Computational Integer Programming Universidad de los Andes

Lecture 5

Dr. Ted Ralphs

Reading for This Lecture

- Wolsey, Chapters 10 and 11
- Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4
- "Decomposition in Integer Programming," Ralphs and Galati.

The Decomposition Principle

Again, we consider a pure integer program IP defined by

```
z_{IP} = \max\{cx \mid x \in S\},\
S = \{x \in \mathbb{Z}_+^n \mid Ax \le b\}.
```

- We also assume all variables have finite upper and lower bounds.
- Recall the concept of Lagrangian relaxation: we relax some constraints and then penalize their violation.
- The *principle of decomposition* is to divide the inequalities describing S into two sets:
 - the "easy constraints," and
 - the "complicating constraints," and

is such a way that removing the complicating constraints results in a integer program we can solve effectively.

The Lagrangian Relaxation

Suppose as before that our IP is defined by

```
\max cx
s.t. A^1x \leq b^1 (the "complicating" constraints)
A^2x \leq b^2 (the "nice" constraints)
x \in \mathbb{Z}^n
```

where optimizing over $S_{LR} = \{x \in \mathbb{Z}^n \mid A^2x \leq b^2\}$ is "easy."

• Lagrangian Relaxation (for $u \ge 0$):

$$LR(u): z_{LR}(u) = ub^1 + \max_{x \in S_{LR}} \{(c - uA^1)x\}.$$

The Lagrangian Dual

- ullet The next step is to obtain a dual problem formed by allowing u to vary.
- We are looking for the value of $u \geq 0$ that yield the lowest upper bound.
- The Lagrangian dual problem, LD, is

$$z_{LD} = \min_{u \ge 0} z_{LR}(u)$$

The Lagrangian dual can be rewritten as the following LP

$$z_{LD} = \min_{\eta, u} \{ \eta + ub^1 \mid \eta \ge (c - uA^1)x^i, i \in 1, \dots, T, u \ge 0 \}$$

where $\{x^i\}_{i=1}^T$ are the extreme points of $\operatorname{conv}(S_{LR})$.

• This can be solved using a cutting plane algorithm where the separation problem is an optimization problem over the set S_{LR} .

Solving the Lagrangian Dual with Subgradient Optimization

- Note that $(c uA^1)x$ is an affine function of u for a fixed x.
- This tells us that $z_{LR}(u)$, when viewed as a function of u, is the maximum of a finite number of affine functions.
- Hence, it is piecewise linear and convex on the domain over which it is finite.
- We can easily minimize any convex function which we can evaluate and subdifferentiate using a technique called *subgradient optimization*.
- This technique is covered in detail in nonlinear programming.
- The procedure iteratively adjusts the weights according to the degree of violation of each constraint.

Subgradient Algorithm for the Lagrangian Dual

- The idea of the subgradient algorithm is to first fix u and determine x by optimizing over S_{LR} .
- Then update *u* according to the observed violations.
- Here is a basic <u>subgradient algorithm</u> for solving the <u>Lagrangian dual</u>:
 - 1. Choose initial Lagrange multipliers $u^0 \ge 0$ and set t = 0.
 - 2. Solve the Lagrangian subproblem $LR(u^t)$.
 - 3. Calculate the current violation of the complicating constraints $s = b^1 A^1 x$.
 - 4. Set $u_j^{t+1} \leftarrow \max\{u_j^t \mu^t \frac{s_j}{\|s\|}, 0\}$ where μ^t is the chosen *step size*.
 - 5. Set $t \leftarrow t + 1$ and go to step 2.
- This algorithm is guaranteed to converge to the optimal solution as long as $\{\mu^t\}_{t=0}^{\infty} \to 0$ and $\sum_{t=0}^{\infty} \mu^t = \infty$
- In practice, one usually uses a geometric progression for the step sizes.
- Sometimes, it's difficult to know when the optimal solution has been reached.

Dantzig-Wolfe Decomposition

- In this technique, we utilize the fact that every point in $conv(S_{LR})$ can be written as the convex combination of extreme points of $conv(S_{LR})$.
- Here is the Dantzig-Wolfe LP:

$$\max \sum_{i=1}^{T} cx^{i} \lambda^{i}$$

$$s.t. \sum_{i=1}^{T} A^{1}x^{i} \lambda^{i} \leq b^{1}$$

$$\sum_{I=1}^{T} \lambda^{i} = 1$$

$$\lambda \in \mathbb{R}^{T}_{+}$$

where $\{x^i\}_{i=1}^T$ are the extreme points of $\operatorname{conv}(S_{LR})$.

