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Quick Introduction

• Bio

• Course web site

http://coral.ie.lehigh.edu/∼ted/teaching/mip

• Course structure

– Nine lectures of one hour each
– Slides will be posted on-line
– Computational exercises
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References for This Lecture

• N&W Sections I.1.1-I.1.4

• Wolsey Chapter 1
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The General Setting

• In this course, we consider mathematical programming models of the
form

max{cx | Ax ≤ b, x ∈ Zp
+, y ∈ Rn−p

+ },
where A ∈ Qm×n, b ∈ Rm, c ∈ Rn.

• This type of model is called a mixed integer linear programming model,
or simply a mixed integer program (MIP).

• If p = n, then we have a pure integer linear programming model, or
integer program (IP).

• The first p components of x are the discrete or integer variables and the
remaining components consist of the continuous variables.
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Some Notes

• We consider maximization problems throughout these lectures.

• I tend to think in terms of minimization by default, so please be aware,
this may cause some confusion.

• Also note that all variables are assumed to be nonnegative even when
not explicitly indicated.

• In most of the lectures, we will consider only the pure integer case for
simplicity.

• One further assumption we will make is that the constraint matrix is
rational. Why?
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Solutions

• A solution is an assignment of values to variables.

• A solution can hence be thought of as an n-dimensional vector.

• A feasible solution is an assignment of values to variables such that all
the constraints are satisfied.

• The objective function value of a solution is obtained by evaluating the
objective function at the given point.

• An optimal solution (assuming maximization) is one whose objective
function value is greater than or equal to that of all other feasible
solutions.

• Note that a mathematical program may not have a feasible solution

• Question: What are the different ways in which this can happen?
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Possible Outcomes

• When we say we are going to “solve” a mathematical program, we mean
to determine

– whether it is feasible, and
– whether it has an optimal solution.

• We may also want to know some other things, such as the status of its
“dual” or about sensitivity.
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Special Case: Binary Integer Programs

• In many cases, the variables of an IP represent yes/no decisions or logical
relationships.

• These variables naturally take on values of 0 or 1.

• Such variables are called binary.

• Integer programs involving only binary variables are called binary integer
programs (BIPs).
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Special Case: Combinatorial Optimization Problems

• A combinatorial optimization problem CP = (N,F) consists of

– A finite ground set N ,
– A set F ⊆ 2N of feasible solutions, and
– A cost function c ∈ Zn.

• The cost of F ∈ F is c(F ) =
∑

j∈F cj.

• The combinatorial optimization problem is then

max{c(F ) | F ∈ F}

• Note that there is a natural association with BIPs.

• Many COPs can be written as BIPs or MIPs.
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How Hard is Integer Programming?

• Solving general integer programs can be much more difficult than solving
linear programs.

• There in no known polynomial-time algorithm for solving general MIPs.

• Solving the associated linear programming relaxation results in an upper
bound on the optimal solution to the MIP.

• In general, an optimal solution to the LP relaxation does not tell us much
about an optimal solution to the MIP.

– Rounding to a feasible integer solution may be difficult.
– The optimal solution to the LP relaxation can be arbitrarily far away

from the optimal solution to the MIP.
– Rounding may result in a solution far from optimal.
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The Geometry of Integer Programming

• Let’s consider again an integer linear program

max c>x

s.t. Ax ≤ b

x ∈ Zn
+

• The feasible region is the integer points inside a polyhedron.

• It is easy to see why solving the LP relaxation does not necessarily yield
a good solution (why?).
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Dimension of Polyhedra

• The polyhedron P = {x ∈ Rn | Ax ≤ b} is of dimension k, denoted
dim(P) = k, if the maximum number of affinely independent points in
P is k + 1.

• A polyhedron P ⊆ Rn is full-dimensional if dim(P) = n.

• Let

– M = {1, . . . , m},
– M= = {i ∈ M | a>i x = bi ∀x ∈ P} (the equality set),
– M≤ = M \M= (the inequality set).

• Let (A=, b=), (A≤, b≤) be the corresponding rows of (A, b).

Proposition 1. If P ⊆ Rn, then dim(P ) + rank(A=, b=) = n
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Valid Inequalities

• The inequality denoted by (π, π0) is called a valid inequality for P if
π>x ≤ π0 ∀x ∈ P.

• Note that (π, π0) is a valid inequality if and only if P lies in the half-space
{x ∈ Rn | π>x ≤ π0}.

• If (π, π0) is a valid inequality for P and F = {x ∈ P | π>x = π0}, F is
called a face of P and we say that (π, π0) represents or defines F .

• A face is said to be proper if F 6= ∅ and F 6= P.

• Note that a face has multiple representations.

• The face represented by (π, π0) is nonempty if and only if max{π>x | x ∈
P} = π0.

• If the face F is nonempty, we say it supports P.

• Note that the set of optimal solutions to an LP is always a face of the
feasible region.
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Describing Polyhedra

• If P = {x ∈ Rn | Ax ≤ b}, then the inequalities corresponding to the
rows of [A | b] are called a description of P.

• Every polyhedron has an infinite number of descriptions.

• For obvious reasons, we would like to know the smallest possible
description of a given polyhedron.

• We can drop any inequality that does not support P, so we assume
henceforth that all inequalities are supporting.

Definition 1. If (π, π0) and (µ, µ0) are two valid inequalities for a
polyhedron P ⊆ Rn

+, we say (π, π0) dominates (µ, µ0) if there exists
u > 0 such that π ≥ uµ and π0 ≤ uµ0.

Definition 2. A valid inequality (π, π0) is redundant in the description
of P if there exists a linear combination of the inequalities in the
description that dominates (π, π0).

• We can drop redundant inequalities as well. Which ones are redundant?
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Facets

Proposition 2. Every face F of a polyhedron P is also a polyhedron and
can be obtained by setting a specified subset of the inequalities in the
description of P to equality.

• Note that this result is true for any description of P.

• This result implies that the number of faces of a polyhedron is finite.

• A face F is said to be a facet of P if dim(F ) = dim(P )− 1.

• In fact, facets are all we need to describe polyhedra.

Proposition 3. If F is a facet of P, then in any description of P, there
exists some inequality representing F .

Proposition 4. Every inequality that represents a face that is not a facet
is unnecessary in the description of P.
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Putting It Together

Putting together what we have seen so far, we can say the following.

Theorem 1.

1. Every full-dimensional polyhedron P has a unique (up to scalar
multiplication) representation that consists of one inequality representing
each facet of P.

2. If dim(P) = n − k with k > 0, then P is described by a maximal
set of linearly independent rows of (A=, b=), as well as one inequality
representing each facet of P.

Theorem 2. If a facet F of P is represented by (π, π0), then the set of all
representations of F is obtained by taking scalar multiples of (π, π0) plus
linear combinations of the equality set of P.
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Formulating Integer Programs

• Just as with LP, there are many ways of describing the feasible region of
an integer program.

• Unlike LP, these descriptions are usually implicit.

• The way in which the integer program is initially described can be
extremely important computationally.

• An important component of computational integer programming are
methods

• We will not be discussing formulation directly, but many of the methods
we’ll touch on are essentially for automatic reformulation.

• A better understanding of how solvers work should lead to an improved
ability to formulate IPs.
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