Computational Integer Programming
Universidad de los Andes

Lecture 5

Dr. Ted Ralphs



MIP Lecture 5

Reading for This Lecture

e Wolsey, Chapters 10 and 11
e Nemhauser and Wolsey Sections 11.3.1, 11.3.6, 11.3.7, 11.5.4

e “Decomposition in Integer Programming,” Ralphs and Galati.
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The Decomposition Principle

e Again, we consider a pure integer program I P defined by

zrp = max{cx |z € S},

S = {zxeZ}|Ax <b}.

e We also assume all variables have finite upper and lower bounds.

e Recall the concept of Lagrangian relaxation: we relax some constraints
and then penalize their violation.

e The principle of decomposition is to divide the inequalities describing S
Into two sets:

— the “easy constraints,” and
— the “complicating constraints,” and

is such a way that removing the complicating constraints results in a
integer program we can solve effectively.
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The Lagrangian Relaxation

e Suppose as before that our I P is defined by

max cx
s.t. Az < b' (the “complicating” constraints)
A*r < b* (the “nice” constraints)
r € 7"

where optimizing over Sy g = {x € Z" | A%z < b*} is “easy.”

e |agrangian Relaxation (for u > 0):

LR(u) : zpr(u) = ub® + max {(c — udl)x}.
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The Lagrangian Dual

e The next step is to obtain a dual problem formed by allowing u to vary.
e We are looking for the value of u > 0 that yield the lowest upper bound.

e The Lagrangian dual problem, LD, is

ZLp = min zrr(u)

e The Lagrangian dual can be rewritten as the following LP
zip = min{n +ub* | n > (c —uAYz', i€ 1,...,T,u > 0}
7,u

where {z'}!_, are the extreme points of conv(SpR).

e This can be solved using a cutting plane algorithm where the separation
problem is an optimization problem over the set Sy k.
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Solving the Lagrangian Dual with Subgradient
Optimization

e Note that (¢ — uA')x is an affine function of u for a fixed .

e This tells us that z7, gr(u), when viewed as a function of u, is the maximum
of a finite number of affine functions.

e Hence, it is piecewise linear and convex on the domain over which it is
finite.

e We can easily minimize any convex function which we can evaluate and
subdifferentiate using a technique called subgradient optimization.

e This technique is covered in detail in nonlinear programming.

e The procedure iteratively adjusts the weights according to the degree of
violation of each constraint.
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Subgradient Algorithm for the Lagrangian Dual

e The idea of the subgradient algorithm is to first fix © and determine x
by optimizing over S R.

e Then update u according to the observed violations.

e Here is a basic subgradient algorithm for solving the Lagrangian dual:

1.
2.
3.

4.
5.

Choose initial Lagrange multipliers « > 0 and set ¢ = 0.

Solve the Lagrangian subproblem LR(u').

Calculate the current violation of the complicating constraints s =
bl — Alz.

Set u!T! — max{u} — ,utlij“, 0} where ' is the chosen step size.

j
Sett + t+ 1 and go to step 2.

e This algorithm is guaranteed to converge to the optimal solution as long
as {1}y — 0 and Y352t = oc

e |n practice, one usually uses a geometric progression for the step sizes.

e Sometimes, it's difficult to know when the optimal solution has been
reached.



MIP Lecture 5 7

Dantzig-Wolfe Decomposition

e In this technique, we utilize the fact that every point in conv(Srg) can
be written as the convex combination of extreme points of conv(Szr).

e Here is the Dantzig-Wolfe LP:
T
max anf’)\z
i=1

T
s.t. Z ALz < bl

1=1

\=1

T

T
A€ Ry
where {z'} 1| are the extreme points of conv(SyR).

e This is a relaxation of I P; solving yields an upper bound.
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Solving the Dantzig-Wolfe LP

e We can solve this LP using column generation.

e The column generation subproblem is again an optimization problem
over S R.

e Note that this LP is exactly the dual of the LP we derived as being
equivalent to the Lagrangian dual!

e Hence, this gives the same bound as the Lagrangian dual.
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Comparing Dantzig-Wolfe to Lagrangian Relaxation

e Because they are conceptually equivalent, the distinction between
Dantzig-Wolfe and Lagrangian relaxation is a bit artificial.

e Philosophically, the distinction between them is in the solution
methodology typically applied and in the form of the output.

e The Lagrangian dual produces only a dual solution and does not include
any explicit primal solution information.

e Dantzig—Wolfe is required to produce both a primal and a dual solution.

e The primal solution information can be used to perform separation and
tighten the relaxation.
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The Strength of the Decomposition Bound

e We can characterize its strength of the bound obtained by decomposition
as follows:

zp = max{cz | A'z <b' 2 € conv(SLr)}

e Using this fact, we can characterize exactly when the decomposition
bound is strong.

Proposition 1. z;p = zp for all objective functions if and only if

con{SprN{z € R} | A'z <b'}} = conv(Spr) N{z e R} | Az < b'}
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lllustrating the Strength of the Lagrangian Dual

(2,1) (2,1)

conv(Sp R) N pl

PLPZ'Plﬂ'PZ

conv{x € Z* | x satisfies (1) — (11)},
{x € R? | x satisfies (1) — (5)}, and
{x € R? | x satisfies (6) — (11)},
P?NZ>.
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Comparing the Decomposition Bound to the LP bound

e The following proposition follows again from the characterization of 2 p.

Proposition 2. The LP relaxation of IP gives the bound zp for all
objective functions if {x € R’} | A%z < b} is an integral polyhedron.

e This follows from the fact that conv(Spr) = {z € R | A%z < b} in
this case.

e Because of the equivalence of optimization and separation, we can in
theory always attain this bound using a cutting plane algorithm (why?).

e However, in some cases, decomposition methods can compute this bound
more efficiently.

e The advantage of the LP relaxation is that it can be further strengthened
using cutting planes valid for §.

e |t is also possible to strengthen the Lagrangian dual in this way.
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Choosing a Decomposition

Often, there are multiple choices for the decomposition.
The definition of the set S;, r determines the strength of the bound.

However, it is important to choose a relaxation that can be solved
relatively easily (but not too easily).

The relaxation must be solved iteratively in order to obtain the bound.

Recall the TSP example.
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Comparing Decomposition-based Bounding to LP-based
Bounding

e The class of methods we have just discussed are called decomposition-
based methods because they decompose the problem into two parts.

e Up until the mid-1970’s, these methods were very popular for solving
integer programming problems.

e They can effectively strengthen the bound obtained by LP relaxation
alone.

e However, after methods based on strengthening the LP relaxation using

polyhedral cutting planes were introduced, these methods fell out of
favor.

e |t is possible to combine these two approaches.

e This is one of the current frontiers of research in integer programming.