• This is a relaxation of *IP*; solving yields an upper bound.

Solving the Dantzig-Wolfe LP

- We can solve this LP using column generation.
- ullet The column generation subproblem is again an optimization problem over S_{LR} .
- Note that this LP is exactly the dual of the LP we derived as being equivalent to the Lagrangian dual!
- Hence, this gives the same bound as the Lagrangian dual.

Comparing Dantzig-Wolfe to Lagrangian Relaxation

- Because they are conceptually equivalent, the distinction between Dantzig-Wolfe and Lagrangian relaxation is a bit artificial.
- Philosophically, the distinction between them is in the solution methodology typically applied and in the form of the output.
- The Lagrangian dual produces only a dual solution and does not include any explicit primal solution information.
- Dantzig-Wolfe is required to produce both a primal and a dual solution.
- The primal solution information can be used to perform separation and tighten the relaxation.

The Strength of the Decomposition Bound

 We can characterize its strength of the bound obtained by decomposition as follows:

$$z_D = \max\{cx \mid A^1 x \le b^1, x \in \operatorname{conv}(S_{LR})\}\$$

• Using this fact, we can characterize exactly when the decomposition bound is strong.

Proposition 1. $z_{IP} = z_D$ for all objective functions if and only if

$$conv\{S_{LR} \cap \{x \in \mathbb{R}^n_+ \mid A^1x \le b^1\}\} = conv(S_{LR}) \cap \{x \in \mathbb{R}^n_+ \mid A^1x \le b^1\}$$

Example

 $\min x_1$

$$-x_1 - x_2 \geq -8, \tag{1}$$

$$-0.4x_1 + x_2 \ge 0.3, \tag{2}$$

$$x_1 + x_2 \ge 4.5,$$
 (3)

$$3x_1 + x_2 \ge 9.5,$$
 (4)

$$0.25x_1 - x_2 \ge -3, \tag{5}$$

$$7x_1 - x_2 \ge 13,$$
 (6)

$$x_2 \geq 1, \tag{7}$$

$$-x_1 + x_2 \geq -3, \tag{8}$$

$$-4x_1 - x_2 \ge -27, (9)$$

$$-x_2 \geq -5, \tag{10}$$

$$0.2x_1 - x_2 \ge -4, \tag{11}$$

$$x \in \mathbb{Z}^2. \tag{12}$$

Illustrating the Strength of the Lagrangian Dual

$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^2 \mid x \text{ satisfies } (1) - (11)\},$$
 $\mathcal{P}^1 = \{x \in \mathbb{R}^2 \mid x \text{ satisfies } (1) - (5)\}, \text{ and}$
 $\mathcal{P}^2 = \{x \in \mathbb{R}^2 \mid x \text{ satisfies } (6) - (11)\},$
 $S_{LR} = \mathcal{P}^2 \cap \mathbb{Z}^2.$

Comparing the Decomposition Bound to the LP bound

• The following proposition follows again from the characterization of z_{LD} .

Proposition 2. The LP relaxation of IP gives the bound z_D for all objective functions if $\{x \in \mathbb{R}^n_+ \mid A^2x \leq b^2\}$ is an integral polyhedron.

- This follows from the fact that $\operatorname{conv}(S_{LR}) = \{x \in \mathbb{R}^n_+ \mid A^2x \leq b^2\}$ in this case.
- Because of the equivalence of optimization and separation, we can in theory always attain this bound using a cutting plane algorithm (why?).
- However, in some cases, decomposition methods can compute this bound more efficiently.
- The advantage of the LP relaxation is that it can be further strengthened using cutting planes valid for S.
- It is also possible to strengthen the Lagrangian dual in this way.

Choosing a Decomposition

- Often, there are multiple choices for the decomposition.
- The definition of the set S_{LR} determines the strength of the bound.
- However, it is important to choose a relaxation that can be solved relatively easily (but not too easily).
- The relaxation must be solved iteratively in order to obtain the bound.
- Recall the TSP example.

Comparing Decomposition-based Bounding to LP-based Bounding

- The class of methods we have just discussed are called *decomposition-based methods* because they decompose the problem into two parts.
- Up until the mid-1970's, these methods were very popular for solving integer programming problems.
- They can effectively strengthen the bound obtained by LP relaxation alone.
- However, after methods based on strengthening the LP relaxation using polyhedral cutting planes were introduced, these methods fell out of favor.
- It is possible to combine these two approaches.
- This is one of the current frontiers of research in integer programming.