
Computational Integer Programming
Universidad de los Andes

Lecture 3

Dr. Ted Ralphs



MIP Lecture 3 1

References for This Lecture

• Wolsey Chapter 2

• Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4
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Relaxation

For simplicity, we now consider a pure integer program IP defined by

zIP = max{cx | x ∈ S},
S = {x ∈ Zn

+ | Ax ≤ b}.

Definition 1. A relaxation of IP is a maximization problem defined as

zR = max{zR(x) | x ∈ SR}

with the following two properties:

S ⊆ SR (1)

cx ≤ zR(x), ∀x ∈ S. (2)
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Importance of Relaxations

• The main purpose of a relaxation is to obtain an upper bound on zIP .

• Relaxation is used as a method of bounding in branch and bound.

• The idea is to choose a relaxation that is much easier to solve than the
original problem.

• Note that the relaxation must be solved to optimality to yield a valid
bound.

• We first consider three basic types of relaxations.

– LP relaxation
– Combinatorial relaxation
– Lagrangian relaxation

• Relaxations are also used in some other bounding schemes we will look
at.
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Aside: How Do You Spell “Lagrangian?”

• Some spell it “Lagrangean.”

• Some spell it “Lagrangian.”

• We ask Google.

• In 2002:

– “Lagrangean” returned 5,620 hits.
– “Lagrangian” returned 14,3000 hits.

• In 2007:

– “Lagrangean” returns 208,000 hits.
– “Lagrangian” returns 5,820,000 hits.

• In 2010:

– “Lagrangean” returns 110,000 hits (and asks “Did you mean:
Lagrangian?”)

– “Lagrangian” returns 2,610,000 hits.

• “Lagrangian” still wins!
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Obtaining and Using Relaxations

• An important additional property of relaxations is that if a relaxation of
IP is infeasible, then so is IP .

• If the objective function of the relaxation is the same as the original, then
if the optimal solution to the relaxation is feasible for IP , it is optimal
for IP .

• The easiest way to obtain relaxations of IP is to drop some of the
constraints defining the feasible set S.

• We have two choices

– LP relaxation: Drop the integrality constraints to obtain an LP.
– Combinatorial relaxation: Drop a set of inequality constraints that

make the resulting IP “easy.”

• It is “obvious” how to obtain an LP relaxation, but combinatorial
relaxations are not as obvious.
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Example: Traveling Salesman Problem

The TSP is a combinatorial problem (E,F) whose ground set is the edge
set of a graph G = (V, E).

• V is the set of customers.

• E is the set of travel links between the customers.

A feasible solution is a subset of E consisting of edges of the form {i, σ(i)}
for i ∈ V , where σ is a simple permutation V specifying the order in which
the customers are visited.

IP Formulation:

∑n
j=1 xij = 2 ∀i ∈ N−

∑
i∈S
j 6∈S

xij ≥ 2 ∀S ⊂ V, |S| > 1.

where xij is a binary variable indicating whether σ(i) = j.
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Combinatorial Relaxations of the TSP

• The Traveling Salesman Problem has several well-known combinatorial
relaxations.

• Assignment Problem

– The problem of assigning n people to n different tasks.
– Can be solved in polynomial time.
– Obtained by dropping the subtour elimination constraints.

• Minimum 1-tree Problem

– A 1-tree in a graph is a spanning tree of nodes {2, . . . n} plus exactly
two edges incident to node one.

– A minimum 1-tree can be found in polynomial time.
– This relaxation is obtained by dropping all subtour elimination

constraints involving node 1 and also all degree constraints not
involving node 1.
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Lagrangian Relaxation

• The idea is again based on relaxing a set of constraints from the original
formulation.

• We try to push the solution towards feasibility by penalizing violation of
the dropped constraints.

• Suppose our IP is defined by

max cx

s.t. A1x ≤ b1

A2x ≤ b2

x ∈ Zn
+

where optimizing over Q = {x ∈ Zn
+ | A2x ≤ b2} is “easy.”

• Lagrangian Relaxation:

LR(λ) : zLR(λ) = max
x∈Q

{(c− λA1)x + λb1}.
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Properties of the Lagrangian Relaxation

• For any λ ≥ 0, LR(λ) is a relaxation of IP (why?).

• Solving LR(λ) yields an upper bound on the value of the optimal
solution.

• Because of our assumptions, LR(λ) can be solved easily.

• Recalling LP duality, one can think of λ as a vector of “dual variables.”

• If the solution to the relaxation is integral, it is optimal if the primal and
dual solutions are complementary, as in LP.

• What is the obvious next step?
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