP:

max
T∑

i=1

cxiλi

s.t.
T∑

i=1

A1xiλi≤ b1

T∑

I=1

λi = 1

λ ∈ RT
+

where {xi}Ti=1 are the extreme points of conv(SLR).

• This is a relaxation of IP ; solving yields an upper bound.
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Solving the Dantzig-Wolfe LP

• We can solve this LP using column generation.

• The column generation subproblem is again an optimization problem
over SLR.

• Note that this LP is exactly the dual of the LP we derived as being
equivalent to the Lagrangian dual!

• Hence, this gives the same bound as the Lagrangian dual.
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Comparing Dantzig-Wolfe to Lagrangian Relaxation

• Because they are conceptually equivalent, the distinction between
Dantzig-Wolfe and Lagrangian relaxation is a bit artificial.

• Philosophically, the distinction between them is in the solution
methodology typically applied and in the form of the output.

• The Lagrangian dual produces only a dual solution and does not include
any explicit primal solution information.

• Dantzig–Wolfe is required to produce both a primal and a dual solution.

• The primal solution information can be used to perform separation and
tighten the relaxation.
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The Strength of the Decomposition Bound

• We can characterize its strength of the bound obtained by decomposition
as follows:

zD = max{cx | A1x ≤ b1, x ∈ conv(SLR)}

• Using this fact, we can characterize exactly when the decomposition
bound is strong.

Proposition 1. zIP = zD for all objective functions if and only if

conv{SLR ∩ {x ∈ Rn
+ | A1x ≤ b1}} = conv(SLR) ∩ {x ∈ Rn

+ | A1x ≤ b1}
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Example

min x1

−x1 − x2 ≥ −8, (1)

−0.4x1 + x2 ≥ 0.3, (2)

x1 + x2 ≥ 4.5, (3)

3x1 + x2 ≥ 9.5, (4)

0.25x1 − x2 ≥ −3, (5)

7x1 − x2 ≥ 13, (6)

x2 ≥ 1, (7)

−x1 + x2 ≥ −3, (8)

−4x1 − x2 ≥ −27, (9)

−x2 ≥ −5, (10)

0.2x1 − x2 ≥ −4, (11)

x ∈ Z2. (12)
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Illustrating the Strength of the Lagrangian Dual

(2,1) (2,1) (2,1)

PP
PLP = P1 ∩ P2

P
conv(SLR)
P1

P2

conv(SLR) ∩ P1

P = conv{x ∈ Z2 | x satisfies (1)− (11)},
P1 = {x ∈ R2 | x satisfies (1)− (5)}, and

P2 = {x ∈ R2 | x satisfies (6)− (11)},
SLR = P2 ∩ Z2.
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Comparing the Decomposition Bound to the LP bound

• The following proposition follows again from the characterization of zLD.

Proposition 2. The LP relaxation of IP gives the bound zD for all
objective functions if {x ∈ Rn

+ | A2x ≤ b2} is an integral polyhedron.

• This follows from the fact that conv(SLR) = {x ∈ Rn
+ | A2x ≤ b2} in

this case.

• Because of the equivalence of optimization and separation, we can in
theory always attain this bound using a cutting plane algorithm (why?).

• However, in some cases, decomposition methods can compute this bound
more efficiently.

• The advantage of the LP relaxation is that it can be further strengthened
using cutting planes valid for S.

• It is also possible to strengthen the Lagrangian dual in this way.
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Choosing a Decomposition

• Often, there are multiple choices for the decomposition.

• The definition of the set SLR determines the strength of the bound.

• However, it is important to choose a relaxation that can be solved
relatively easily (but not too easily).

• The relaxation must be solved iteratively in order to obtain the bound.

• Recall the TSP example.
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Comparing Decomposition-based Bounding to LP-based
Bounding

• The class of methods we have just discussed are called decomposition-
based methods because they decompose the problem into two parts.

• Up until the mid-1970’s, these methods were very popular for solving
integer programming problems.

• They can effectively strengthen the bound obtained by LP relaxation
alone.

• However, after methods based on strengthening the LP relaxation using
polyhedral cutting planes were introduced, these methods fell out of
favor.

• It is possible to combine these two approaches.

• This is one of the current frontiers of research in integer programming.
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